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Abstract�This paper presents the design and implementation 
of a system of accelerometer-based hand gesture recognition. 
This system will be embedded within a modern remote control to 
improve human-machine interaction in the context of digital TV 
of Argentina. As the recognition of hand gestures is a pattern 
classification problem, two techniques based on artificial neural 
networks are explored: multilayer perceptron and support vector 
machine. This is performed in order to compare results and 
select the tool that best fits the problem. Jointly, signal digital 
processing techniques are used for preprocessing and adapting of 
the input signals to pattern recognition models. A gestural 
vocabulary of 8 types of gestures was used, which was also used 
by other similar works in order to compare results. An 
appropriate trade-off between the classifier recognition precision 
and resource utilization of the hardware platform is required in 
order to implement the solution within an embedded system. The 
obtained results of precision and utilization of resources are 
excellent. 

Keywords�accelerometer, artificial neural networks (ANNs), 
digital TV, embedded systems, hand gesture recognition, multilayer 
perceptron (MLP), remote control, support vector machine (SVM) 

I. INTRODUCTION 
Gesture recognition is the process of understanding and 

classifying the significant changes performed by the hands, 
arms, face and sometimes the heads of people. This has 
become a very attractive area of research for the design of 
man-machine interfaces equipped with artificial intelligence 
for many applications, such as sign language, disability, home 
automation, virtual reality, etc. [1]. 

Gesture recognition is a research area that is booming for 
both vision-based method and inertial sensors-based method of 
micro-electromechanical systems (MEMS) technology. The 
use of MEMS-technology is quite attractive since it includes 
low-cost sensors that do not suffer from major influences as 
vision-based recognition systems, such as ambient light levels 
and background type. Most of the available literature for 
MEMS-based hand gesture recognition only uses 3-axis 
accelerometer, with good results in the precision obtained. 

Most of the techniques and algorithms used in systems of 
accelerometers-based hand gesture recognition on current 
literature [2]-[6] have been implemented in systems of large 
resources, such as notebooks or desktop computers, with fast 

processors and enough memories. The lightest algorithms were 
implemented in smartphones, but code optimizations must be 
carried out in order to reduce the computational load and 
resource utilization [7]. 

In this work, the hand movements in free space describing 
some previously defined shape by manipulating a device 
interaction are referred as gestures. In this case, the interaction 
device is a remote control. The gestures are represented by 
vectors containing the variations in the levels of acceleration 
versus time in three-dimensional space. Time series as 
acceleration signals are equally valid terms in order to describe 
gestures. 

Within the context of digital TV, television systems have 
experienced huge improvements in recent times. The 
emergence of terrestrial digital TV and smart TVs allows to 
incorporate the concept of interactivity which together with the 
Internet services are producing an innovative impact and a 
consequent change in the user experience. The control of these 
devices is in most cases even solved by the traditional infrared 
remote control, which has become a limiting factor in the user 
interaction with the TV. Consequently, different types of 
interfaces and new control methods should be included in order 
to improve the user experience immersed in this technological 
evolution. Some of the renowned manufacturers of TV and 
entertainment devices began to incorporate novel user 
interfaces in their top-end products, such as voice control and 
image control, although the vast majority of remote controls 
used in TV is still offering basic functionality. 

The gestures, particularly the hand gestures, have two 
aspects in their signal characteristics that make them difficult 
for recognition. Firstly, they present segmentation ambiguity. 
Secondly, they have temporal and spatial variability even for 
the same gestures and the same people. 

Models such as the multilayer perceptron (MLP) [8] and 
the support vector machine (SVM) [9] are types of artificial 
neural networks (ANNs) that attempt to reproduce the 
problem-solving process of the brain [10]. As humans apply 
knowledge gained from experience to new problems or 
situations, a neural network takes solved problems in order to 
build a system that makes decisions and performs 
classifications. These techniques are widely used in robotics, 
medicine, speech recognition and data mining, to cite some 
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areas of application. Problems suitable for neural solution are 
those that do not have an accurate computational solution, or 
that require very extensive algorithms in order to implement 
the solution. Thus, these techniques are suitable for 
applications in hand gesture recognition. 

In this paper, a system of hand gesture recognition using 
ANNs is designed and implemented, in order to be embedded 
within a modern remote control and be used in the context of 
digital TV in Argentina. The proposed system is able to 
recognize isolated gestures, be independent of the user, work 
with a predefined gestural vocabulary of 8 classes, and exhibit 
excellent recognition rate. Recognized gestures are translated 
into control commands that will execute various actions on 
home digital TV systems. The gesture recognition system will 
be implemented in a microcontroller-based embedded system. 
The hardware platform is selected in order to obtain reduced 
execution times of the classifier algorithms for a real-time 
response, and to achieve a suitable recognition rate for a better 
user-experience. A comparative analysis of two types of ANNs 
is carried out in order to find the model that provides the better 
relationship between precision versus execution time. To train, 
validate and evaluate the models, an existing database is used. 

The document is diagrammed as follows. In Section II are 
commented the composition and analysis of the used database, 
and the methodology in order to train, validate and evaluate 
ANNs models. In Section III are established the design strategy 
and the comparison parameters of ANNs models. The design, 
implementation and testing of the classification system are 
presented in Section IV. The results of precision and execution 
times of the algorithms are shown and discussed in Section V. 
Finally, the conclusions and future work are commented at the 
end of the article. 

II. DATABASE FOR TRAINING, VALIDATION AND 
EVALUATION OF ANNS MODELS 

The database employed here is the database of the uWave 
project [11], [12]. This project is pioneer in accelerometer-
based hand gesture recognition using dynamic time warping 
(DTW). Gestural vocabulary of database includes 8 types of 
hand gestures, as shown in Fig. 1. 

 
Fig. 1. Gesture vocabulary. 

The database includes 4480 gestures, performed by 8 users, 
for 7 days and 10 repetitions per day. Thus, the database 
contains the 8 types of gestures in proportionate quantities. 

The pattern recognition techniques used in this work are 
two types of ANNs: MLP and SVM. These models require 
training data in order to learn and store knowledge which will 
be used for performing the classification task. To do this is 
needed a database for training, validation and evaluation in 
order to select the best model with optimal behavior to resolve 
the problem. The database was analyzed and processed through 
the R language [13] using the RStudio IDE [14]. 

A. Analysis of the Database 
Useful information for designing was extracted from the 

database. Analysis of missing data and outliers treatment were 
performed. The duration of the gestures in number of samples 
was obtained. This information is used to set the minimum and 
maximum duration of the gestures and to determine the size of 
the input buffers. Minimum and maximum values of 
acceleration levels of the gestures are useful to select the 
acceleration sensor according to the dynamic range of 
operation and to normalize the input. The discrete Fourier 
transform was applied for obtaining the bandwidth of the 
acceleration signals. A value of 7 Hz was obtained. This 
information is useful for selecting the sampling frequency of 
embedded system and cutoff frequency of the input filter. 

B. Partition of the Database 
The database was randomly divided into two representative 

groups of all observations. Thus, the percentage of each class 
was conserved. The 80% of the data was used for training and 
validation of the models. The remaining 20% was used for 
evaluation of the models. The leave one-out k-fold technique 
of cross-validation was implemented. The training and 
validation partition was divided into k=20 groups of data, using 
k-1=19 groups for training and 1 group for validating the 
model. This process was repeated k=20 times, using all data for 
validating the model in question. Thus, 20 validated models 
were obtained. The evaluation data were used for evaluating 
the best validated model in order to obtain the final recognition 
precision. The process steps can be seen in Fig. 2. 

 
Fig. 2. Process for training, validation and evaluation of models. 

For user-independent case, the entire data database is used. 
For the user-dependent case, the data of a particular user are 
used for model training, validation and evaluation. 

III. PARAMETERS FOR DESIGN AND COMPARISON OF ANNS 
MODELS

The recognition rate is used as a parameter for comparison 
between MLP and SVM with linear kernel models, previously 
setting similar execution times for both classification 
algorithms. The execution times depend on the number of 
arithmetic operations as multiplications and sums involved in 
the algorithms. In both models, the number of inputs and 
outputs are fixed. Thus, for the MLP case, the execution time 
can be varied according to the number of hidden layer neurons. 
The number of neurons in the output layer is equal to 8, 
corresponding to the classes that represent gestural vocabulary. 
In the case of the SVM with linear kernel, 28 binary classifiers 
should be implemented in order to work with multiclass 
classification based on one-versus-one strategy [15]. An SVM 
with polynomial kernel of degree equal to 2 and one-versus-
one multiclass strategy is implemented only for comparing 
recognition rate results. 
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The resource usage for the implementation of an SVM with 
linear kernel is considered as a design reference, which 
depends directly on the number of inputs and outputs of the 
system. Accordingly, the MLP architecture is obtained 
equaling the resource usage of the SVM with linear kernel, 
adjusting the number of neurons in the hidden layer. 

IV. DESIGN, IMPLEMENTATION AND TEST OF THE 
CLASSIFICATION SYSTEM 

To carry out this work, software engineering practices were 
used since it involves the creation of software as a fundamental 
part of the system. Analysis, definition and review of 
requirements were performed. The validated requirements are 
used later in order to verify the correct system operation. The 
analysis stage included the extraction of information from the 
database in order to learn details of the problem. During the 
design, architecture and interfaces of the system were defined. 
In addition, a plan for integration tests of the different modules 
that compose the classifier was established. In the 
implementation phase, the different software modules were 
coded and tested unitarily. Finally, the tests of integration and 
system that were planned in the previous phases are performed. 
The adoption of the above described methodology allowed 
decreasing the injection of errors into the software, reducing 
rework and obtaining a system with a certain degree of quality. 

Firstly, the type of hardware platform in order to implement 
the system was defined. The microcontroller-based platforms 
were selected, due to a combination of features that are 
presented as advantages over other platforms for this particular 
application. Some features are low-cost, low energy 
consumption, high operating frequency, reuse and portability 
of code, peripherals such as I2C, SPI, UART, USB, 
incorporating hardware modules for digital signal processing 
and floating-point arithmetic. In addition, this platform 
provides different ways in order to update the firmware. 

A. Design 
Different configurations for the classifier were analyzed. 

The best results were obtained by the system whose 
architecture is shown in Fig. 3. 

 
Fig. 3. Blocks diagram of the system of hand gesture recognition. 

The system of hand gesture recognition has as inputs the 
acceleration signals and the capture button. The acquisition of 
the acceleration vectors for a given gesture starts when the 
capture button on the remote control is pressed and ends when 
the button is released. In this way, the samples of the 3 axes 
that make a gesture are obtained. The system has a single 
output corresponding to the recognized gesture from the 
captured samples, which will be converted into a control 
command for digital TV systems. 

Before applying the classification algorithms of MLP and 
SVM, the input data must be preprocessed. The data provided 
by the accelerometer are processed by a finite impulse response 
(FIR) low-pass digital filter of linear phase, optimal and 

equiripple. This filter is used to attenuate any high frequency 
component as the associated with hand vibrations and noise. 
The filter was designed using the Parks-McClellan algorithm, 
in order to have a cutoff frequency of 7 Hz and -40 dB 
attenuation in the rejection band. The obtained filter length is 
equal to 9. 

The stage of re-sampling and linear interpolation is 
responsible for normalizing the input of ANNs models. The 
gestures are variable in duration. They are composed of a 
variable number of acceleration samples. Thus, the stage of re-
sampling and linear interpolation obtains a fixed number of 
acceleration samples in the 3 axes. The samples of fixed 
number are the inputs for MLP and SVM models. During the 
validation of ANNs models, the optimal number of inputs was 
obtained, it being equal to 10 inputs per axis. 

The models of MLP and SVM with linear kernel perform 
pattern recognition over preprocessed input data. In the 
proposed configurations for MLP and SVM, time is implicitly 
represented since the temporal structure of the input signal is 
embedded in the spatial structure of the ANNs [16]. 

B. Implementation 
The filtering, preprocessing, MLP and SVM with linear 

kernel algorithms were implemented in C language and 
numerical formats of floating-point and fixed-point. The Q5.10 
numeric format is a fixed-point representation that uses integer 
numbers for representing real numbers of finite precision. This 
representation uses fewer hardware resources that the floating-
point one in devices without floating-point unit (FPU) for 
performing arithmetic operations. The floating-point format 
provides more precise computations and a greater dynamic 
range. The algorithms were implemented as software modules 
in C language. An independent and portable application was 
developed and implemented in different test hardware 
platforms. In the future, the functionality of the hand gesture 
recognition will be implemented as a task within the context of 
a real-time operating system (RTOS). 

A gesture is represented by three vectors x, y, z, each one of 
length N, containing the samples of the amplitude variations of 
acceleration versus time in three dimensional space. The raw 
data of input are limited and normalized in order to avoid 
possible overflows in arithmetic operations. The low-pass 
digital filter is continuously applied to the input data. For 
example, for the x-axis, the FIR filter of length L=9 with input 
x and output xf is described by the difference equation 

  

where bk is the set of filter coefficients. Equation (1) is used in 
order to implement the filter algorithm. 

The gestures are variable in duration depending on the user 
hand movement speed. When the capture button is pressed, the 
input samples for each axis are stored in buffers until the 
button is released. Before applying the algorithm for re-
sampling and linear interpolation, the duration of the gestures 
is validated. To convert from the original sampling frequency 
Fs=1/Ts to the desired sampling frequency Fr=1/Tr, the level of 
the input signal is obtained at the time instants t=m*Tr, where 
m is the sample index of fixed number with values 0-9 for each 
axis. For the x-axis, the sampling frequency conversion and 
linear interpolation formula is 
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where M is the fixed number of samples of re-sampling output, 
D=(N-1)/(M-1) is the decimation factor, and nm is the sample 
index of xf which is located at or just above the value of D*m. 
The algorithm of re-sampling and linear interpolation involves 
comparisons and multiplications whose number depends on the 
duration of each gesture. Thus, the execution time of this 
algorithm depends on the number of samples of each gesture. 

Fig.4 shows how the low-pass filter acts on x-axis raw 
acceleration samples, and how the output samples of filter are 
processed by the re-sampling and linear interpolation algorithm 
in order to maintain the fixed number of samples. 

 
Fig. 4. Original, filtered and resampled acceleration signals for x-axis. 

Re-sampled vectors xr, yr, zr, of length M=10 correspond to 
30 inputs e of the classification algorithms of MLP and SVM 
with linear kernel. 

MLPs are feedforward ANNs. Typically, the network 
consists of a set of sensory units that constitute the input layer, 
one or more hidden layers of computation nodes, and the 
output layer of computation nodes. The MLP is trained by 
backpropagation algorithm. The forces of inter-neuron 
connections, known as synaptic weights, are used in order to 
store the acquired knowledge. The output of the jth neuron of 
the hidden layer is given by 

 

where ek represents the kth input signal, K is the number of 
neurons of the input layer, wjk corresponds to the synaptic 
weight for connecting the kth neuron of the input layer with the 
jth neuron of the hidden layer, and  is the activation 
function. For k=0, the input corresponds to the bias value, 
which is a fixed input in e0=-1 and weight wj0=uj. The output 
of the ith neuron of the output layer is given by 

 

where J is the number of neurons of the hidden layer, Wij 
corresponds to the synaptic weight connecting the jth neuron of 
the hidden layer with the ith neuron of the output layer, and 

 is the activation function. For j=0, the input corresponds to 
the bias value, which is a fixed input in V0=-1 and weight 
Wi0=ui. In both cases, the activation function of neurons used 
in this work is the sigmoid function via an approximation with 
linear segments [17]. Using (3) and (4), the MLP classification 
algorithm may be implemented. 

The SVM is another category of feedforward ANNs also 
can be used for pattern classification. The SVM with linear 

kernel is implemented using the optimal hyperplane equation 
representing a linear decision surface in the multidimensional 
input space defined by 

  

where e is the input vector, w0 is a weight vector and b0 is the 
bias value. The training aim is to find the parameter vector w0
and the bias value b0 for defining the optimal hyperplane. Since 
an SVM operates as a binary classifier, a one-versus-one 
multiclass strategy is used in order to solve the problem of 
classification of C=8 classes. Thus, [C*(C-1)]/2=28 binary 
classifiers are constructed corresponding to all possible 
combinations of pairs of classes. The output class is obtained 
by a voting scheme. Using (5), the 28 binary classifiers of the 
SVM with linear kernel can be implemented. 

The ANNs that are implemented in this work were trained 
through a supervised learning process, using the libraries 
provided by R: nnet [18] and e1071 [19]. To achieve 
convergence of SVM and MLP models, regularization 
parameters were modified during training and validation. Fitted 
values for the training data, maximum number of iterations, 
initial random weights, etc. were adjusted in the MLP. The 
training was conducted in order to avoid local minimums and 
overtraining. MLP models have been constructed to have a 
correct generalization capability. In SVM with linear kernel 
case, the regularization parameter is cost. The cost was varied 
in order to obtain optimal performance of the model. 
According to the design criteria of Section III, the resulting 
MLP has architecture of 30 neurons in the input layer, 20 
neurons in the hidden layer, and 8 neurons in the output layer 
with a total of 788 synaptic weights. Each of the 28 trained 
SVMs has 30 input parameters and 1 value bias, for a total of 
840 input parameters and 28 values of bias. 

In addition to the C language implementation, the 
algorithms were coded in a software application for the 
Android operating system, using the paradigm of object-
oriented programming. The software application runs on a 
smartphone in order to perform real testing of the classifier 
algorithms. The software application uses 3-axis accelerometer 
of the smartphone and runs classification algorithms when the 
gesture is captured. The application also allowed creating a 
database for training the MLP and SVM models. 

C. Test 
During each stage of the project life cycle, test plans were 

defined in order to guide the corresponding validation stage. 
Test cases were created in each of these plans for the unit, 
integration and system levels. 

The unit tests were performed during the codification 
process of each software module. The I2C driver for 
configuration and data capture from the accelerometer was 
tested. The low-pass filter was tested with a function generator 
and oscilloscope, verifying the cutoff frequency, gain in the 
pass-band and attenuation in the rejection band. The module of 
re-sampling and linear interpolation was tested by introducing 
samples of variable number of known waveforms in order to 
verify a proper interpolation and validated number of output 
samples. The MLP and the SVM with linear kernel modules 
were tested with database data in order to verify the correct 
classified output in both numeric formats. 
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The integration tests were performed between pairs of 
adjacent modules, in order to verify that the interfaces between 
modules operate properly. The data types and formats were 
checked in order to ensure correct integration of the modules. 

The system tests were performed according to the defined 
requirements. The performance requirements tests are 
discussed in detail in Section V. As with any digital 
implementation, the error due to the finite word length in the 
digital representation is present. This error depends on the used 
numeric format. The ANNs models were coded in C and 
implemented in numerical fixed-point and floating-point 
formats. The classification results of these implementations 
were contrasted with the classification results of the models in 
R (the IEEE-754 double precision floating-point numeric 
format is used). The classification results were exactly the 
same. As a system test of a similar final implementation, the 
algorithms were tested on an Android-powered smartphone. 

V. EXPERIMENTAL RESULTS

After carrying out the training and validation of the MLP 
and SVM models, the best trained model of each type is 
selected in order to test their performance with evaluation data. 

A. Recognition Rate 
Confusion matrices are used for showing the recognition 

performance of the models. Columns represent the estimated or 
predicted output. Rows represent the real output. Main 
diagonal shows the number of classes correctly classified. The 
other cells display the classification errors. Table I shows the 
normalized confusion matrix of the MLP for the user-
independent case, with an average recognition rate of 98.65%. 

TABLE I.  NORMALIZED MLP CONFUSION MATRIX FOR USER-
INDEPENDENT CASE. 

 

Table II shows the normalized confusion matrix of the 
SVM with linear kernel for the user-independent case, with an 
average recognition rate of  97.31%. 

TABLE II.  NORMALIZED SVM WITH LINEAR KERNEL CONFUSION 
MATRIX FOR USER-INDEPENDENT CASE. 

 
The average recognition rate achieved by the SVM with 

polynomial kernel of degree 2 was 99.21%. 

In addition, tests varying the number of neurons in the 
hidden layer of MLP were performed, obtaining an average 
recognition rate of 96.12% with 10 neurons, with a decrease of 
50% on the use of hardware resources. 

In the user-dependent case, the variability is bounded to a 
particular user. An average recognition rate of 99.21% was 
obtained by MLP model, 99.21% by SVM with linear kernel, 
and 99.43% by SVM with polynomial kernel. 

Table III shows a comparative table with others research 
works which used different pattern recognition techniques. 

TABLE III.  PRECISIONS OF OTHER WORKS. 

 
 

B. Execution Times of Algorithms 
Table IV shows the execution times of the algorithms 

implemented in C language on different platforms with 
microcontroller-based hardware and numeric formats, for the 
gestures with minimum and maximum duration found in the 
database, indicated by the number of samples. Both MLP and 
linear SVM with kernel models exhibit similar execution times. 

TABLE IV.  EXECUTION TIMES OF THE ALGORITHMS. 

 
 

As can be appreciated, a C language implementation could 
be carried out smoothly for a microcontroller in real time. The 
IEEE-754 floating-point format allows a greater dynamic range 
and a greater precision in the values of the parameters of the 
algorithms. This format increases processing time on the 
platforms without FPU. The Q5.10 fixed-point format allows a 
faster execution with less precision in the parameters of the 
algorithms due to truncation. The hardware platforms more 
attractive for implementation are the alternatives of 32 bits 
[22], [23], [24], since the system must also perform additional 
tasks associated with the functionality of a modern remote 
control within the context of an RTOS. The use of an FPU 
accelerates the execution of the algorithms using floating-point 
format. To compare results with other techniques of hand 
gesture recognition, in [11] an execution time of 300 msec on a 
16-bit microcontroller was obtained. In [20], an FPGA-based 
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development kit is used for implementing an acceleration unit 
with an algorithm execution time of 58.3 msec. 

The algorithms were implemented and tested in a 
smartphone. A Samsung Galaxy S3 Mini smartphone was 
used, running the Android operating system (platform 4.03 and 
API level 15). Table V shows the algorithms execution times. 

TABLE V.  MINIMAL EXECUTION TIMES OF THE ALGORITHMS IN 
SMARTPHONE RUNNING ANDROID. 

 

The precision obtained in the smartphone test for user-
dependent case was 100%. 

VI. CONCLUSIONS 
The objective of designing and obtaining a system of 

accelerometer-based hand gesture recognition, with good 
recognition rate and reduced execution times was reached. The 
proposed classifier involves digital signal processing and 
pattern recognition techniques, whose algorithms will be 
embedded within the hardware. Tests conducted on different 
hardware platforms indicate that it is possible to implement the 
system with a low-cost 32-bit microcontroller. The 
PIC32MX250 microcontroller family is the selected platform. 
This platform is chosen because it executes quickly the 
algorithms and has enough memories of data and program. 
Also, this platform is the lower cost between the tested 
platforms. Others important factors for the choice of this 
platform are the local market availability and free-use 
development tools. In addition, both ANNs models were tested 
in a smartphone with good results. 

Two types of ANNs were compared for finding an optimal 
solution between precision and hardware resources use, with 
suitable results in both MLP and SVM with linear kernel 
models. To similar processor uses, the MLP showed a slightly 
higher performance than the SVM with linear kernel. The MLP 
resource usage is controlled varying the number of hidden 
layer neurons. The MLP model was found to be the best and 
will finally be embedded into the remote control. The design 
and implementation of artificial intelligence models for 
embedded systems were presented in detail. Different 
microcontroller-based hardware platforms were used in order 
to perform and document the measurements of execution times 
of classification algorithms. 

We have demonstrated that the implementation of a system 
of hand gesture recognition based on MEMS-accelerometers 
and low-cost resource-constrained devices is possible. We have 
achieved excellent pattern recognition rates, and execution 
times that allow a real-time operation. We have verified the 
appropriate use of ANNs-based models for the development of 
a more natural and friendly interface in order to improve the 
user experience in the context of the digital TV of Argentina. 

VII. FUTURE WORK 
A database will be collected with the final hardware for 

training the MLP model. This model will be embedded into the 
remote control. In addition, the number of gestural vocabulary 
classes will be increased. A Bayesian filter will be incorporated 

to reinforce the correct MLP output. Finally, the automatic 
delineation of the beginning and ending of gestures will be 
included. This is possible because the system could operate in 
continuous mode of hand gesture recognition due to the 
reduced execution times obtained. 
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