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Abstract— Legged robot locomotion is a challenging task due
to a myriad of sub-problems, such as the hybrid dynamics of
foot contact and the effects of the desired gait on the terrain.
Accurate and efficient state estimation of the floating base
and the feet joints can help alleviate much of these issues by
providing feedback information to robot controllers. Current
state estimation methods are highly reliant on a conjunction of
visual and inertial measurements to provide real-time estimates,
thus being handicapped in perceptually poor environments. In
this work, we show that by leveraging the kinematic chain
model of the robot via a factor graph formulation, we can
perform state estimation of the base and the leg joints using
primarily proprioceptive inertial data. We perform state estima-
tion using a combination of preintegrated IMU measurements,
forward kinematic computations, and contact detections in a
factor-graph based framework, allowing our state estimate to
be constrained by the robot model. Experimental results in
simulation and on hardware show that our approach out-
performs current proprioceptive state estimation methods by
27% on average, while being generalizable to a variety of legged
robot platforms. We demonstrate our results both quantitatively
and qualitatively on a wide variety of trajectories.

I. INTRODUCTION

Legged robots are considered advantageous in comparison
to traditional wheeled robots due to their ability to traverse
uneven [1], [2] and unstructured terrains [3]. Deployment
of robots in the real-world is difficult since the world is
designed to be human-centric. Environments such as multi-
level buildings, and unstable or discontinuous ground [4], [5]
are better tackled by legged robots. Humanoids, in particular,
are well suited for tasks which require human levels of
dexterity, manipulation, and characterization [6]–[8].

Many challenges with legged robot locomotion and sta-
bility can be addressed with accurate and efficient state
estimation. The robot’s high degree of freedom from its
articulated legs, the hybrid dynamics due to discrete foot-
contacts, the desired gait specifications, and managing foot
slip [9] are some of the key challenges which can be tackled
by accurately estimating the state of the robot’s floating
base and the trajectory of foot poses. In particular, high
frequency state feedback controllers require even higher rate
state estimates, which is necessary to deal with uncertain
events such as foot slip and balance.
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(a) The DRC-era Atlas humanoid
by Boston Dynamics in action.

(b) The estimated trajectory of the Atlas
walking through obstacles.

(c) The estimated translation values ver-
sus the ground truth.

(d) The estimated rotation values versus
the ground truth.

Fig. 1: A representative example of our state estimator working for the
Atlas robot. Experiments are conducted on the A1 robot in simulation and
on real hardware for the Anymal C robot by ANYbotics AG and the Atlas,
demonstrating the generality of our approach.

Current legged robot state estimators leverage exterocep-
tive sensors which fail in poor environmental conditions
and limit the frequency of controllers. Exteroceptive sensors,
such as cameras and LIDARs, are used in conjunction with
proprioceptive sensors such as Inertial Measurement Units
(IMUs) and joint encoders [10] [11] [12], and these methods
are reliant on being able to detect and process features in the
surroundings. This requires well-lit, opaque, and structured
environments, which is not always the case, while also being
limited by the frame rate of visual sensors (e.g. cameras),
which tend to be an order of magnitude slower than that
of IMUs, limiting the publishing rate of state estimates, and
subsequently the controller.

Proprioceptive state estimation has shown to be a viable
solution [13]–[15], however it suffers from a fair number of
problems. While having a multitude of advantages, such as
IMU-rate (e.g. 200 Hz) estimates for dynamic control, oper-
ating in perception-denied environments [16], and freeing up
sensors (e.g. cameras) for other tasks such as mapping [11],
they suffer from long-term drift (particularly for filtering
based approaches [13]), vary for different legged robot
platforms, and assume one noise model from the base to the
foot without taking into account complex joint interactions
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and link deflections introduced over time.
We propose a framework to perform kinematic state esti-

mation for legged robots using factor graphs which tackles
both issues of drift and generalizability. Using proprioceptive
measurements with the kinematic chain of the robot’s legs in
contact, available from the Unified Robot Description Format
(URDF) file, we can directly model the full kinematics
of the robot at a time instance with a factor graph, and
perform probabilistic inference for the full state of the robot.
Moreover, the factor graphs allow for a generic sensor-fusion
mechanism, allowing the incorporation of additional factors
and sensors such as leg IMUs, contact sensors, and slip-
detectors, depending on the situation, as well as an extensible
framework for asynchronous data processing.

Our method consistently produces better state estimates
than the baseline, in terms of Absolute Pose Error (APE)
and Relative Pose Error (RPE), on a variety of trajectories for
each platform. We demonstrate our results in simulation us-
ing the Unitree A1 robot [2], [17], and on physical hardware
using the Anymal C quadruped [18] and the Boston Dynam-
ics’ DRC-era Atlas humanoid [9]. As a comparative baseline,
we use a factor graph based implementation of Bloesch et al.
[19]. We choose this baseline since it illustrates the benefit
of our approach directly in a fair comparison, while being
orthogonal to more recent advances.

II. RELATED WORK

Use of inertial measurement units (IMUs) for proprio-
ceptive state estimation has a rich history [20]. The initial
application was for the control of intercontinental ballis-
tic missiles [21]. Being mission-critical, they are highly
sophisticated (tactical or navigation grade) but also very
expensive [21, Table 1], making them typically unsuitable
for general robotics applications.

More recently, IMUs have seen widespread adoption in
the areas of visual-inertial odometry and robot localiza-
tion [22]–[24]. Initial work focused on sensor fusion based
on Kalman filtering [25]–[28]. Recent smoothing methods,
such as Forster et al. [29], leverage preintegrated IMU
measurements with camera-based visual measurements to
perform robot localization [30] and state estimation [31].
While these are synergistic with goals such as mapping, they
suffer from issues such as lighting dependency, potential lack
of visual features, and increased computational cost, causing
up to two orders of magnitude slower processing rates.

For legged robots, initial work with proprioceptive state
estimation was performed using Kalman filtering and the
contact points of the robot with its environment [13], [19],
[32]. These foundational works focus on using the forward
kinematics of the legs to define constraints on the position
and velocity of the contact points and thus constrain the
biases in the IMU measurements. The major drawback is
that the yaw angle (around gravity) and the absolute position
of the robot become unobservable, leading to drift errors
over long durations. Related to our work, Rotella et al. [33]
perform filtering based state estimation for humanoids specif-
ically, using ideas from [19] while leveraging the flat-foot

constraint of these robots to tackle yaw angle unobservability.
Recently, there has been an increased interest in smoothing

based methods for legged robot state estimation. Wisth et
al. [34] demonstrate excellent results for state estimation by
fusing proprioceptive and exteroceptive sensor measurements
in a factor-graph based framework for a quadruped. However,
for leg odometry, they rely on interpolation over the states
from a Two-State Implicit Filter [35] rather than jointly
estimate it. Closely related to our work, Hartley et al. [36]
leverage a factor-graph smoothing framework to jointly op-
timize over IMU measurements, leg kinematics and contact
measurements preintegrated over each stance phase of biped
locomotion. A follow up work [12] shows the promising
potential for hybrid system modeling of contacts inherent
to bipedal walking. By adding these hybrid preintegrated
contact factors with visual features from a stereo camera
setup, they are able to demonstrate state estimation over a
variety of conditions and terrains.

III. PRELIMINARIES

In this section, we present some preliminaries on factor
graphs, the robot kinematic model, and IMU preintegration
in the context of smoothing, all of which serve as the basis
for the discussion of our work in subsequent sections.

A. Factor Graph Based Smoothing

A factor graph is a probabilistic graph model which can
be used to express the estimation problem in a simple and
elegant manner. It is a bipartite graph represented as G =
{φ,Θ, ε}, where φ are the factor nodes, Θ are the variable
nodes to be estimated, and ε are the edges between them.

The factor graph G represents the probability density over
the variables to be estimated Θ given the measurement values
Z, and provides the factorization as

P (Θ|Z) =

|G|∏
i=1

φi(Θi), (1)

with each factor φi(Θi) = P (Θi|Zi) specifying the relation-
ship between its connected subset of variables Θi ⊆ Θ.

Given the factor graph G, the objective is to compute the
maximum a posteriori estimate of variables Θ, given as

Θ∗ = arg max
Θ

|G|∏
i=1

φi(Θi) = arg min
Θ
−
|G|∑
i=1

logφi(Θi). (2)

B. IMU Preintegration

In this section, we provide a brief overview of IMU prein-
tegration and how it is used in the factor graph framework.
For more details, the reader is referred to the exposition
in Forster et al. [29].

It is important to handle an IMU’s high measurement
frequency so as to not overwhelm the state estimator when
performing smoothing. This is done by forward integrating
the IMU’s measurements (angular velocity ω and linear
acceleration a) across successive ∆t between two specific
timestamps to obtain a summarized compound measurement



for the body B in an arbitrary world frame W . To prevent
the forward integration being performed repeatedly at each
new linearization point, a relative motion model is computed
between the states at time ti and time tj

∆Rij ,
j−1∏
k=i

Exp
((
ωk − bg

k − η
gd
k

)
∆t
)
,

∆vij ,
j−1∑
k=i

∆Rik

(
ak − ba

k − ηadk
)

∆t,

∆pij ,
j−1∑
k=i

[
∆vik∆t+

1

2
∆Rik(ak − ba

k − ηadk ∆t2)

]
,

(3)

where ∆Rij , ∆vij and ∆pij are the rotation, velocity and
translation differences between times ti and tj denoted by
∆t, ad is the accelerometer standard deviation and gd is the
gyroscope standard deviation.

This summarized relative state is used as a motion model
constraint between the previous and current state of the body.
By isolating the noise terms, we get

∆Rij = RT
i RjExp(δφij),

∆vij = RT
i (vj − vi − g∆tij) + δvij ,

∆pij = RT
i (pj − pi − vi∆tij −

1

2
g∆t2ij) + δpij .

(4)

with g being the value of Earth’s gravity, and δφij , δvij and
δpij being the rotation, velocity and translation increments
between times ti and tj due to the noise. For details on noise
and covariance propagation, please refer to [29].

IV. APPROACH

In this section, the state estimation problem is formulated
and we describe the overall approach modeled by the factor
graph. We assume the IMU is rigidly attached to the base
link, and that the robot either has force/tactile sensors on its
feet or has some contact detection mechanism [37] to give
us foot contact information.

A. Problem Formulation

The state variables are denoted by the pose of the base
link PW

B in some arbitrary world coordinate frame W , and
its linear velocity VB . Each foot link has its pose at contact
in the world frame denoted by PW

Li
, where i ∈ {N} is the

index of the corresponding leg for N legs. We denote the
bias of the accelerometer and the gyroscope as ba and bg

respectively. This gives the robot state at time ti as

xi=̇[PW
Bi , VB ,b

g,ba] ∈ SE(3)× R9. (5)

Between two time steps i and j, we denote the IMU
measurements as (ωi,j , ai,j), the joint measurements as Ji,j
and the contact states for all legs as Ci,j . The set of all
measurements up to time-step k is denoted by

Zk=̇{ωk, ak, Jk, Ck}. (6)

Given the measurements from the IMU, joint encoders,
and contact sensors, we frame our problem as probabilistic
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Fig. 2: The factor graphs for the baseline estimator and our proposed state
estimator. We propose modeling each joint in the leg’s kinematic chain
to apply a noise model, removing the need for noise assumptions on the
forward kinematics between the base and the end link. Here, in the case of
the A1, B represents the base link, T the thigh link, U the upper leg link,
and L the lower leg link. The variable for the contact point is denoted by
CP.

inference. By assuming the measurements are conditionally
independent and the noise on the sensors are zero mean
additive Gaussians, the posterior probability of the state
estimation problem can be stated as

φ(XK) ∝ p(XK |Zk)

=̇φ(x0)

K−1∏
k=1

φIMU(xk, xk−1)

L∏
j=1

φFK(xk, lk,j)φ
CP (lk,j , ci)

where φIMU are the preintegrated IMU factors, φFK are
the Forward Kinematics factors, and φCP are the factors
equating the leg end-effector to the same contact point
through a stance phase.

B. Preintegrated IMU Measurements

In the same vein as [13], [19], we use the measurement
data from the IMU located at the base of the robot. We
perform preintegration of the IMU measurements [29] and
add a preintegrated IMU factor at the specified estimation
rate (50 Hz for quadrupeds, 100 Hz for the humanoid). The
estimation rate for factor addition can be updated depending
on the use case, allowing us to recover estimates at a rate
suitable for use in trajectory controllers. A smoothing based
approach also helps avoid drift due to accumulated lineariza-
tion errors, commonly seen in filtering based approaches.

C. Kinodynamic Characterization with Factor Graphs

The robot kinematic state can be modeled as a factor graph
as the links and joints follow a similar bipartite structure [38].
A robot’s kinematic model can be specified as R = {J, L,E}
which is also a bipartite graph between joints J and links
L, with the edges E specifying the connections. Thus, for
each joint we can specify a joint measurement factor φFK

j

which takes the joint angle as a measurement and provides
the relationship between the connecting links {Lj , Lj+1i}.



An additional, non-obvious, benefit of the factor graph
framework is the potential for extensibility. One can add
additional factors to incorporate prior knowledge as well as
encode additional properties of the robot such as its dynamics
(e.g. inertial matrix, friction cone). This allows for potentially
also estimating the centroidal dynamics of the robot [39]
which we leave for future work.

D. Forward Kinematics at Contact

At each point a leg is in contact, we add the sub-graph
to model the kinematic chain from the base of the robot to
the link in contact. This allows us to probabilistically model
the interactions between the links’ noise models, rather
than assume gaussian noise over the forward kinematics. In
contrast to [13], [36] which uses a single forward kinematics
constraint between the base link and the foot link, we
add multiple pose factors which enforce a transformation
between each joint’s parent and child links. Each factor takes
as measurement the angle of the joint as recorded by a joint
encoder or joint-level IMU. By using a minimal representa-
tion of the joint’s screw axis as described in Lynch and Park
[40], we are able to ensure an efficient representation despite
the addition of more factors. Fig 2 provides a visualization.

For Jf joints in the kinematic chain for each leg f in
the set of legs F , each joint encoder measurement zk,j , and
contact ck,f at timestep k, we get the following factorization
of the posterior p(Xk, Lk,1:F |zk,1:J , ck,1:F ) on the base state
Xk (equal to the link pose L1

k) and all leg links Lk,1:F :

p(Xk, Lk,1:F |zk,1:J , ck,1:F ) ∝∏
f∈F

φFK(Xk, L
2
k,f |zk,1, ck,f )

Jf∏
j=2

φFK(Lj
k,f , L

j+1
k,f |zk,j , ck,f )

(7)

E. Contact Points as Landmarks

In order to constrain the foot positions and estimate the
IMU biases, we also estimate the contact points as being
consistent across the leg’s stance phase. By viewing the
state estimation problem as a SLAM problem, we consider
the contact points as landmarks to be estimated and use
techniques from SLAM (e.g. data association) directly.

The Forward Kinematics (FK) provides a mapping be-
tween the base link of the robot and the foot contact point,
given that the foot is in contact. We specify a foot is in
contact with point m ∈ {M} at time-step k using the factor
φCP (Xk, Cim) which minimizes the distance between the
contact point m in the environment and the foot link i ∈ F

φCP (Xk, Cim) = gCP (Xk, Cim) = ‖FK(Xk, Li)− Cim‖
(8)

Depending on the type of foot, either Point or Flat, we can
constrain just the foot translation or the foot pose [33].

F. Maximum A Posteriori Estimation

Given a linearization point X , we linearize our factor
graph and optimize for the negative log-likelihood to give us

the best estimates of the state trajectory using the Levenberg-
Marquardt optimization method

X∗ = arg min
X

(
‖o(X0)‖2Σ0

+

K−1∑
k=1

‖fIMU(Xk, Xk−1)‖2ΣIMU

+

K−1∑
k=0

F∑
f

‖hFK(Xk, L
2
k,f )‖2ΣFK

N∑
i=2

‖hFK(Li
k,f , L

i+1
k,f )‖2ΣFK

+

K−1∑
k=0

F∑
i

M∑
m

‖gCP(Xk, Cim)‖2ΣCP

)
(9)

where o(X0) is a prior on the first state, fIMU, hFK and gCP

are the linearized binary preintegrated IMU error, forward
kinematics error for a parent-child link pair, and the contact
error for foot i, respectively. Σ0,ΣIMU,ΣFK,ΣCP are the
respective noise model covariances.

We compute a good linearization point using the preinte-
grated IMU measurements and the joint angle measurements,
giving us initial values for the state and the contact points.

V. EXPERIMENTAL RESULTS

To evaluate our approach, we use common metrics used
for SLAM[41], [42] such as Absolute Pose Error and
Relative Pose Error for investigating the global and local
consistency of the trajectories respectively. We make use of
the evo software package [43] to provide us with convenient
functions for the metrics. The Absolute Pose Error (APE) is
defined as the absolute relative pose between two poses, the
reference pose Pi and the estimated pose P̂i at timestamp i

APEi = ‖(P−1
i P̂i)− I4×4‖F (10)

The Relative Pose Error (RPE) compares the relative poses
along the estimated and reference trajectories and is com-
puted over 1 second

RPEi,j = ‖[(P−1
i Pj)

−1(P̂−1
i P̂j)]− I4×4‖F (11)

To compute the metrics, we first have to align the tra-
jectories, which we do with a novel scheme for legged
robots. Trajectory alignment ensures that the error being
computed is not dominated by any particular unobservable
gauge freedom, e.g. scale in traditional SLAM systems. In
our case, we have 4 degrees of gauge freedom, namely the
translation (contributing 3 degrees of freedom) and the yaw
γ, all of which are directly unobservable for legged robots.

The trajectory alignment is done in two steps, the (x, y, γ)
and the z axis. Aligning the (x, y, γ) is a straightforward
SE(2) transformation calculated by computing the best
alignment between the (x, y) points of the trajectories. For
aligning the z axis, we subtract the mean of the z values of
the trajectory translations from each trajectory independently.

We evaluate our estimator in simulation to show correct-
ness and establish the strong baseline. We use the pybullet
based simulation environment provided by [17]. We generate
four different trajectories in simulation which we refer to as
straight, diagonal, turn, and zig-zag. In the simulation, along
with the ground truth state values, we collect the joint angles



TABLE I: Experimental Results on Quadrupeds in both simulation (A1) and
hardware (Anymal C). We report the Root Mean Square Error (RMSE) for
Absolute Pose Error (APE) and Relative Pose Error (RPE) over 1 second.

Baseline Estimator Our Approach
Trajectory APE RPE APE RPE

A1 Straight 0.207 0.0063 0.205 0.0063
A1 Diagonal 0.136 0.0064 0.135 0.0064

A1 Turn 0.190 0.0053 0.181 0.0049
A1 Zig-Zag 0.109 0.0062 0.108 0.0063
Anymal C 0.307 0.0115 0.173 0.0046

TABLE II: Experimental Results on a DRC-era Atlas humanoid over 5
different test runs. Similar to Table I, we report the Root Mean Square Error
(RMSE) for Absolute Pose Error (APE) and Relative Pose Error (RPE) over
1 second for each trajectory.

Baseline Estimator Our Approach
Trajectory APE RPE APE RPE

Atlas Run 1 0.076 0.0201 0.067 0.0182
Atlas Run 2 0.192 0.0339 0.141 0.0277
Atlas Run 3 0.198 0.0313 0.098 0.0201
Atlas Run 4 0.154 0.0267 0.114 0.0189
Atlas Run 5 0.292 0.0324 0.271 0.0260

for all the joints in the robot and the contact state of each
leg. We add realistic noise to the simulated measurements,
i.e., from the IMU and the joint angles. We execute both
the baseline estimator and our estimator on the different
trajectories.

The baseline estimator used is a factor-graph based im-
plementation of the proprioceptive state estimator described
by [13]. We choose this baseline since it is an estimator
that is widely deployed in many real-world robots [14], [15],
[44]. By implementing a factor graph based version of the
original filter-based estimator, we bring forward the benefits
of the original filter while also allowing for a fair comparison
between the baseline and our proposed framework.

Finally, we demonstrate the efficacy of our estimator on
robot hardware. We run our estimator on a sample trajectory
of the ANYbotics Anymal C robot and a Boston Dynamics
Atlas robot. We track the trajectory of the Anymal C base
using a Vicon optical tracking system, akin to [10]. For the
Atlas, we use the estimates provided by the well-tuned built-
in state estimator as a pseudo-ground-truth trajectory.

Quantitative results for the A1 simulation and the Anymal
C in Table I and for the Atlas in Table II, show our
state estimator’s superior performance over a variety of
trajectories for both platforms. As seen from the reported
results, our state estimator outperforms the baseline estimator
in APE and RPE metrics by 27.62% and 28.75% on average
respectively. The RPE improvement illustrates improved drift
handling over 1 second intervals, and in particular, for
5 different trajectories of the Atlas humanoid, we show
improved state estimates consistently, demonstrating both
the accuracy and the capability of our approach. Sample
trajectories are displayed in Figures 3, 4, 5.

VI. CONCLUSION
In this work, we presented a factor-graph based framework

for proprioceptive legged robot state estimation. By viewing

Fig. 3: The A1 walking a zig-zag trajectory in simulation. Qualitative
comparisons of (a) the trajectories, (b) the translations, and (c) the rotations,
verifying the performance of our state estimator in ideal conditions.

the robot’s kinematic structure as a bipartite graph, we are
able to model it using a factor graph together with the IMU
preintegration factors. This in-turn allows for constraining
the IMU biases for accurate and efficient proprioceptive state
estimation. We demonstrate the efficacy and generalizability
of our approach on both humanoids and quadrupeds, showing
improved performance when compared to a strong baseline
in both simulation and robot hardware.

Our framework is extensible and allows for asynchronous
data handling. In future work, we hope to examine the effects
of new factors based on force-torque measurements and
constraints based on slip-estimation. Our hope is that this
work serves as a stepping-stone towards more widespread
deployment of legged robots for various applications.
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Fig. 4: State estimation for the Anymal C robot walking a non-trivial
trajectory. The ground truth trajectory was gathered using motion capture
technology in a lab environment.
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