
Automatically Generating Classifier for Phishing Email Prediction

Liping Ma, Rosemary Torney, Paul Watters, Simon Brown
Internet Commercial Security Laboratory (ICSL)
Centre for Informatics and Applied Optimization

Graduate School of Information Technology and Mathematical Sciences
University of Ballarat, Australia

Email: (l.ma, r.hay, p.watters, s.brown)@ballarat.edu.au

Abstract

Phishing is a form of online identity theft that employs
both social engineering and technical subterfuge to steal
consumers’ personal identity data and financial account
credentials. Phishing email prediction has drawn a lot of
attention from many researchers. According to current anti-
phishing research, a classifier generated by decision tree
produces the most accurate predictions. However, there ap-
pears not to be any open source available to transfer such a
decision to an implementable classifier. The work presented
in this paper builds a decision tree parser which auto-
matically translates a decision tree into an implementable
program language so that the decision is useful in real
world applications. Experiment results show that the parser
performs as well as the original decision.

1. Introduction

Phishing is defined by the Anti-Phishing Working Group
(APWG) as a form of online identity theft that employs
both social engineering and technical subterfuge to steal
consumers’ personal identity data and financial account cre-
dentials ([1]). Social engineering is the process of deceiving
people into giving away access or confidential information.
The phisher, using social engineering techniques, attempts to
quickly establish their authenticity and authority to request
the data, a valid reason for the request and a sense of urgency
to comply. The email often then directs the victim to a bogus
site that is almost or completely indistinguishable from the
genuine authority, reinforcing the inclination for compliance,
and where the request for sensitive information is made. The
cost of phishing scams is not limited to the money that is
skimmed by phishers. Businesses and financial institutions
are spending large amounts of time and money on anti-
phishing activities, and online businesses are suffering as up
to a quarter of customers shy away from internet purchases
altogether to protect themselves ([2]).

Most servers have firewalls and filters to try to limit the
exposure of their customers to spam and phishing emails
and websites. This first line of defence against phishers
uses a decision created from some form of machine learning

and uses a routine based on this decision to classify emails
and URLs as phishing or safe. To counteract this, phishers
are constantly changing their sites, URLs and styles. The
average time that a phishing site is live can be as little as
5 days ([2]). Clients can use a server to host a website
for 5 days before there is any financial cost, and more
importantly any traceable details given. The firewalls and
filters can only deal with what they know, such as the
phishing flags that have been encountered in the past. When
new methods are encountered, the machine learning decision
that the firewall/filter is based on is required to be updated.

Currently, the updating of the filter or firewall is done
manually. Once the machine learning method produces the
decision, it has to be manually translated into implementable
code. Although there are some semi-automated methods, a
comprehensive search of the internet failed to reference any
automated methods to convert a decision into implementable
code.

Phishers are rapidly evolving new methods and sites,
constantly improving their bait. The time it takes to develop
new filters using manual or semi-automated methods could
be considered counter productive. By the time the new filter
is rolled out, the phishers have moved on and are using a
new set of tools, which are not covered by the new filter.
A system to automatically translate a decision into imple-
mentable code would negate the need to recode filters and
firewalls for every new decision. This would reduce the time
taken to implement the new decision, reduce the workload
required and reduce the expense of new filters/firewalls.

In this paper we describe an automated decision trans-
lation system that takes the decision tree produced by
the C4.5 ([3]) decision tree learning method and produces
implementable code using Python. The resultant program
mimics the tree and achieves the same accuracy results.

The rest of the paper is structured as follows: Section 2
gives the background of anti-phishing and text classification.
Section 3 provides the details of phishing email prediction.
Section 4 illustrates how the parser of creating classifier
automatically is implemented. Section 5 shows the exper-
imental results by comparing the accuracy of decision tree
and the classifier and finally Section 6 concludes the work
and direction for the future.

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9/09 $26.00 © 2009 IEEE

DOI 10.1109/I-SPAN.2009.153

779

2. Background

There are currently several products available that use text
classification to try to limit the potential damage caused
by phishing. AntiPhish [4] is a browser extension which
is used to protect inexperienced users against spoofed web
site-based phishing attacks. AntiPhish is a plug-in tool which
keeps track of users’ sensitive information and prevents
this information from being passed to a web site that is
considered untrustworthy or unsafe. A text classification
algorithm is responsible for identifying whether a web site
is a phishing site based on addresses used in a form. It
compares a legitimate URL and IP address with URL the
page actually locates. AntiPhish focuses more on tracking
sensitive information provided by a user. [5] identified a
website as a suspect phishing site when the visual similarity
value is above a pre-defined threshold.

Another widely-deployed technique is based on using a
blacklist of phishing domains to force the browser to refuse
to visit, such as PwdHash [6], [7] and SpoofGuard [7],
[8] by Stanford University. However, it is currently unclear
how effective such blacklisting approaches are in mitigating
phishing attacks in reality since phishing sites are very short
lived and some features of other types might be ignored.

Various methodologies have recently been developed for
document classification and representation to assist in anti-
phishing [9], [4], [10], [11], [7], [5], [12], [13], [14] using
different machine learning approaches. [9] developed the
system PILFER using a support vector machine (SVM), [10]
employed a Markov model, while [11] and and [12], [13],
[14] used the decision tree ([15], [16]) as their classifier for
preferring the robustness that C4.5 provides.

Text classification[17] is technique that automatically cat-
egorize text documents into pre-defined classes/types based
on their contents. As documents cannot be directly inter-
preted by a classifier, a feature selection procedure is re-
quired that coverts a document into a compact representation
suitable for the learning algorithm and the classification
task. Deciding which features are relative or descriptive
has always been a central problem in machine learning
techniques. For example, [18] defined a “relevant feature”
as one that is neither irrelevant nor redundant to the target
concept, an “irrelevant feature” does not affect the target
concept in any way, and a “redundant” feature does not add
anything new to the target concept.

Reference [12] (detail refers to 3) proposed a new method
by developing a technique to build a robust detector using
a short feature vector space selecting a limited set of ”good
features” without compromising the classification accuracy.
First, features are collected by observation; then the features
are evaluated and a best feature set was selected according
to the score gained by each feature. Finally, a few ma-
chine learning methods, especially the decision tree machine
learning algorithm uses the optimized feature vectors to

classify the documents. In classifying phishing emails, text
classification is achieved via machine learning on a very
small set of hybrid features.

If Google is used to search for ”C4.5, 904,000 results
about C4.5 are listed, which shows that C4.5 is favoured by
many researchers. However, there is does not appear to be
any open source product available that is able to implement
the decision tree generated by C4.5. The work presented
in this paper is a system that automatically transfers the
decision tree into an implementable program so that the
decision is applied to real world applications.

3. Phishing Email Prediction

Paper [12] presents a system of creating a robust classifier
for phishing prediction. Considering phishing emails are
largely similar in style, we believe that not only the content
is important, but also the structural and special features of
phishing emails. The quality of features used in phishing
detection determines greatly the effectiveness of a classifier.
We implement the classifier using a few machine learning
methods and evaluate the accuracy across the different
methods and sets of features. This algorithm reinforces the
classifier by eliminating ”noisy” features so that only good
features are selected. We developed a method to identify the
classifier by analysing possible features which indicate the
relationship among learning methods and accuracies. From
the analysis, we were able to confidently identify a feature
set and recommend a proper classifier.

3.1. Features Defined in Emails

A phishing email usually contains multimedia informa-
tion, including images and text, where the text information
may contain plain text, HTML, URLs, scripts, styles and etc.
However, the information cannot be recognized by a classi-
fier directly, rather it needs to be characterized according to
the needs of the system.

According to the analysis, phishing emails contain differ-
ent types of features that have been defined manually based
on observation. Three types of features are defined as:
∙ Content features which are domain-specific keywords

that help to identify particular semantic contexts within
the document. These contexts are used to assist in
identifying if specific information exists, such as terms
in a blacklist.

∙ Orthographic features are style characteristics that are
used to convey the role of words or sentences, such as
HTML features, size of document, the existence of url,
forms, scripts or images, etc.

∙ Derived features are developed from the existing con-
tent or orthographic features. For example, whether in
an email, the visible link is same as the hidden link;
whether the content is readable (i.e. whether the colour

780

contrast between background and font are enough for
human’s vision), etc.

In our implementation, we experimented with seven fea-
tures belong to the above three types:

1) links: the total number of links in an email.
2) nonv links: total number of invisible links. This fea-

ture is calculated by an algorithm developed according
to vision standards provided by W3C. In particular,
if the colour deference between the background and
font of link in an email is less than 500, the link is
considered to be an invisible link.

3) nonmatching urls: a binary value to show whether the
visible url is as the same as the hidden url.

4) forms: a binary value to show the existence of any
forms in an email.

5) scripts: the existence or type of the scripts in an email.
The value is 0 if there is no script in the email. The
value will be from 1 to 6 for different script types,
namely text/execmascripts, text/javascripts, applica-
tion/ecmascripts, application/javascripts, text/vbscripts
and other scripts.

6) body BL words: the total appearance of the words in
the blacklist in the body of an email. The blacklist
includes sensitive terms, such as account, update,
confirm, verify, secur, notif, log, click, inconvenien,
bank, urgent, alert, etc.

7) subject BL words: total appearance of the words in
the blacklist in the ”subject:” line in an email.

3.2. Email Presentation

After the features have been defined, we developed a
set of methods to extract all seven possible useful features
from each email. Let D = {d1, d2, . . . , d∣D∣} denote all the
documents and V = {v1, v2, . . . , v∣V ∣} be the feature vector
space. Where ∣D∣ and ∣V ∣ are the number of documents and
size of the feature vectors respectively. Let aij be the value
of jth feature of ith document. Therefore, the presentation
of each document is Ai = (ai1, ai2, . . . , ai∣V ∣), and each
document is A = {aij} where i = 1, 2, . . . , ∣V ∣; j =
1, 2, . . . , ∣D∣.

The values of all features are numerical however in vastly
different ranges. For example, the body BL words could
number in the thousands byte the number of nonv links
may be under five. To treat all the original features as
equally important, the value of each feature needs to be
normalized before the classification process. Feature values
are normalized using the quotient of the actual value over
the maximum value of that feature so that numerical values
are limited to the range [0, 1].

3.3. Detecting Phishing Emails

The architecture of our classification system consists of
four components: Feature Generator, Learner, Inductor
and Classifier. Figure 1 illustrates the system architecture.

Figure 1. System architecture

∙ The Feature Generator uses the content, orthographic
and derived knowledge to produce a set of feature
vectors, one per document. All the documents will be
represented as a matrix.

∙ Giving a Feature Matrix, the Learner employs a ma-
chine learning algorithm (such as system C4.5 [3]) to
train and test the classifiers.

∙ According to the information gain generated from the
Learner, the Inductor runs the machine learning algo-
rithm with less features. Again, the classifier is trained
and tested and new information gain is generated. This
step is implemented recursively until the best feature
set is identified.

∙ The Classifier applies the decision tree learning algo-
rithm to classify the emails, but this time using the
selected feature vectors which have a smaller vector
space and a better discriminator.

4. Decision Parser Generation

The format of the decision tree generated by C4.5 is rigid
which makes the automatic transform possible by creating
a decision tree parser. The parser consists of four major
components, namely:

1) getV ars(inName) takes a name of a file as input and
returns a list of variables used in the decision tree.

2) procF ile(inName, varList, varNames) finds
the valid part of a decision tree, and call
procLine(line, varList, varNames) routine that
parses individual line of the selected part of the
decision tree.

781

3) procLine(line, varList, varNames) is a routine that
parses a line and transfers it into Python State-
ment. It works together with its calling function
procF ile(inName, varList, varNames).

4) writeProg(outName, varList, varNames) writes
the main function, walks through the results pro-
duced be procF ile(inName, varList, varNames),
and writes each statement to the output file,and ap-
pends the last statement to implement the main func-
tion created.

The complete algorithm for parsing decision tree and
creating an implementable decision automatically is given
as follows:

Input: Document contains all the decisions
Step 1 Extracting variables from the file produced by C4.5

along with the tree. This step identifies the variable
names and classes.

Step 2 Pre-processing the decision tree set. The parser firstly
remove information in the document which is irrelevant
to the actual tree, including headings, comments and
evaluation figures. Then the parser identifies a subtree
and stores the position of the subtrees in the main tree it
belongs to. At the point, every individual tree including
subtrees are identified.

Step 3 Creating the classifier. The parser passes through each
tree iteratively. According to analysis or decision tree
and the features of Python, a set of transferring rules are
identifies. Certain notations and format in the decision
tree is transferred into corresponding Python statements
which follow the syntax of Python. For example, a node
is translated as ”if” statement, a ”∣” is translated to an
indent, and ”+” and ”-” are translated into return the
decision.

Output:An implementable classifier.

5. Experiment

We have implemented the system described in both Sec-
tions 3 and 4 predicting phishing emails and generating an
implementable classifier automatically by a parser. The aim
of our experiment is to provide evidence that the parser
works as well as the original decision tree.

The data used in our experiment are the live emails
received by WestPac and their customer in 2007. We have
used a total of 659,673 emails consisting of both phishing
emails and legitimate emails, and those emails were semi-
automatically classified. 613,048 emails are legitimate and
46,525 of the emails are phishing emails, which equates to
7% of the emails being phishing emails.

5.1. Performance of the Classifier

We have implemented the system described in Section
3.3. The data has been implemented using five learning
algorithms namely decision tree, random forest, multi-layer
perceptron (MLP), naive bayers and support vector machine

(SVM). Performance is measured in accuracy which is a
percentage of correct predictions over all the emails.

For each experiment, the data was partitioned into two
disjoint sets (some documents formed the training set Tr
contains both type emails, while the rest formed the testing
set Te). The classifier was trained using Tr and then all
of the documents in Te were classified using this classifier
and the accuracy was measured. We used Cross-Validation
for the learning process. Te and Tr are randomly-generated
combinations. The size of each training set is approximately
593,616, and each testing set is approximately 65,957.

We ran C4.5 over the generated ten training and testing
sets. The experimental results show that all the classifiers
perform reasonably well without any feature selection done
by machine, especially when the feature vector space is very
small. The accuracy of the training is all above 99.2% and
most of the testing is also above 99.5% ([12]).

Feature collection gives us a set of possible instances.
However, not every feature is effective as a discriminator.
Therefore, we need to select a relevant subset from the
initial feature set upon which to focus our attention, while
ignoring the rest. Under our approach, induction is used for
feature selection. To discover the importance of each feature,
the information gain (IG) of each feature is calculated to
rank the importance one. The larger the information gain
is, the more useful a feature will be. By observation, the
”subject BL words” is the feature with best quality, while
the ”forms” gives the least discrimination and possibly
brings noise to the classifier. The classifier is trained using
the smaller vector space features. As a result, a classifier
can be built by using a certain number of instances without
affecting the overall performance. Our solution can train
a classifier much faster without reducing its effectiveness
because of the very low dimensionality.

Experiments were conducted with five machine learning
methods to find the one which performd the best. We
have implemented the classifier using decision tree, random
forest, multi-layer perceptron, naive bayers and support
vector machine (SVM). The result showed that decision
tree generated the highest accuracy which builds a good
classifier.

5.2. Performance of The Decision Parser

We implemented the parser using Python and wrote the
classifier in Python as well, which is writing Python pro-
grams with Python. Python was selected for several reasons.
Python is an interpreted language, and therefore there is no
need to compile the resulting program which reduces one
step in the process. Unlike many other languages, Python
uses indents to indicate blocks of code which means there
is no need to overtly close a block of code since merely
using different number of tabs (indents) changes the block.
Python is also loosely typed, therefore it is not necessary

782

to declare variables of a specific type, and use them only
to hold data of that type. Once the classifier is created we
may translate the Python programs to other programming
language too use available software.

Paper [12] shows the efficiency of the classifiers defined
by the decision tree learning method. The experiment carried
in this paper was based on the classifiers created from our
previous work. The input is a set of decision trees and the
output is a Python program which includes a number of
decision blocks corresponding to the decision tree set.

We have implemented the decision generated by our
parser and compared with the results from the original
training and testing.

Decision Tree Classifier
Fold Training Testing Training Testing

1 99.2% 99.2% 99.8% 99.8%
2 99.2% 99.2% 99.8% 99.8%
3 99.2% 99.2% 99.8% 99.8%
4 99.2% 99.2% 99.8% 99.8%
5 99.2% 99.2% 99.8% 99.8%
6 99.3% 99.3% 99.6% 99.6%
7 99.3% 99.3% 99.6% 99.6%
8 99.3% 99.3% 99.3% 99.3%
9 99.3% 99.3% 99.1% 99.1%
10 99.6% 99.6% 96.1% 96.1%

Table 1. Accuracy rate (%) of decision and classifier in
both training and testing of the 10-fold cross validation.

The experimental results that the classifier generated by
the parser perfectly reflects the decision created in the
learning process.

6. Conclusion

C4.5 is a robust decision learning method and is favoured
by many researchers. However, there is does not appear
to be any open source product available that is able to
implement the decision tree generated by C4.5. Rebuilding
a classifier is time and labour consuming. The work pre-
sented in this paper aims to automate the process from a
decision to an implementable program. We have developed
a system that automatically transfers the decision tree into
an implementable program so that the decision is applied to
real world applications. This work would reduce the time
taken to implement the new decision, the workload and the
expense of building new classifier.

In this paper, we used phishing emails as our running
examples. Because of the rigid format of decision tree,
this work may be employed in many other applications.
Experiment results show that the parser performs as well
as the original decision.

Acknowledgment

The authors would like to thank Wespac Bank, IBM and
Victoria State Government who funded this project.

References

[1] http://www.antiphishing.org/, “Anti-phishing working group.”

[2] S. A. and H. W., Nature and Distribution of Phishing.
Pearson Prentice Hall, 2009.

[3] J. R. Quinlan, “C4.5: Programs for machine learning,” 1993.

[4] E. Kirda and C. Kruegel, “Protecting users against phishing
attacks,” The Computer Journal, 2005.

[5] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min, and X. Deng,
“Detection of phishing webpages based on visual similarity.”

[6] D. Boneh, “Spoofguard,” http://crypto.stanford.edu/SpoofGuard/,
Tech. Rep.

[7] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. Mitchell,
“A browser plug-in solution to the unique password problem,”
http://crypto.stanford.edu/PwdHash/, 2005.

[8] ——, “Stronger password authentication using browser exten-
sions,” in 14th Usenix Security Symposium, Baltimore, MD,
USA, 2005.

[9] I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect
phishing emails,” in Proceedings of the 16th International
World Wide Web Conference (WWW 2007), May 2007.

[10] C. Kruegel, G. Vigna, and W. Robertson, “A multi-model
approach to the detection of web-based attacks,” July 2005.

[11] C. Ludl, S. McAllister, E. Kirda, and C. Kruegel, “On
the effectiveness of techniques to detect phishing sites,” in
Proceedings of Detection of Intrusions and Malware and Vul-
nerability Assessment (DIMVA) 2007, Lucerne, Switzerland,
July 2007.

[12] L. Ma, B. Ofoghi, P. Watters, and S. Brown, “Detecting
phishing emails using hybrid features,” in Proceedings of
the Cybercrime and Trustworthy Computing Workshop (CTC-
2009), Brisbane, Australia, 2009.

[13] L. Ma, J. Shepherd, and A. Nguyen, “Document classification
vis structure synopsis,” in ADC2003, Fourteen Australasian
Database Conference. Adelaide, Australian: Australian
Computer Society Inc, Feburary 2003, pp. 59–66.

[14] L. Ma, J. Shepherd, Y. Zhang, and A. Nguyen, “Enhancing
text classification using synopses extraction,” in WISE2003,
4th International Conference on Web Information Systems
Engineering. Roma, Italy: IEEE Press, December 2003, p. .

[15] J. R. Quinlan, “Induction of decision trees,” Machine Learn-
ing, vol. 1, pp. 81–106, 1986.

[16] ——, “Improved use of continuous attributes in c4.5,” Artifi-
cial Intelligence Research, vol. 4, pp. 77–90, 1996.

[17] T. M. Mitchell, “Machine learning,” 1997.

[18] M. Dash and H. Liu, “Feature selection for classification,”
1997.

783

