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Abstract— Cutting is a common form of manipulation when
working with divisible objects such as food, rope, or clay.
Cooking in particular relies heavily on cutting to divide food
items into desired shapes. However, cutting food is a challenging
task due to the wide range of material properties exhibited by
food items. Due to this variability, the same cutting motions
cannot be used for all food items. Sensations from contact
events, e.g., when placing the knife on the food item, will also
vary depending on the material properties, and the robot will
need to adapt accordingly.

In this paper, we propose using vibrations and force-torque
feedback from the interactions to adapt the slicing motions and
monitor for contact events. The robot learns neural networks
for performing each of these tasks and generalizing across
different material properties. By adapting and monitoring the
skill executions, the robot is able to reliably cut through more
than 20 different types of food items and even detect whether
certain food items are fresh or old.

I. INTRODUCTION

Cutting and preparing ingredients is a fundamental part
of cooking, but it is also a monotonous and time-consuming
task for chefs. Having robots help prepare meals by cutting
food would thus save time and also encourage healthier
eating habits. However, cutting food is a challenging problem
because food items differ greatly in both visual properties
(e.g, shape, color, and texture) and mechanical properties
(e.g., hardness, density, and friction) [1]. To cut a wide range
of food items, the robot will need to generalize its cutting
skills across these mechanical properties. In particular, the
robot needs to reliably detect key contact events (e.g., hitting
the food item or the cutting board) despite material varia-
tions, and it needs to adapt its slicing motion to the individual
food items (e.g., applying more downward force and less
lateral motion to cut a cucumber instead of a tomato).

We divide the cutting task into multiple low-level skills
that are then sequenced together based on the detected
contact events. Fig. 1 shows an example sequence of skills
for positioning the knife and cutting a slice off of a cucumber.
To perform this task in a robust manner, the robot learns a
set of neural networks to detect the contact events and adapt
the slicing skill to the food’s properties.

The robot uses tactile and haptic feedback to detect the
contact events and the material properties. The robot uses
its joint torque sensors to estimate the forces and torques
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Fig. 1: Illustration of the skill sequence for cutting a slice.
The robot needs to detect the contact event and adapt the
slicing skill to the material properties of the food item.
Failure events, e.g., knife slipping from the food item, are not
shown but must also be detected. The final red and yellow
skills can be repeated to cut additional slices.

being applied to the knife. For dynamic tactile sensing, the
knife, tongs, and cutting board are equipped with contact
microphones. These microphones can detect the vibrations
caused by contact events and by the knife cutting through the
food. This approach was inspired by the fast afferents located
in human skin, which detect vibrations during manipulation
tasks and tool usage [2]. Although the robot is equipped
with RGB-D cameras, we do not use them in this paper.
Interactive perception and tactile sensing are often more
reliable for estimating material properties (e.g., differenti-
ating between a fresh and an old cucumber) as well as
detecting contact events (e.g., differentiating between contact
and slightly before contact).

Given the tactile and haptic data, the robot learns a set
of neural networks for identifying the contact events and
the material properties. This data-driven approach allows
the robot to automatically extract high-level features for
generalizing across the different types of food items. The
learned networks are subsequently integrated into the robot’s
finite state machine for sequencing skills. The material
type is predicted from initial contact. The type is then
mapped to parameters for adapting the slicing skill, which is
modeled as a parameterized dynamic motor primitive with
impedance control. The proposed approach was successfully
implemented on a bimanual Franka robot setup.

II. RELATED WORK
Previous work on robotic cutting has focused on model-

predictive control (MPC) to generalize between different
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types of food items. Lenz et al. [3] proposed learning a deep
network to model the cutting interaction’s dynamics for their
DeepMPC approach. This network continually estimated the
latent material properties throughout the cutting process us-
ing interactive perception and a recurrent network structure.
Mitsioni et al. [4] extended this approach by incorporating
measurements from a force-torque sensor into the dynamics
model. They again used a recurrent neural network to model
the dynamics of the cutting task. By contrast, rather than
attempting to model the complex dynamics of cutting inter-
actions in detail, we instead directly learn a dynamic motor
primitive (DMP) policy for the cutting skill. The robot learns
the DMP from human demonstrations, which allows the
human to implicitly transfer prior knowledge to the robot in
an intuitive manner (e.g., using long smooth lateral motions
for cutting). The DMP adapts to different food items based
on two input parameters, which we estimate based on the
initial interactions with the food item. Learning the policy
is generally easier than learning the low-level dynamics for
the cutting task. Unlike the MPC approaches, we do not
continuously update our parameters to material variations
during individual cuts.

A large part of robotics research has focused on using
vision as the primary sensory modality for performing ma-
nipulation tasks [5], [6], [7]. However, for complex and
contact rich tasks, such as food cutting, visual sensory data
alone is insufficient since there can be major occlusions and
visually ambiguous scenarios. For instance, the knife may
have cut the food item completely, but the new slice may
not have fallen down.

Many previous works have used haptic feedback to ac-
complish a range of robotics tasks. For instance, [8] use
haptic feedback to classify both deformable and rigid ob-
jects, [9] use haptic feedback to classify haptic adjectives.
Furthermore, haptic feedback has also been used to infer
the object properties of deformable objects [10], [11], [12].
Gemici and Saxena [13] use tactile feedback along with
other robot data, such as poses, to determine the physical
properties of different food items. They use specific tools
and actions to infer carefully designed features which are
then used to predict properties, such as the elasticity and
hardness of the food items, by training a network using
supervised learning. In contrast, instead of determining the
exact material properties of food items, we directly detect
the food material which is then mapped to parameters that
correspond to performing the slicing skill for that food item.

The use of vibration signals for robotic tasks has been
explored in the past. Clarke et al. [14] estimate the weight
of materials that were scooped by a Sawyer arm using a
contact microphone and a shaking motion. They test their
algorithm on granular materials such as coffee beans and
rice. Additionally, [15] use a microphone to estimate the
height of the liquid in a container that a robot poured into.
[16] use a contact microphone at the end of a robot’s end-
effector to learn a material’s properties by stroking and
visually inspecting it. Previous works have also focused on
using tactile feedback for object classification [17] for both

rigid and deformable objects. Similar to the above works,
we use the rich auditory signals generated during robot
cutting to robustly cut food items. However, in contrast to
the above approaches, we combine the continuous auditory
data to detect and infer the occurrence of both discrete and
continuous events during deformable object manipulations.
We use these inferred events to chain the different skills that
are required to cut different food items.

III. OVERVIEW

Cutting is a challenging problem because there are numer-
ous events that can occur as the robot is executing the cutting
motion. Our goal is to learn the low-level skill primitives
required to perform the cutting task as well as monitor for
contact events using sensory feedback.

A. Food Cutting Setup

Fig. 2: Experimental setup with contact microphones shown
in green boxes.

Our robot setup for collecting cutting data is shown in
Fig. 2. The setup is used to collect both the training data of
different cutting events and evaluate the learned networks.
Two Franka Panda Arms are mounted next to each other with
overlapping workspaces. The left Franka Arm is grasping a
knife with a 3D printed handle to provide a firm grip. We
refer to this arm as the Knife Arm. The right Franka Arm
has 9 inch tongs bolted onto its hand as fingers. We refer to
this arm as the Tong Arm.

There are four contact microphones attached to different
objects in the setup. One is located on the knife handle,
and it is able to sense vibrations from the blade of the
knife. Another is located on the right tong of the Tong Arm,
and it is able to sense vibrations from both tongs. Finally,
two microphones are located underneath the cutting board in
opposite corners. The vibration signals from the microphones
are captured using a Behringer UMC404HD audio interface
system. The robot’s position, forces, and vibration data are
all synchronized and collected using ROS [18].

B. Cutting Process

Fig. 3 illustrates the key events of the cutting process.
The Knife Arm starts at its initial pose (a). It then moves



Fig. 3: Time-lapse of Slicing a Cucumber

Fig. 4: Knife Arm Slicing Flow Diagram

down until contact to localize the cutting board (b). To
avoid scraping the cutting board, the robot lifts the knife
slightly. The robot then moves the knife left until contact,
thus implicitly localizing the end of the object without using
vision (c). Next, the robot lifts the knife up above the object
and moves the blade left the desired thickness of the first
cut (d). The Knife Arm moves down until it contacts the
object (e). The sensory data from this downward motion
into the food item is used to determine the appropriate
cutting parameters for the object. With the cutting parameters
inferred, the Knife Arm executes the slicing skill until the
robot has cut through the object completely and made contact
with the cutting board (f)-(i). The robot loops through steps
(d)-(i) until the desired number of slices has been cut.

IV. MULTIMODAL EVENT MONITORING

Fig. 4 shows the finite state machine for sequencing the
different skill primitives used in the cutting process. To
transition between the different states of the finite state
machine, the robot needs to monitor the sensory feedback
from the environment and determine when to terminate each
skill. The termination conditions associated with the different
skills are listed in Table I.

For the initial object and cutting board localization skills,
simple directional force thresholds are sufficient for detect-
ing the contact events. However, the moving-down-onto-
the-object skill and the slicing skill have more advanced

Skill Termination Conditions

Move down on cutting board Contact on Z-axis
Move left to hit object Contact on X-axis
Move down onto object Hitting Event Monitoring
Slicing Action Slicing Event Monitoring

TABLE I: Different skills used in the cutting process and
their respective termination conditions.

Fig. 5: Different events that may occur when cutting.

termination conditions due to the inherent variability when
interacting with deformable objects of various material prop-
erties. Fig. 5 illustrates the events that we monitor and detect
during these skills.

The robot may hit the cutting board directly when trying
to go down onto the object as either the object was too soft
(e.g., tofu) or the knife slipped off of the object when the
desired slice thickness was too thin. The robot needs to detect
these events quickly so that it does not unnecessarily execute
slicing actions on the cutting board which tend to damage
the cutting board, dull the knife, and waste time.

The knife may also slip on the surface of the object
when it is executing the slicing action. This event sometimes
occurs when the skin of the object is sloped and tough,
like a watermelon’s surface. If the robot does not notice
the slipping event quickly, the resulting slice will have an
undesired thickness. The robot can recover from this error
by reorienting the knife to prevent slippage or by moving
down harder on the object to firmly embed the knife within
the object during the initial approach.

To continuously monitor and detect each of the events
in Fig. 5, we use the vibration feedback from the contact
microphones and the force feedback sensed by the Knife
Arm. We first process the multimodal data into features and
labels (see section VI). We subsequently use the multimodal
input features and event labels to train a fully connected
Neural Network, called SliceNet. SliceNet consists of 3
hidden layers with 100 units in each hidden layer, sigmoid
activation at each layer, and 1 dropout layer before the last
hidden layer. Training utilizes the categorical cross-entropy
loss function with Adam optimizer for 50 epochs. SliceNet
has 6 output classes: in air, hitting cutting board, hitting
object, scraping object, slicing object, and scraping cutting
board. The in air class is a background class where the knife
is not in contact with any object.

V. DYNAMIC SLICE ADAPTATION

The slicing motion is the most important skill for the robot
to learn for the cutting task. To enable the robot to learn the
slicing skill, we use Dynamic Movement Primitives (DMPs),
a general framework for smooth trajectory generation for
complex actions [19]. Our DMP formulation allows the
robot to learn a back and forth motion which imitates



a demonstrated slicing strategy. We chain multiple DMPs
together to completely cut a slice from the object.

Utilizing the same slicing action for every food item is
inefficient and error prone, as different food items have
different physical and material properties. For instance, to cut
soft tofu, the slicing skill should have a large vertical motion
and a small horizontal motion. By contrast, a watermelon
requires a much larger horizontal motion and a smaller
downward motion. To adapt our slicing skill to different
materials, we parameterize the DMPs using two additional
input parameters that control the amplitude and height of the
DMP. SliceNet consists of 3 hidden layers with 100 units in
each hidden layer, sigmoid activation at each layer, and 1
dropout layer before the last hidden layer. Training utilizes
the categorical

A. DMP Formulation

DMPs consist of linear dynamical systems which are
learned for each skill component, i.e., the horizontal X and
vertical Z axis movements of the knife in our case. We utilize
a parameterized form of DMPs proposed by Kroemer and
Sukhatme [20] which is defined as:

ÿ = αz(βzτ
−2(y0 − y)− τ−1ẏ) + τ−2

M∑
j=1

φjf(x;wj) (1)

where y is the state, y0 is the initial state, αz and βz
are constants that define the system’s spring and damper
coefficients, τ is a time coefficient, x is the state of the
canonical system, and f is a forcing function. The canonical
state x acts as a timer for synchronizing multiple linear
systems. It starts at x = 1 and decays according to ẋ = −τx.
φj are object features that allow the skill to adapt to different
scenarios. wj is a vector of weights ∈ RK of the forcing
function f(x;wj), which shapes the DMP’s trajectory. The
forcing function f is of the form:

f(x;wj) = αzβz

(∑K
k=1 ψk(x)wjkx∑K

k=1 ψk(x)
+ wi0ψ0(x)

)
(2)

where wjk is the kth element of the vector wj , ψk(x) ∀k ∈
1, ...,K are Gaussian basis functions, and ψ0 is a basis
function that follows a minimum jerk trajectory from 0 to 1.

The above DMP formulation is amenable for the cutting
process as it allows us to easily start the slicing motion
from any arbitrary position, which further allows us to chain
multiple DMPs together without any additional constraints.
More importantly, since there is a separate DMP component
for each axis of motion (X and Z), we can modify both the
amplitude of the X-axis for forward and backward motions
as well as the overall downward height displacement in the
Z-axis. We do not modify the Y -axis since there is very little
Y -axis motion when cutting.

We adapt the X and Z motions using the object features
φj in the above formulation. We use two object features for
every dimension, thus j = 2. We set φ0 to 1 as a source
of bias for every object equally, while we parameterize φ1
based on the food material being cut. Since we have separate

DMPs for both X and Z-axes we set φ1 for each of the linear
systems separately. We refer to each of the above parameters
as the slicing action parameters, i.e. φx1 for the amplitude of
the X-axis and φz1 for the height displacement. To adapt our
slicing DMP to different food items, we learn to infer these
parameters based on feedback while executing the moving-
down-onto-the-object skill.

B. Learning DMP Slicing Action Parameters
To learn the slicing DMP, we first need to learn the

weights wj of the forcing function as shown in (1). We
use imitation learning (IL) to learn these DMP parameters
from demonstrations. We use kinesthetic demonstrations to
perform the robot slicing motion. Then, we use the saved
trajectories from the demonstrations to learn the weights of
the DMP trajectory for each axis using ridge regression. Fig.
6 shows the demonstrated trajectories and the smooth DMP
trajectory generated by our learned DMP parameters for each
of the three axes.

Fig. 6: 10 Demonstrated trajectories we collected on the left
and learned DMP trajectory on the right.

We additionally need to infer the appropriate slicing action
parameters (φx1 and φz1) to adapt the slicing skill to the
different food items. To achieve this goal, we collect the
amplitude φx1 and height φz1 parameters for each class of
objects manually, i.e., a human adapts the parameters for
each training food item. We then train a neural network
which we refer to as FoodNet to infer the material class
of an object based on sensory signals from the beginning
of the slicing motion. Once we infer the material type, we
substitute the parameters of the predicted material type into
the slicing action parameters. This scheme allows us to adapt
the same slicing motion to different food items to cut them
more efficiently.

C. FoodNet Material Adaptation
FoodNet’s purpose is to classify the material of the food

being cut and adapt the slicing skill accordingly. We pro-
cessed the multi-modal data into features and labels, which
we explain in detail in the next section. We then utilized a
fully connected neural network with 3 hidden layers with
100 units in each hidden layer, sigmoid activation at each
layer, and 1 dropout layer before the last hidden layer.
Training utilized the categorical cross-entropy loss function
with Adam optimizer. In total, there are 25 classes of objects.



VI. MULTI-MODAL DATA PROCESSING

Fig. 7: SliceNet and FoodNet System Diagram

The SliceNet and FoodNet architectures are depicted in
Fig. 7 above. Both of these networks use multimodal feed-
back from the environment i.e., the vibrational feedback
from the microphones and the force feedback from the Knife
Arm. We use early fusion and combine the multi-modal data
together before sending them as input to the networks.

The first critical component of our multimodal data pro-
cessing system is the vibration processing to retrieve the
high-frequency feedback during cutting. We capture the
sound from the 4 microphones by reading in the raw sound
data using the python-sounddevice package [21]. We sample
from the microphones with a 44.1kHz frequency, and we use
an audio buffer to process 0.1 seconds of sound at a time.

We use Librosa [22] for processing the vibration signals
and to extract a wide range of audio features. We use Mel-
frequency cepstral coefficients (MFCCs), chromagrams, mel-
scaled spectrograms, spectral contrast features, and tonal
centroid features (tonnetz). The Mel frequency scale provides
a rough model of human frequency perception [23]. Mel-
frequency cepstral coefficients are often used for speech
recognition systems and to represent timbre [24]. Chro-
magrams project audio from the entire spectrum onto 12
bins representing the 12 distinct semitones of the musical
octave [25]. Spectral Contrast features have been shown to
perform well when discriminating between different music
types [26]. Tonal centroid features detect changes in the
harmonic content of audio signals using chroma features
[27].

We process each audio channel separately and extract the
mean of each feature over the 0.1 second window. There
are 40 Mel-frequency cepstral coefficients, 12 chromagram
features, 128 mel-scaled spectrogram features, 7 spectral
contrast features, and 6 tonal centroid features. Thus in total,
we have 193 features per channel, and 772 features for the
4 channels every 0.1 seconds. However, given the ablation
experiment in Section VIII-C, we utilize only Mel-frequency
cepstral coefficients from each microphone for SliceNet and
FoodNet in all the other experiments.

In addition to the vibrational features, we also make use of
the force feedback provided by the robot. The robot provides
us with force feedback at a 1kHz frequency; however, we

Fig. 8: Sound signals from each of the 6 events that may
occur when cutting.

subsample it to get a reduced 100 Hz frequency that is
communicated over ROS. To match up the forces with the 0.1
seconds of sound, we use a buffer of the last 10 robot forces
which are with respect to the x, y, z, roll, pitch, and yaw axes.
In total there are 60 force features that are concatenated with
the 772 vibration features resulting in a total of 832 features.

VII. DATA COLLECTION

We collected a comprehensive dataset of a variety of
different materials to train FoodNet. We also collected a
dataset of events that may occur during cutting to train
SliceNet.

A. SliceNet Dataset

For the SliceNet dataset, we collected separate data for
each of the following event classes for monitoring slicing:

1) Hitting the cutting board: The knife robot hit the
cutting board at random locations 60 times.

2) Scraping the cutting board: The knife robot scraped
the cutting board at random locations 10 times.

3) Hitting an object: The knife robot hit each type of
object between 10 and 15 times depending on the
length of the object.

4) Scraping an object: The knife scraped each object
twice, once from left to right and once from right to
left a distance between 5cm to 10cm depending on the
length of the object.

5) Slicing an object: The knife robot executed between 20
and 40 DMP slicing actions on each object depending
on the thickness of the object, resulting in around 10
to 15 slices cut from each object.

6) In the air (Background): The knife robot executed
DMP slicing actions 10 times at random locations in
the air.

Example vibration signals from each event class are shown
in Fig. 8 above. To label the data, we segmented the vibration
signals based on the skill the robot was executing. We then
used an online Bayesian changepoint detection algorithm
[28] and force gradient thresholding to segment out the



Fig. 9: Images of all the Food Items and their DMP Param-
eters φx1 and φz1.

vibrations of the actual event. For example, when the robot
was moving down to hit the cutting board, we knew that
the robot was in the air until a change was detected in both
sound and forces. For skills where the robot remained within
a specific contact state, we simply labeled all of the windows
from that skill execution the same. For example, if the robot
was still above the cutting board when executing a DMP
slicing skill, we know that it was entirely within the slicing-
an-object state.

Using these labelling methods, we constructed the
SliceNet dataset. The red vertical lines in Fig. 8 signify
the changepoints that were detected by the online Bayesian
changepoint detection algorithm.

B. FoodNet Dataset

For training FoodNet, we reused the hitting data from the
SliceNet dataset, but we labeled skills based on the food type.
In addition, we collected empirical data on the φx1 and φz1
parameters of the slicing DMP that could cut the objects fast
and robustly. Although not optimal, these parameter values
worked considerably better and faster than the initial constant
DMP parameters. The full list of food items and their DMP
parameters are illustrated in Fig. 9. Old food items refer to
ones that were in the refrigerator for longer than a week.

VIII. EXPERIMENTS

We now present results for both multimodal contact event
monitoring using the SliceNet dataset and dynamic slice
adaptation using the FoodNet dataset. In both of these
settings, we show that our system is reliably able to classify
the different events and the material properties of the object
from the multimodal input data. Finally, to verify if both

Fig. 10: SliceNet Normal-
ized Confusion Matrix

Fig. 11: FoodNet Confusion
Matrix

Fig. 12: Hitting Confusion
Matrix

Fig. 13: Slicing Confusion
Matrix

modalities are useful, we perform an extensive ablation study
to compare the performance across different inputs.

A. SliceNet

To test the accuracy of our SliceNet model, we divide
the SliceNet dataset into a train-test split, wherein we use
20% of the data for the test split. Using our SliceNet
architecture, we get a weighted F1-score of 0.959. Fig. 10
shows the normalized confusion matrix for predicting the
different events during the slicing DMP action. Our network
is correctly able to classify most of the events. However,
there does exist some confusion between scraping an object
and being in air. We believe this is because there is often only
a faint scraping sound from the knife, which is not captured
by the vibration features or forces. Furthermore, there also
exists some confusion between hitting the object and being
in the air, which we believe is due to soft hits on objects
such as oranges or lemons, which dampen the sound and
increase the forces slowly. Finally, we have some confusions
between hitting the cutting board, scraping the cutting board,
and slicing objects. There is little confusion between other
events, which shows that our network can accurately classify
those events.

Because of the confusions in SliceNet, we also trained
separate networks, with the same architecture, for the hitting
events and slicing actions respectively. Since these events
are mutually exclusive, training separate networks should
provide additional context and remove some confusion from
the network. Fig. 12 shows the results for the hitting events
while Fig. 13 shows the confusion matrix for the slicing
events. For both of these classes we get an F1-score of 0.9685
and 0.9661 respectively. The improved performance of sep-
arate models shows that there might be some similarities in



Fig. 14: FoodNet Regression Network Leave-one-out Cross-
Validation Mean Absolute Error in φx1 and φz1

the vibration features and forces between hitting events and
slicing actions which can reduce the performance of a single
network trained to classify all events.

B. FoodNet

Our FoodNet architecture was able to achieve a F1-
score of 0.9915 on a held out test set of 20% of the total
data. Its confusion matrix with only the classes that were
confused is shown in Fig. 11. Frozen lemon, watermelon,
and spaghetti squash were confused most likely due to their
relative hardness. Meanwhile, bread was confused with both
bell pepper and old tomatoes, perhaps due to the similar
bouncy nature of their skins. FoodNet was able to detect the
material differences between every other class without errors.

To test generalization to unknown materials, we trained an
additional regression network with the same neural network
architecture except with ReLu activations that outputs the
parameters φx1 and φz1 directly. Instead of solely using the
original FoodNet dataset that only shared hitting data with
the SliceNet dataset, we augmented it with the DMP slicing
actions in the SliceNet dataset, which allowed the network
to predict the parameters continuously. The network had a
mean absolute error of 0.019cm in φx1 and 0.013cm in φz1
on a test set of 20% of the total data.

We then perform leave-one-out cross-validation for each
class of object. We calculated the Mean Absolute Error for
both φx1 and φz1 of each class and plotted it above in Fig. 14.
As shown in the figure, certain classes are outliers. When
these classes are left out, the network has large prediction
errors such as Tofu, which was the only object that could
be cut by just moving straight down. Corn and spaghetti
squash were both unable to be cut, so they had large errors
as we labeled both of their φx1 and φz1 parameters as 0. Since
watermelon was hard like corn and spaghetti squash, it is
likely that watermelon’s predicted values were influenced
by their labeled parameters, which resulted in large errors.
Interestingly, cucumber had a large mean absolute φz1 error
because the network predicted the φz1 value of old cucumber
for the regular cucumber which is 2cm off in the Z-axis.
The rest of the objects were clustered closer to the origin

Inputs SliceNet FoodNet

Combined Sound and Force Features 0.957 0.984
Forces 0.927 0.179
Sound 0.936 0.983
Under Cutting Board Mic 1 0.820 0.713
Under Cutting Board Mic 2 0.836 0.734
Knife Arm Mic 3 0.907 0.615
Tong Arm Mic 4 0.897 0.936
MFCC 0.935 0.974
Chroma 0.749 0.457
Mel 0.935 0.960
Spectral 0.719 0.305
Tonal 0.536 0.056
Mfcc and Forces 0.959 0.991

TABLE II: F1-scores with Various Features

and the slight errors were negligible for real-world usage as
the DMP action parameters in Fig. 9 are not optimal.

C. Ablation Studies

To verify how the network performance varies across
different inputs, we evaluated each type of feature as well
as each microphone individually. Table II shows the F1-
score for all of the different input features being evaluated.
Using force feedback alone leads to a good performance for
classifying events, but it performs poorly when classifying
the different food items.

By contrast, using only vibration data still shows very
good performance. This clearly shows that vibrational data
is more discriminatory for both contact event detection and
material classification. Among the different microphones, we
observe that using only one of the microphones does reduce
the classification accuracy. Thus, a distribution of micro-
phones scattered through the scene improves performance by
a large margin. The results show that the contact microphone
on the arm with the tongs is the most distinguishable for
FoodNet. We believe that this occurs because the robot is
always vibrating due to its motors, but when the robot grasps
a food item, the sound is noticeably dampened, which allows
the microphone to capture the discriminatory sounds before
beginning the slicing skill.

Among the different types of acoustic features, we observe
that using the Mel Frequency Cepstral Coefficient (MFCC)
features are sufficient to achieve good performance for both
SliceNet and FoodNet. We believe this is because the MFCC
features capture the most salient parts of the vibrational
feedback while discarding the background noise and thus
are the most useful for our classification tasks.

D. Robot Experiments

We conducted a baseline comparison of using FoodNet
Parameters vs a slicing DMP without adaptation on 7 items
that were in our training set and 3 novel items that were
not in our training set. We present the average time it takes
to create a slice over 5 trials in Table III. In some cases,
there is a neglible time difference when using FoodNet
parameters, while in other cases, the average time decreases
by a significant amount because the food items are easier
to cut. Thus, a single slicing motion can complete a slice
instead of multiple conservative slicing motions.



Food Item Without Adaptation FoodNet Change %

Banana 3.92 4.02 +2.56
Broccoli 11.47 9.42 -17.88
Carrot 3.98 2.03 -48.95
Cucumber 5.95 2.01 -66.23
Cucumber (old) 3.99 3.97 -0.64
Jalapeño Pepper 2.83 2.07 -26.93
Kiwi 5.61 3.94 -29.80
Peach 7.90 5.56 -29.54
Pear 6.37 5.16 -18.91
Tomato 7.89 5.57 -29.32

TABLE III: Average Time in Seconds to Slice each Food
Item over 5 Trials using FoodNet or Without Adaptation.

In addition, when we experimented with new novel items,
FoodNet was able to output DMP slicing parameters similar
to those of materials with similar textures in the training data.
For example, a unique Peach was classified to have a similar
texture to Zucchinis, Pears were similar to Apples, and
finally Jalapeño Peppers were classified to be similar to Bell
Peppers. In our accompanying video located here: https:
//youtu.be/WgoAuyR31dY, we show the experimental
results. When the Knife Arm reached the center of a Peach’s
core in our tests, it did trigger the scraping cutting board
classification due to the high forces and relatively similar
sounds. In order to cut peaches and avocados, we will need
to develop novel regrasping techniques to rotate the food
item in order to cut it in half and remove the cores as our
robot is unable to cut straight through them.

IX. CONCLUSIONS AND FUTURE WORK

We have presented a robust slicing approach that success-
fully utilizes both vibration and force feedback to adapt the
cutting motions. We proposed one neural network (SliceNet)
to continually monitor the robot’s contact state and another
(FoodNet) to predict the type of food item. The predicted
food type is then used to automatically set the parameters
of an adaptive slicing DMP. The proposed approach was
successfully implemented on a real robot. Our experiments
show that the framework allows the robot to adapt to a wide
variety of food items, cutting items faster and more reliably.

In the future, we plan to explore different styles of cutting,
such as chopping small items or carving out the solid cores
of peaches and avocados. We will also use reinforcement
learning to acquire the DMP parameters for new types of
food items autonomously.
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