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Abstract— A Probabilistic Movement Primitive (ProMP) de-
fines a distribution over trajectories with an associated feedback
policy. ProMPs are typically initialized from human demon-
strations and achieve task generalization through probabilistic
operations. However, there is currently no principled guid-
ance in the literature to determine how many demonstrations
a teacher should provide and what constitutes a “good”
demonstration for promoting generalization. In this paper, we
present an active learning approach to learning a library of
ProMPs capable of task generalization over a given space.
We utilize uncertainty sampling techniques to generate a task
instance for which a teacher should provide a demonstration.
The provided demonstration is incorporated into an existing
ProMP if possible, or a new ProMP is created from the
demonstration if it is determined that it is too dissimilar from
existing demonstrations. We provide a qualitative comparison
between common active learning metrics; motivated by this
comparison we present a novel uncertainty sampling approach
named “Greatest Mahalanobis Distance.” We perform grasping
experiments on a real KUKA robot and show our novel active
learning measure achieves better task generalization with fewer
demonstrations than a random sampling over the space.

I. INTRODUCTION

Learning from demonstration [1–3] offers a promising
approach for robot users untrained in programming to com-
mand robots to perform common manipulation tasks. By
teaching the robot through demonstration, the user can pro-
vide manipulation expertise without needing to be an expert
in robotics. Probabilistic Movement Primitives (ProMPs)
provide a useful policy representation for generating adapt-
able robot motion learned from demonstration [4]. A ProMP
encodes a distribution over trajectories and is typically ini-
tialized with several demonstrations from a human teacher.
Task generalization to new goals and contexts is primarily
achieved by conditioning the trajectory distribution on de-
sired trajectory waypoints. This generalization mechanism
has been successfully applied in a variety of applications
including grasping objects while avoiding obstacles [5], relo-
cating objects of unknown weight [6], collaborative assembly
tasks [7], and robot table tennis [8].

However, ProMPs require an indeterminate number of
demonstrations to confidently generalize over the desired
task space and appropriately estimate the associated task
covariance [9]. Many real-world tasks require hundreds of
demonstrations to fully estimate the demonstration covari-
ance [10]. If too few demonstrations are provided, numerical
issues arise in the form of singular covariance matrices, and it
is common to use a non-informative prior for the covariance
in order to sidestep this issue [4, 11, 12]. However, the
generalization capability of a ProMP can be compromised
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Fig. 1: Illustration of our experimental task and setup. The robot
attempts to pick up an object placed anywhere on the table surface.
The system autonomously generates the task instance it is least
likely to generalize to according to an active learning metric. The
teacher then provides a demonstration for how to pick up the object
from the designated location.

when using parameters that do not adequately estimate the
true distribution associated with a task [4, 12]. The current
alternatives available to the teacher are to either expend
undue effort to exhaustively demonstrate a task to the robot,
or to attempt to capture, in only a small number of demon-
strations, the task variation necessary to achieve the desired
generalization. There is a need for a third option that guides
the teacher to provide only those demonstrations necessary
to ensure the desired task generalization is achievable.

In this paper, we present a novel active learning procedure
for learning a library of ProMPs from demonstration that
is capable of task generalization over a desired region. We
frame this as an active learning problem by conceiving of
each ProMP in the library as its own class, with the guiding
intuition that we want to fully “classify” the space, i.e.
achieve full ProMP coverage of the space. We adopt an
uncertainty sampling approach [13] that enables the robot
to generate the task sample for which it is least likely
to “predict” correctly, i.e. generalize to with a ProMP. By
allowing the learner to generate task samples to be “labeled”,
i.e. demonstrated by the teacher, we remove the burden of
the teacher to decide which demonstration to provide next.
Additionally, by informing task selection with uncertainty
measures, we reduce the total number of demonstrations
necessary to achieve a task than if demonstrations are given
in an ad hoc manner.
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We provide a qualitative comparison of different uncer-
tainty sampling measures commonly used for active learning
in supervised learning settings: Least Confident, Maximum
Entropy, and Minimum Margin. We show that these mea-
sures are not suitable for promoting task generalization with
ProMPs. We propose a new measure we call Greatest Maha-
lanobis Distance that effectively generates task instances that
are not in close proximity to any existing ProMP distribution.
We demonstrate with grasping experiments on a real KUKA
robot that our method affords task generalization with fewer
demonstrations more effectively than randomly sampling
over the space.

To briefly summarize our contributions, in this paper we:
1) Formalize an active learning approach for learning ma-

nipulation tasks from demonstration using Probabilistic
Movement Primitives.

2) Provide qualitative comparisons of the three most com-
mon uncertainty sampling techniques: Least Confident,
Minimum Margin, and Maximum Entropy.

3) Present a novel uncertainty sampling function suitable
for building a mixture of ProMPs capable of generaliz-
ing a manipulation task within a given region.

4) Leverage the probabilistic information encoded in
ProMP policies to automatically determine which
ProMP in the mixture a new demonstration should be
incorporated into, and which ProMP to execute for a
new task instance.

We structure the remainder of the paper as follows. We first
review related work in active learning from demonstration
in Section II. We then provide a brief technical overview
of ProMPs in Section III-A and define our novel approach
to learning a library of ProMPs through active learning in
Sections III-B–III-D. We present an overview of our exper-
imental setup in Section IV and describe the corresponding
results in Section V for grasping experiments performed on
a physical KUKA LBR4+ robot. We conclude in Section VI
with some final remarks and directions for future work.

II. RELATED WORK

Active learning, where a learner actively poses queries
to a teacher for input to reduce sample complexity, has
been widely applied in supervised learning settings [13].
Our approach is most suitably situated in the literature on
active learning from demonstration [9, 14–17], also referred
to as active imitation learning [18, 19], in which the learner
generates task instances for which the teacher may provide a
demonstration. Active learning from demonstration has been
applied to autonomous navigation [14], object seeking with
a quadruped robot [15], grasping objects [16], reaching to
task space positions with a manipulator [9], and generating
smooth robot motion from a latent-space encoding [17]. Also
included in this area are approaches where the learner does
not request full task demonstrations, but instead asks for
the action to take in the particular state that it is in [18–
20]. These approaches, however, are only applicable to finite
action spaces where actions are easily specified by a teacher.

The approaches most closely related to ours are those
using active learning to learn Dynamic Movement Primitives

(DMPs) for grasping [16] and reaching tasks [9]. In [16],
a hybrid system is presented such that a high-level active
learner generates grasp configurations based on a variant of
Upper Confidence Bound (UCB) policies [21], and a low-
level reactive DMP controller executes the grasp motion
based on a task demonstration. In [9], the robot incre-
mentally learns DMPs for reaching pre-defined positions in
its workspace. A Gaussian process is used for sampling
trajectories with an associated variance. If a function of the
variance is below an uncertainty threshold, then an existing
DMP is used with the goal appropriately adapted. Otherwise,
the human user is asked for a new demonstration to reach the
new goal position. By utilizing ProMPs in our method instead
of DMPs, we are able to achieve greater generalization
capabilities [4] while leveraging the probabilistic information
already encoded in the policy representation to compute
confidence measures. Additionally, we are able to provide
a probabilistic measure of the robot’s ability to generalize
a task in a given region, as opposed to [9] which can
only say for a given instance whether or not the robot is
confident it can execute the motion. Our approach therefore
has the advantage that the robot, after learning a task, can
be deployed with an associated uncertainty estimate that it
will succeed on any task instance it is given to perform.

Also relevant to our approach is work in the area of active
learning for parameterized skills [22]. In [22] the agent se-
lects tasks to practice in a reinforcement learning setting with
the objective of optimizing for expected improvement in skill
performance. Task competency is measured over a recur-
sively split goal space in [23] for an intrinsically-motivated
agent. Active Contextual Policy Search [24] considers a
learner that generates task contexts to condition a high-level
policy on, such that a lower-level policy can be optimized to
maximize an intrinsic reward function. These works are each
applied in reinforcement learning settings and are agnostic
to any particular policy representation. Our approach, on the
other hand, makes use of human demonstrations and, by
committing to a particular policy representation (ProMPs),
we are able to compute task competency in a unified manner
utilizing information from the policy representation itself.

III. METHODS

We first provide a brief background on ProMPs in Sec-
tion III-A to introduce the concepts relevant to our contri-
butions. We describe our approach to learning a mixture of
ProMPs in Section III-B. In Section III-C we present our
novel approach for active learning of ProMPs and discuss
the methods we compare. Finally, we provide details in
Section III-D on how to use our active learning method for
the concrete task we consider in our experiments: reaching
to grasp an object.

A. Background

We utilize a formulation of ProMPs that closely parallels
that of [4]. The ProMP trajectory distribution has the general
form

p(τ | w,Σy) =
∏
t

p(yt | Ψtw,Σy) (1)



where τ = [y0, . . . ,yT ] is a trajectory of the state yt ∈ S
for state space S ⊆ Rd, Ψt ∈ Rd×dn is a block-diagonal
matrix of n basis functions for each dimension of the state,
w ∈ Rdn is a weight vector, and Σy is the observation noise.
We assume, as in [4], that the time-dependent distributions
are Gaussian, i.e. p(yt | Ψtw,Σy) = N (yt | Ψtw,Σy).
This results in p(τ | w,Σy) being Gaussian as well since it
is a product of Gaussian distributions.

We parameterize the distribution with θ = {µw,Σw} and
marginalize out the weights such that

p(τ | θ,Σy) =
∫
p(τ | w,Σy)p(w | θ)dw (2)

Task generalization is achieved by conditioning p(w | θ) on
a desired trajectory waypoint y∗t with covariance Σ∗yt

. The
updated parameters θ∗ = {µ∗w,Σ∗w} are computed by

µ∗w = µw + ΣwΨt

(
Σ∗yt

+ ΨT
t ΣwΨt

)−1
(y∗t −ΨT

t µw)
(3)

Σ∗w = Σw −ΣwΨt

(
Σ∗yt

+ ΨT
t ΣwΨt

)−1
ΨT

t Σw (4)

This closed-form update is possible because we assume, as
in [4], that p(w | θ) is Gaussian.

B. Learning a Mixture of ProMPs from Demonstration

We employ a mixture of multiple ProMPs parameterized
as M = {(θ1, π1), . . . , (θJ , πJ)} where θj = {µj

w,Σ
j
w},

since it is known that a single ProMP is not sufficient to
properly characterize a given space [7]. We formalize the
mixture as

p(τ | M) =

J∑
j=1

πjN (τ | Ψµj
w,Ψ

TΣj
wΨ + Σy) (5)

where πj ∈ [0, 1] are mixture coefficients and µj
w, Σj

w are
the mean and covariance associated with the jth ProMP.

The mixture M is learned incrementally over time as
new demonstrations are acquired. In order to incorporate a
new demonstration, we first learn a weight vector w from
the demonstration using Ridge regression as in [4]. For the
first demonstration received, a new ProMP is created with
mean µ1

w = w and covariance Σ1
w = γI, where I is the

identity matrix and γ ∈ R+ is a scaling parameter. This
serves as a non-informative prior for the covariance [4].
For subsequent demonstrations, we must determine which
ProMP in the mixture the new demonstration should be
incorporated into. In contrast to previous work [25] that
learns a separate model for a gating function to the mixture
components, we directly utilize the probabilistic information
encoded in the learned ProMPs to determine which ProMP a
new demonstration should be incorporated into. We use the
Mahalanobis distance [26] as a measure of disparity between
w and each ProMP distribution θj given by

d(w,θj) =

√
(w − µj

w)T (Σ
j
w)−1(w − µj

w) (6)

A demonstration is incorporated into the jth ProMP if
the Mahalanobis distance between the learned weight vector
and the ProMP distribution falls below a disparity threshold

δ ∈ R+, i.e. if d(w,θj) ≤ δ. Instead of choosing a
fixed threshold, we compute a robust measure of a disparity
threshold for each ProMP utilizing the ProMP generative
model. For each ProMP, we create a set of weight vector
samples Wj and compute the value of Equation (6) for
each wi ∈ Wj . We use Median Absolute Deviation outlier
filtering [27] to compute the threshold

δj = max

{
d(wi,θj) :

d(wi,θj)−Mj

MADj
< β

}
(7)

where Mj is the median Mahalanobis distance of the sample
weights wi ∈ Wj to the ProMP distribution θj and MADj

is the Median Absolute Deviation computed by MADj =
med (|d(wi,θj)−Mj |). The parameter β is an easily tuned
parameter that governs how many outliers are discarded and
has standard associated values ranging from approximately 3
(few outliers discarded) to 2 (many outliers discarded) [27].

Once it is determined that d(w,θj) ≤ δj , the new demon-
stration is incorporated into the jth ProMP by updating the
ProMP’s distribution parameters as

µj
w =

1

N

N∑
i=1

wi (8)

Σj
w = λΣ0 +

(1− λ)
N

N∑
i=1

(wi − µj
w)(wi − µj

w)
T (9)

The mean µj
w is computed as the Maximum Likelihood

Estimate (MLE) where N is the number of samples the
ProMP is learned from, including the newly acquired sample.
Σj
w is updated as the Maximum A Posteriori (MAP) estimate

under an Inverse Wishart Prior, which amounts to a convex
combination of a positive semi-definite prior Σ0 and the
MLE of the sample covariance [28]. We adopt the method of
[11] and set Σ0 to be the estimate of Σj

w from the previous
learning iteration. This ensures that Σj

w is always full rank
(due to the initial diagonal prior) and that the parameter
estimate is not unduly influenced by a new sample. We found
this to be important in our experiments since, in general, the
number of demonstrations each ProMP is learned from is
considerably smaller than the dimensionality of the weight
space; using an ill-conditioned matrix in the probability
computations can result in non-informative values.

If it happens that d(w,θj) > δj for every ProMP in the
mixture, then we create a new ProMP with an uninformative
prior as described previously. When initializing all ProMPs
we set the initial Σ0 = σI for a small value of σ ∈ R+.

C. Active Learning of ProMPs

The active learner’s objective is to learn a mixture of
ProMPs M that achieves task generalization over some
region of its environment. We formalize this region by
defining a continuous context space C that specifies the task
to be performed in terms of context variables [29] (e.g. the
pose of an object to be grasped). We assume there is a subset
Cd ⊆ C over which task generalization is desired.

We estimate the achievable feasible region by the coverage
achieved by the mixture of ProMPs at the timestep relevant



for the task context η. Because the context variable is not,
in general, a direct subset of the ProMP state, we allow for
a mapping g : C → S between the context space C and the
ProMP state space S. We define one such mapping below in
Section III-D suitable for our experimental grasping task.

We formalize our active learning problem by conceiving
of each ProMP in the mixture to be its own class. We then
employ active learning through uncertainty sampling [13], in
which the learner generates a new task instance for which
the teacher can provide a demonstration governed by

η∗ = argmax
η∈Cd

U(η) (10)

where η ∈ Cd is a context variable sufficient to describe
the task and U(η) is an uncertainty sampling function that
measures the uncertainty the learner has about characterizing
a given task instance as being a member of one of the
available classes. We qualitatively compare the three most
common uncertainty sampling measures [13]:
Least Confident:

Ulc(η) = argmax
η∈Cd

[1− p(z1 | η)] (11)

Minimum Margin:

Umm(η) = argmax
η∈Cd

[p(z2 | η)− p(z1 | η)] (12)

Maximum Entropy:

Ume(η) = argmax
η∈Cd

−
J∑

z=1

p(z | η) log p(z | η) (13)

In Equations 11–13, p(z | η) indicates the probability
of a class label z being attributed to instance η, where
the class label corresponds to any one of the J ProMPs.
In Equations 11 and 12, z1 = argmaxz p(z | η) is the
most likely label for instance η while z2 in Eq. 12 is the
second most likely label. Intuitively, the Least Confident
measure (Eq. 11) selects the task instance η∗ whose highest
probability over all labels z ∈ Z is lowest compared to
all other instances η ∈ Cd. The Minimum Margin measure
(Eq. 12) chooses the instance with the greatest ambiguity
between its two most likely classifications. The Maximum
Entropy measure (Eq. 13) identifies the instance with the
highest label uncertainty over all classes.

We define an additional, novel uncertainty sampling func-
tion:
Greatest Mahalanobis Distance

Ugm(η) = argmax
η∈Cd

min
j
d
(
η,θjη

)
(14)

where d(·) is the Mahalanobis distance defined in Equation 6,
j indexes over ProMPs, and θjη = {µj

η,Σ
j
η} defines a

distribution over the context variable achieved by mapping
the jth ProMP distribution parameters to the context space.
We provide details for the specific mapping we utilize in
this paper below in Section III-D. Our Greatest Mahalanobis
Distance approach is similar to Least Confident, but instead
of choosing the instance with the lowest probability over

classes (ProMPs), it selects the instance whose closest ProMP
distribution is the farthest away.

We found that in practice, the Mahalanobis distance is less
susceptible to computational issues than the probability val-
ues computed for the other uncertainty sampling functions.
The density function for a Gaussian distribution requires
dividing by the determinant of the covariance matrix, which
is equivalent to dividing by the product of the eigenvalues
of the covariance matrix. This value can be extremely small
when the covariance is estimated from a small sample set,
causing the computation to become unstable. We show in our
experiments in Section V that the Greatest Mahalanobis Dis-
tance objective encourages the learner to select instances far
away from instances it has already received demonstrations
for, while the other uncertainty sampling functions tend to
“compete” along the boundaries of the regions covered by
adjacent ProMPs.

Given the new task instance η∗ generated by the uncer-
tainty sampling optimization, the teacher provides a demon-
stration. The demonstration is then incorporated into the mix-
ture of ProMPs as described in Section III-B. The procedure
iterates until a stopping criteria is met, e.g. the task success
rate over a validation set reaches an acceptable percentage.

D. Example ProMP Context

To be concrete in our formulation, we present a context
mapping for the task of grasping an object placed arbitrarily
on a surface. We use this mapping in our experiments
presented later in Section V. The task requires the robot to
pick up an object located arbitrarily on a table surface. The
ProMP state consists of the end-effector pose with respect
to the robot’s base frame 0Tee (e.g. from forward kinematics
of the joint state), while the context space is the pose of
the object with respect to the base frame 0Tobj (e.g. from an
object tracker using an RGB-D camera [30]). Once a desired
end-effector pose in the object frame objTee is known, the
mapping g : C → S from context space to state space, as
described in Section III-C, is achieved by a simple coordinate
frame transformation:

g
(
0Tobj

)
= 0Tobj · objTee = 0Tee (15)

The pose objTee could be specified manually or from
the output of a grasp planner; however, we instead employ
a Gaussian Mixture Model (GMM) over successful end-
effector poses in the object frame. The GMM is defined by

p(yt) =

R∑
r=1

βrN (yt | µr
yt
,Σr

yt
) (16)

where βr ∈ [0, 1] are the mixture coefficients and µr
yt
,Σr

yt

are the mean and covariance of the end-effector pose in the
object frame for the rth component. A visualization of the
mean components learned from the demonstrations given in
our experiments can be seen in Figure 2. Using the known
pose of the object in the base frame, we transform each µr

yt
,

Σr
yt

to get µ̃r
yt

, Σ̃r
yt

, which are the mean and covariance of
the end-effector with respect to the base frame.



Fig. 2: Mean poses of the GMM over end-effector poses in the
object frame used for conditioning the ProMP distribution.

We leverage these parameters as the condition points for
the ProMP, i.e. we set y∗t = µ̃r

yt
and Σ∗yt

= Σ̃r
yt

in
Equations 3 and 4. We then compute the probability of a
particular task being achievable by the ProMP mixture as

p(η | z = j) =

R∑
r=1

βrN (ỹt | Ψtµ̃
j
w,Ψ

T
t Σ̃j

wΨt + Σy)

(17)
where z = j indicates the jth ProMP in the mixture; ỹ
is the ProMP state generated from the transformation of
context variable; µ̃j

w and Σ̃j
w are the posterior distribution

parameters in weight space computed from Equations 3 and
4; and βr are the same as in Equation 16.

We interpret Equation 17 as a measure of how capable
the ProMP is of achieving the task when conditioned on
the task-relevant pose determined by the context variable.
There is little guidance in the literature for how to set Σ∗yt

and it is typically taken to be a scaled identity matrix [31].
We highlight this key advantage of our choice to learn the
GMM: we obtain meaningful values for both the mean and
the covariance for use in this conditioning operation.

We note that we are not able to directly compute the
probabilities p(z | η) for the uncertainty sampling measures
(Eqs. 11–13). Thus we use Bayes theorem and Eq. 17 giving

p(z | η) = p(η | z)p(z)
p(η)

=
p(η | z)p(z)∑
zi
p(η | zi)p(zi)

(18)

where zi ranges over all possible classes. We use a uniform,
uninformative prior for p(z) to reflect our assumption that
without further knowledge, any ProMP in the mixture might
potentially be used to execute a task. More intelligent priors
are worth exploring and we leave this for future work.

IV. EXPERIMENTAL SETUP

We illustrate the qualitative differences of the active learn-
ing strategies under consideration using a simple grasping
task. The goal is for the robot to be able to pick up a drill
placed in an arbitrary planar pose on a table in the robot’s
reachable workspace, as illustrated in Figures 1 and 5. We
chose this task because it affords an easily discernible com-
parison of the different methods while providing a non-trivial
space to optimize over. In order to maintain consistency in

the demonstrations available to each comparison method,
we discretized the sampling space into a grid with planar
positions in 5cm intervals and planar orientations in incre-
ments of 45 degrees. The result is a total of approximately
700 possible planar poses for selection. We provided one
demonstration for each of these samples through kinesthetic
teaching of the robot in gravity compensation mode.

We provide a qualitative characterization of the three
uncertainty sampling methods discussed in Section III-C;
namely, Least Confident, Minimum Margin, and Maximum
Entropy. We show that each of these measures computed
over the ProMP probabilities exhibits undesired behavior
in the context of active learning for ProMPs. We then
provide a more rigorous quantitative analysis comparing our
proposed method of Greatest Mahalanobis Distance to a
random-selection strategy. We present results of executing
the grasping task using both methods and show that our
method provides better task generalization over the space
with fewer demonstrations required from the teacher.

We performed our experiments123 on a KUKA LBR4+
robot arm equipped with a ReFlex TakkTile hand [32, 33].
Given the Cartesian waypoints generated from a ProMP pol-
icy, we formulate a Sequential Quadratic Program to obtain a
joint trajectory by minimizing the L2 squared error between
the end-effector pose and the Cartesian waypoints [34]. We
tracked the resulting trajectory with a real-time Orocos [35]
joint space PD controller operated at 500Hz. Grasps were
performed by assuming a canonical preshape and closing
the hand until contact was made (as detected by the Takk-
Tile [36] pressure sensors on the ReFlex fingers). We then
drove the motors a small additional amount to achieve a
firm grasp, following the control approach from [37]. Once
grasped, a pre-defined lifting sequence was executed to lift
the object approximately 20cm above the table. A grasp is
considered successful if the object is still in the robot’s grasp
at the end of the lifting sequence.

Prior to executing any trajectory on the physical robot,
we perform a kinematic simulation of the robot with the
environment model overlaid in rviz. We do not execute any
trajectory that is clearly dangerous in terms of colliding with
the environment at a non-trivial velocity.

We use the drill from the YCB dataset [38] as the object to
be grasped by the robot, as shown in Figure 1. We track the
pose of the object using the Bayesian object tracker described
in [30]. The pose is visualized in rviz and overlaid on the
camera feed coming from an ASUS X-tion Pro RGB-D
camera. Selected task poses for the object are also displayed
in this way, and the human user utilizes the displays to align
the object pose with the generated task instance pose.

V. EXPERIMENTAL RESULTS

A. Qualitative Comparison of Uncertainty Sampling

We perform a qualitative comparison of the four uncer-
tainty sampling methods described in Section III-C. We

1Data is available at http://bit.ly/al_promp_data.
2Code is available at http://bit.ly/al_promp_code.
3Video is available at https://youtu.be/na91UyidDvE.

http://bit.ly/al_promp_data
http://bit.ly/al_promp_code
https://youtu.be/na91UyidDvE


(a) Multi-class ProMP (b) Feasible or Infeasible

Fig. 3: Typical sampling patterns for uncertainty sampling tech-
niques. (a) Pattern common to Least Confident, Minimum Margin,
and Maximum Entropy when considering each ProMP in the ProMP
library to be its own class, as described in Section V-A. (b)
Pattern when considering only two classes, Feasible (ProMPs) and
Infeasible (GMM), as described in Section V-C. Lighter values are
more likely to be sampled.

analyze the progression of the uncertainty sampling met-
rics over the grid data space described in Section IV as
more demonstrations are achieved. As seen in Figure 3a,
Least Confident, Minimum Margin, and Maximum Entropy
each tend to fixate selection on the boundaries between
ProMPs. Once at least two neighboring ProMPs become
well-estimated enough to produce meaningful probability
measures, they begin to “compete” over the territory covered
in part by both ProMPs. This behavior is not desirable
for the purpose of promoting task generalization over the
entire space. As such, we found that while these measures
are the go-to objective functions for uncertainty-sampling
approaches in supervised active learning [13], they do not
provide a suitable mechanism for guiding the creation of a
ProMP library that can generalize well over a given space.

We propose the Greatest Mahalanobis Distance, described
in Section III-C, as an alternative to these standard measures.
As seen in Figure 4, the Mahalanobis distance objective tends
to converge to low values instead of becoming heightened on
boundaries between ProMPs. Even if a task instance can be
achieved by multiple ProMPs (i.e. the instance exists near a
boundary between two ProMPs), its minimum Mahalanobis
distance is unaffected by such competition. We submit that
this behavior makes Greatest Mahalanobis Distance the most
suitable measure among the four compared for active learn-
ing of ProMPs, as it will tend to drive the learning into
regions that have not been explored, instead of fixating on
boundaries between already well-estimated regions of the
task space.

B. Task Success on Execution

In order to demonstrate the efficacy of the Greatest Maha-
lanobis Distance measure for active learning, we compare
our method against randomly selecting task instances on
task executions on the robot as described in Section IV. In
order to account for randomness in the learning process, we
perform ten trials of learning ProMP libraries over the space.
We then chose the ProMP library that achieved the median
performance on a validation metric for testing on the robot.

We use the recorded demonstrations over the discretized
space to perform the ten learning trials. In each trial we use
a random seed for the random sample generation, and we

use the same seed to generate a small set of initial samples
to initialize our active learning method. For each trial, we
generated task instances and collected 25 demonstrations for
each method. We then ranked the capability of the ProMP
libraries by the value of the Greatest Mahalanobis Distance
computed over all task instances for use as our validation
metric.

We generated a test set of ten random planar object poses
to attempt with each comparison method. We emphasize that
the test poses were generated from a continuous set, i.e. they
are not selected from candidates in the discretized space, and
as such they are not likely to be identical to any instances
the methods received demonstrations for. The object was
tracked and placed on the table by the user to align with
the coordinate frame of the generated instance, as described
in Section IV. For each method, the most likely ProMP
and condition point to produce task success were selected
based on the Greatest Mahalanobis Distance measure for that
object pose. The resulting ProMP policy was then executed.
We used task completion as our metric of success, where
the task is considered successfully completed if the object
remains in the robot’s grasp after the lifting phase described
in Section IV has completed.

Random selection of task instances resulted in only 2 out
of 10 successful grasps. 3 of the instances were attempted
but quickly failed due to the robot knocking the object off
the table or pushing the object away as the fingers started
closing around it. The other 5 instances could not even be
attempted due to safety concerns in watching the execution
previews in rviz. These were primarily cases where the hand
was clearly going to collide with the object or table at a
high velocity, risking potential damage to the robot hand. In
summary, random selection resulted in 20% success, 30%
failure, and 50% infeasible due to safety concerns.

Our Greatest Mahalanobis Distance approach resulted in
6 successful grasps, 3 failed grasps, and only 1 infeasible
instance due to safety concerns. Only 1 of the failed grasps
was due to the robot missing the grasp entirely due to pushing
the object away when the fingers close. The other 2 failures
were attempted overhead grasps in which the robot reached
a suitable pre-grasp and closed the fingers around the upper
portion of the drill, but then proceeded to drop the object
on the lifting phase. The infeasible instance was due to what
was a clear collision between the fingers and the object at
a high velocity. To summarize, our method resulted in 60%
task success, 30% failure, and only 10% were infeasible.

We note that the recorded demonstrations were generally
either an overhead grasp towards the head of the drill, or a
side grasp radially located about the drill handle. Overhead
grasps were more suitable when the object was located closer
to the base of the robot, whereas side grasps were more
appropriate the further the object was located from the base.
However, from the user’s perspective, overhead grasps were
significantly more difficult to demonstrate successfully. This
is primarily due to the weight of the drill requiring a precise
grasp pre-shape from above to fully enclose the drill head
without losing grip on the lifting phase.
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Fig. 4: Sequence of heatmaps over a top-down view of the table surface illustrating the rate at which Greatest Mahalanobis Distance drops
while performing random selection (top row) versus performing our optimization (bottom row). Lighter colors indicate higher Greatest
Mahalanobis Distance (more likely to be sampled). Images show increasing number of acquired demonstrations going from left to right.

C. Learning Feasible and Infeasible Task Regions

In some situations the boundaries of the context region Cd
to generalize over may not be explicitly known a priori. For
such cases we propose a minor extension to our approach
enabling the robot to learn an explicit infeasible region R
to avoid. We propose modeling this region using a Gaussian
mixture model defined on the context space C.

To formulate this as an active learning problem we treat
the learned mixture of ProMPs as a single positive class,
with class probability defined by Equation 5, and the GMM
to represent the negative class. When asked to provide a
sample the user provides a demonstration as before if the
sample represents a point in the feasible region; otherwise
the user simply labels the point infeasible and the active
learner provides a new sample. In two-class cases, the
Least-Confident and Minimum-Margin uncertainty sampling
methods are equivalent to Maximum Entropy [13].

Figure 3b visualizes the maximum entropy associated with
a feasible-infeasible learning trial. In the case pictured an ob-
stacles sits in the center of the table, which the robot should
not collide with. We see that the points of highest entropy
(lighter colors) lie near the boundary between this infeasible
center region and the surrounding areas, known to be feasible
from example demonstrations. Thus the maximum entropy
metric proves useful in this scenario, selecting samples to
refine the boundary between the neighboring feasible and
infeasible regions.

VI. CONCLUSION

We have presented a framework for active learning of a
library of Probabilistic Movement Primitives from demon-
stration. Our method leverages existing active learning tech-
niques while utilizing the information encoded in the ProMPs
to compute the active learning measure guiding sample
selection. We demonstrated with real-robot experiments that

our method provides an advantage over randomly choosing
demonstrations over the space in which generalization is
desired. Our method provides an uncertainty estimate of
task success over a given region, enabling the robot to be
deployed to situations where a teacher may not be available,
e.g. remote missions in space.

In this paper, we only considered task generalization
over a static environment. In future work, we will explore
adapting our methods to dynamic environments in which
task constraints vary over time, such as obstacles that are
not fixed features of the environment. Additional future
work could examine incorporating a more informed prior
for classifying feasible and infeasible regions that either
leverages knowledge of an environmental map or could be
learned and transferred from previous tasks.
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