
Accelerometer-Based Hand Gesture Recognition
System for Interaction in Digital TV

J. Ducloux1,2,3, P. Colla2, P. Petrashin1, W. Lancioni1, L. Toledo1

1Facultad de Ingeniería, Universidad Católica de Córdoba
2Especialización en Sistemas Embebidos, Instituto Universitario Aeronáutico

3Consorcio Córdoba TDT
Córdoba, Argentina

Abstract�This paper presents the design and implementation
of a system of accelerometer-based hand gesture recognition.
This system will be embedded within a modern remote control to
improve human-machine interaction in the context of digital TV
of Argentina. As the recognition of hand gestures is a pattern
classification problem, two techniques based on artificial neural
networks are explored: multilayer perceptron and support vector
machine. This is performed in order to compare results and
select the tool that best fits the problem. Jointly, signal digital
processing techniques are used for preprocessing and adapting of
the input signals to pattern recognition models. A gestural
vocabulary of 8 types of gestures was used, which was also used
by other similar works in order to compare results. An
appropriate trade-off between the classifier recognition precision
and resource utilization of the hardware platform is required in
order to implement the solution within an embedded system. The
obtained results of precision and utilization of resources are
excellent.

Keywords�accelerometer, artificial neural networks (ANNs),
digital TV, embedded systems, hand gesture recognition, multilayer
perceptron (MLP), remote control, support vector machine (SVM)

I. INTRODUCTION
Gesture recognition is the process of understanding and

classifying the significant changes performed by the hands,
arms, face and sometimes the heads of people. This has
become a very attractive area of research for the design of
man-machine interfaces equipped with artificial intelligence
for many applications, such as sign language, disability, home
automation, virtual reality, etc. [1].

Gesture recognition is a research area that is booming for
both vision-based method and inertial sensors-based method of
micro-electromechanical systems (MEMS) technology. The
use of MEMS-technology is quite attractive since it includes
low-cost sensors that do not suffer from major influences as
vision-based recognition systems, such as ambient light levels
and background type. Most of the available literature for
MEMS-based hand gesture recognition only uses 3-axis
accelerometer, with good results in the precision obtained.

Most of the techniques and algorithms used in systems of
accelerometers-based hand gesture recognition on current
literature [2]-[6] have been implemented in systems of large
resources, such as notebooks or desktop computers, with fast

processors and enough memories. The lightest algorithms were
implemented in smartphones, but code optimizations must be
carried out in order to reduce the computational load and
resource utilization [7].

In this work, the hand movements in free space describing
some previously defined shape by manipulating a device
interaction are referred as gestures. In this case, the interaction
device is a remote control. The gestures are represented by
vectors containing the variations in the levels of acceleration
versus time in three-dimensional space. Time series as
acceleration signals are equally valid terms in order to describe
gestures.

Within the context of digital TV, television systems have
experienced huge improvements in recent times. The
emergence of terrestrial digital TV and smart TVs allows to
incorporate the concept of interactivity which together with the
Internet services are producing an innovative impact and a
consequent change in the user experience. The control of these
devices is in most cases even solved by the traditional infrared
remote control, which has become a limiting factor in the user
interaction with the TV. Consequently, different types of
interfaces and new control methods should be included in order
to improve the user experience immersed in this technological
evolution. Some of the renowned manufacturers of TV and
entertainment devices began to incorporate novel user
interfaces in their top-end products, such as voice control and
image control, although the vast majority of remote controls
used in TV is still offering basic functionality.

The gestures, particularly the hand gestures, have two
aspects in their signal characteristics that make them difficult
for recognition. Firstly, they present segmentation ambiguity.
Secondly, they have temporal and spatial variability even for
the same gestures and the same people.

Models such as the multilayer perceptron (MLP) [8] and
the support vector machine (SVM) [9] are types of artificial
neural networks (ANNs) that attempt to reproduce the
problem-solving process of the brain [10]. As humans apply
knowledge gained from experience to new problems or
situations, a neural network takes solved problems in order to
build a system that makes decisions and performs
classifications. These techniques are widely used in robotics,
medicine, speech recognition and data mining, to cite some

This paper is presented as a preliminary report for FSTICS Project N° 4,
funded by the National Agency for Promotion of Science and Technology
through FONARSEC, which has as Beneficiary Institution the Catholic
University of Córdoba, and as the Adopter the TDT Córdoba Consortium also
located in the same city.

978-1-4673-6386-0/14/$31.00 ©2014 IEEE 1537

areas of application. Problems suitable for neural solution are
those that do not have an accurate computational solution, or
that require very extensive algorithms in order to implement
the solution. Thus, these techniques are suitable for
applications in hand gesture recognition.

In this paper, a system of hand gesture recognition using
ANNs is designed and implemented, in order to be embedded
within a modern remote control and be used in the context of
digital TV in Argentina. The proposed system is able to
recognize isolated gestures, be independent of the user, work
with a predefined gestural vocabulary of 8 classes, and exhibit
excellent recognition rate. Recognized gestures are translated
into control commands that will execute various actions on
home digital TV systems. The gesture recognition system will
be implemented in a microcontroller-based embedded system.
The hardware platform is selected in order to obtain reduced
execution times of the classifier algorithms for a real-time
response, and to achieve a suitable recognition rate for a better
user-experience. A comparative analysis of two types of ANNs
is carried out in order to find the model that provides the better
relationship between precision versus execution time. To train,
validate and evaluate the models, an existing database is used.

The document is diagrammed as follows. In Section II are
commented the composition and analysis of the used database,
and the methodology in order to train, validate and evaluate
ANNs models. In Section III are established the design strategy
and the comparison parameters of ANNs models. The design,
implementation and testing of the classification system are
presented in Section IV. The results of precision and execution
times of the algorithms are shown and discussed in Section V.
Finally, the conclusions and future work are commented at the
end of the article.

II. DATABASE FOR TRAINING, VALIDATION AND
EVALUATION OF ANNS MODELS

The database employed here is the database of the uWave
project [11], [12]. This project is pioneer in accelerometer-
based hand gesture recognition using dynamic time warping
(DTW). Gestural vocabulary of database includes 8 types of
hand gestures, as shown in Fig. 1.

Fig. 1. Gesture vocabulary.

The database includes 4480 gestures, performed by 8 users,
for 7 days and 10 repetitions per day. Thus, the database
contains the 8 types of gestures in proportionate quantities.

The pattern recognition techniques used in this work are
two types of ANNs: MLP and SVM. These models require
training data in order to learn and store knowledge which will
be used for performing the classification task. To do this is
needed a database for training, validation and evaluation in
order to select the best model with optimal behavior to resolve
the problem. The database was analyzed and processed through
the R language [13] using the RStudio IDE [14].

A. Analysis of the Database
Useful information for designing was extracted from the

database. Analysis of missing data and outliers treatment were
performed. The duration of the gestures in number of samples
was obtained. This information is used to set the minimum and
maximum duration of the gestures and to determine the size of
the input buffers. Minimum and maximum values of
acceleration levels of the gestures are useful to select the
acceleration sensor according to the dynamic range of
operation and to normalize the input. The discrete Fourier
transform was applied for obtaining the bandwidth of the
acceleration signals. A value of 7 Hz was obtained. This
information is useful for selecting the sampling frequency of
embedded system and cutoff frequency of the input filter.

B. Partition of the Database
The database was randomly divided into two representative

groups of all observations. Thus, the percentage of each class
was conserved. The 80% of the data was used for training and
validation of the models. The remaining 20% was used for
evaluation of the models. The leave one-out k-fold technique
of cross-validation was implemented. The training and
validation partition was divided into k=20 groups of data, using
k-1=19 groups for training and 1 group for validating the
model. This process was repeated k=20 times, using all data for
validating the model in question. Thus, 20 validated models
were obtained. The evaluation data were used for evaluating
the best validated model in order to obtain the final recognition
precision. The process steps can be seen in Fig. 2.

Fig. 2. Process for training, validation and evaluation of models.

For user-independent case, the entire data database is used.
For the user-dependent case, the data of a particular user are
used for model training, validation and evaluation.

III. PARAMETERS FOR DESIGN AND COMPARISON OF ANNS
MODELS

The recognition rate is used as a parameter for comparison
between MLP and SVM with linear kernel models, previously
setting similar execution times for both classification
algorithms. The execution times depend on the number of
arithmetic operations as multiplications and sums involved in
the algorithms. In both models, the number of inputs and
outputs are fixed. Thus, for the MLP case, the execution time
can be varied according to the number of hidden layer neurons.
The number of neurons in the output layer is equal to 8,
corresponding to the classes that represent gestural vocabulary.
In the case of the SVM with linear kernel, 28 binary classifiers
should be implemented in order to work with multiclass
classification based on one-versus-one strategy [15]. An SVM
with polynomial kernel of degree equal to 2 and one-versus-
one multiclass strategy is implemented only for comparing
recognition rate results.

x

y

Gesture 1

x

y

Gesture 2

x

y

Gesture 3

x

y

Gesture 4

x

y

Gesture 5

x

y

Gesture 6

z

x

Gesture 7

z

x

Gesture 8

+Z

+Y

-X+X

-Z

-Y

capture
button

K-fold cross-validation
Leave-one-out

Best model

Classification results
 User independent
precision
 User dependent
precision

Database
(100%)

Training
+

Validation
(80%)

Evaluation
(20%)

1

1
2

3 4

3

database
partition

Parameter
adjustment

validated
models

 evaluate
of the best
model

Analysis
of results

1538

The resource usage for the implementation of an SVM with
linear kernel is considered as a design reference, which
depends directly on the number of inputs and outputs of the
system. Accordingly, the MLP architecture is obtained
equaling the resource usage of the SVM with linear kernel,
adjusting the number of neurons in the hidden layer.

IV. DESIGN, IMPLEMENTATION AND TEST OF THE
CLASSIFICATION SYSTEM

To carry out this work, software engineering practices were
used since it involves the creation of software as a fundamental
part of the system. Analysis, definition and review of
requirements were performed. The validated requirements are
used later in order to verify the correct system operation. The
analysis stage included the extraction of information from the
database in order to learn details of the problem. During the
design, architecture and interfaces of the system were defined.
In addition, a plan for integration tests of the different modules
that compose the classifier was established. In the
implementation phase, the different software modules were
coded and tested unitarily. Finally, the tests of integration and
system that were planned in the previous phases are performed.
The adoption of the above described methodology allowed
decreasing the injection of errors into the software, reducing
rework and obtaining a system with a certain degree of quality.

Firstly, the type of hardware platform in order to implement
the system was defined. The microcontroller-based platforms
were selected, due to a combination of features that are
presented as advantages over other platforms for this particular
application. Some features are low-cost, low energy
consumption, high operating frequency, reuse and portability
of code, peripherals such as I2C, SPI, UART, USB,
incorporating hardware modules for digital signal processing
and floating-point arithmetic. In addition, this platform
provides different ways in order to update the firmware.

A. Design
Different configurations for the classifier were analyzed.

The best results were obtained by the system whose
architecture is shown in Fig. 3.

Fig. 3. Blocks diagram of the system of hand gesture recognition.

The system of hand gesture recognition has as inputs the
acceleration signals and the capture button. The acquisition of
the acceleration vectors for a given gesture starts when the
capture button on the remote control is pressed and ends when
the button is released. In this way, the samples of the 3 axes
that make a gesture are obtained. The system has a single
output corresponding to the recognized gesture from the
captured samples, which will be converted into a control
command for digital TV systems.

Before applying the classification algorithms of MLP and
SVM, the input data must be preprocessed. The data provided
by the accelerometer are processed by a finite impulse response
(FIR) low-pass digital filter of linear phase, optimal and

equiripple. This filter is used to attenuate any high frequency
component as the associated with hand vibrations and noise.
The filter was designed using the Parks-McClellan algorithm,
in order to have a cutoff frequency of 7 Hz and -40 dB
attenuation in the rejection band. The obtained filter length is
equal to 9.

The stage of re-sampling and linear interpolation is
responsible for normalizing the input of ANNs models. The
gestures are variable in duration. They are composed of a
variable number of acceleration samples. Thus, the stage of re-
sampling and linear interpolation obtains a fixed number of
acceleration samples in the 3 axes. The samples of fixed
number are the inputs for MLP and SVM models. During the
validation of ANNs models, the optimal number of inputs was
obtained, it being equal to 10 inputs per axis.

The models of MLP and SVM with linear kernel perform
pattern recognition over preprocessed input data. In the
proposed configurations for MLP and SVM, time is implicitly
represented since the temporal structure of the input signal is
embedded in the spatial structure of the ANNs [16].

B. Implementation
The filtering, preprocessing, MLP and SVM with linear

kernel algorithms were implemented in C language and
numerical formats of floating-point and fixed-point. The Q5.10
numeric format is a fixed-point representation that uses integer
numbers for representing real numbers of finite precision. This
representation uses fewer hardware resources that the floating-
point one in devices without floating-point unit (FPU) for
performing arithmetic operations. The floating-point format
provides more precise computations and a greater dynamic
range. The algorithms were implemented as software modules
in C language. An independent and portable application was
developed and implemented in different test hardware
platforms. In the future, the functionality of the hand gesture
recognition will be implemented as a task within the context of
a real-time operating system (RTOS).

A gesture is represented by three vectors x, y, z, each one of
length N, containing the samples of the amplitude variations of
acceleration versus time in three dimensional space. The raw
data of input are limited and normalized in order to avoid
possible overflows in arithmetic operations. The low-pass
digital filter is continuously applied to the input data. For
example, for the x-axis, the FIR filter of length L=9 with input
x and output xf is described by the difference equation

where bk is the set of filter coefficients. Equation (1) is used in
order to implement the filter algorithm.

The gestures are variable in duration depending on the user
hand movement speed. When the capture button is pressed, the
input samples for each axis are stored in buffers until the
button is released. Before applying the algorithm for re-
sampling and linear interpolation, the duration of the gestures
is validated. To convert from the original sampling frequency
Fs=1/Ts to the desired sampling frequency Fr=1/Tr, the level of
the input signal is obtained at the time instants t=m*Tr, where
m is the sample index of fixed number with values 0-9 for each
axis. For the x-axis, the sampling frequency conversion and
linear interpolation formula is

Low pass
filter

x
y
z MLP / SVM

Resamplig and
linear interpolation

xf
yf

zf

xr
yr
zr

Gesture 1
Gesture 2
Gesture 3
Gesture 4
Gesture 5
Gesture 6
Gesture 7
Gesture 8

Output Pattern recognition Time processing Time warping

number of
samples is variable

number of
samples is fixed

Sensor

Capture
button

3-axis digital
accelerometer

1539

where M is the fixed number of samples of re-sampling output,
D=(N-1)/(M-1) is the decimation factor, and nm is the sample
index of xf which is located at or just above the value of D*m.
The algorithm of re-sampling and linear interpolation involves
comparisons and multiplications whose number depends on the
duration of each gesture. Thus, the execution time of this
algorithm depends on the number of samples of each gesture.

Fig.4 shows how the low-pass filter acts on x-axis raw
acceleration samples, and how the output samples of filter are
processed by the re-sampling and linear interpolation algorithm
in order to maintain the fixed number of samples.

Fig. 4. Original, filtered and resampled acceleration signals for x-axis.

Re-sampled vectors xr, yr, zr, of length M=10 correspond to
30 inputs e of the classification algorithms of MLP and SVM
with linear kernel.

MLPs are feedforward ANNs. Typically, the network
consists of a set of sensory units that constitute the input layer,
one or more hidden layers of computation nodes, and the
output layer of computation nodes. The MLP is trained by
backpropagation algorithm. The forces of inter-neuron
connections, known as synaptic weights, are used in order to
store the acquired knowledge. The output of the jth neuron of
the hidden layer is given by

where ek represents the kth input signal, K is the number of
neurons of the input layer, wjk corresponds to the synaptic
weight for connecting the kth neuron of the input layer with the
jth neuron of the hidden layer, and is the activation
function. For k=0, the input corresponds to the bias value,
which is a fixed input in e0=-1 and weight wj0=uj. The output
of the ith neuron of the output layer is given by

where J is the number of neurons of the hidden layer, Wij
corresponds to the synaptic weight connecting the jth neuron of
the hidden layer with the ith neuron of the output layer, and

 is the activation function. For j=0, the input corresponds to
the bias value, which is a fixed input in V0=-1 and weight
Wi0=ui. In both cases, the activation function of neurons used
in this work is the sigmoid function via an approximation with
linear segments [17]. Using (3) and (4), the MLP classification
algorithm may be implemented.

The SVM is another category of feedforward ANNs also
can be used for pattern classification. The SVM with linear

kernel is implemented using the optimal hyperplane equation
representing a linear decision surface in the multidimensional
input space defined by

where e is the input vector, w0 is a weight vector and b0 is the
bias value. The training aim is to find the parameter vector w0
and the bias value b0 for defining the optimal hyperplane. Since
an SVM operates as a binary classifier, a one-versus-one
multiclass strategy is used in order to solve the problem of
classification of C=8 classes. Thus, [C*(C-1)]/2=28 binary
classifiers are constructed corresponding to all possible
combinations of pairs of classes. The output class is obtained
by a voting scheme. Using (5), the 28 binary classifiers of the
SVM with linear kernel can be implemented.

The ANNs that are implemented in this work were trained
through a supervised learning process, using the libraries
provided by R: nnet [18] and e1071 [19]. To achieve
convergence of SVM and MLP models, regularization
parameters were modified during training and validation. Fitted
values for the training data, maximum number of iterations,
initial random weights, etc. were adjusted in the MLP. The
training was conducted in order to avoid local minimums and
overtraining. MLP models have been constructed to have a
correct generalization capability. In SVM with linear kernel
case, the regularization parameter is cost. The cost was varied
in order to obtain optimal performance of the model.
According to the design criteria of Section III, the resulting
MLP has architecture of 30 neurons in the input layer, 20
neurons in the hidden layer, and 8 neurons in the output layer
with a total of 788 synaptic weights. Each of the 28 trained
SVMs has 30 input parameters and 1 value bias, for a total of
840 input parameters and 28 values of bias.

In addition to the C language implementation, the
algorithms were coded in a software application for the
Android operating system, using the paradigm of object-
oriented programming. The software application runs on a
smartphone in order to perform real testing of the classifier
algorithms. The software application uses 3-axis accelerometer
of the smartphone and runs classification algorithms when the
gesture is captured. The application also allowed creating a
database for training the MLP and SVM models.

C. Test
During each stage of the project life cycle, test plans were

defined in order to guide the corresponding validation stage.
Test cases were created in each of these plans for the unit,
integration and system levels.

The unit tests were performed during the codification
process of each software module. The I2C driver for
configuration and data capture from the accelerometer was
tested. The low-pass filter was tested with a function generator
and oscilloscope, verifying the cutoff frequency, gain in the
pass-band and attenuation in the rejection band. The module of
re-sampling and linear interpolation was tested by introducing
samples of variable number of known waveforms in order to
verify a proper interpolation and validated number of output
samples. The MLP and the SVM with linear kernel modules
were tested with database data in order to verify the correct
classified output in both numeric formats.

0 10 20 30 40 50 60 70

sample number in time

o
o

*

original
filtered
resampled

1540

The integration tests were performed between pairs of
adjacent modules, in order to verify that the interfaces between
modules operate properly. The data types and formats were
checked in order to ensure correct integration of the modules.

The system tests were performed according to the defined
requirements. The performance requirements tests are
discussed in detail in Section V. As with any digital
implementation, the error due to the finite word length in the
digital representation is present. This error depends on the used
numeric format. The ANNs models were coded in C and
implemented in numerical fixed-point and floating-point
formats. The classification results of these implementations
were contrasted with the classification results of the models in
R (the IEEE-754 double precision floating-point numeric
format is used). The classification results were exactly the
same. As a system test of a similar final implementation, the
algorithms were tested on an Android-powered smartphone.

V. EXPERIMENTAL RESULTS

After carrying out the training and validation of the MLP
and SVM models, the best trained model of each type is
selected in order to test their performance with evaluation data.

A. Recognition Rate
Confusion matrices are used for showing the recognition

performance of the models. Columns represent the estimated or
predicted output. Rows represent the real output. Main
diagonal shows the number of classes correctly classified. The
other cells display the classification errors. Table I shows the
normalized confusion matrix of the MLP for the user-
independent case, with an average recognition rate of 98.65%.

TABLE I. NORMALIZED MLP CONFUSION MATRIX FOR USER-
INDEPENDENT CASE.

Table II shows the normalized confusion matrix of the
SVM with linear kernel for the user-independent case, with an
average recognition rate of 97.31%.

TABLE II. NORMALIZED SVM WITH LINEAR KERNEL CONFUSION
MATRIX FOR USER-INDEPENDENT CASE.

The average recognition rate achieved by the SVM with

polynomial kernel of degree 2 was 99.21%.

In addition, tests varying the number of neurons in the
hidden layer of MLP were performed, obtaining an average
recognition rate of 96.12% with 10 neurons, with a decrease of
50% on the use of hardware resources.

In the user-dependent case, the variability is bounded to a
particular user. An average recognition rate of 99.21% was
obtained by MLP model, 99.21% by SVM with linear kernel,
and 99.43% by SVM with polynomial kernel.

Table III shows a comparative table with others research
works which used different pattern recognition techniques.

TABLE III. PRECISIONS OF OTHER WORKS.

B. Execution Times of Algorithms
Table IV shows the execution times of the algorithms

implemented in C language on different platforms with
microcontroller-based hardware and numeric formats, for the
gestures with minimum and maximum duration found in the
database, indicated by the number of samples. Both MLP and
linear SVM with kernel models exhibit similar execution times.

TABLE IV. EXECUTION TIMES OF THE ALGORITHMS.

As can be appreciated, a C language implementation could
be carried out smoothly for a microcontroller in real time. The
IEEE-754 floating-point format allows a greater dynamic range
and a greater precision in the values of the parameters of the
algorithms. This format increases processing time on the
platforms without FPU. The Q5.10 fixed-point format allows a
faster execution with less precision in the parameters of the
algorithms due to truncation. The hardware platforms more
attractive for implementation are the alternatives of 32 bits
[22], [23], [24], since the system must also perform additional
tasks associated with the functionality of a modern remote
control within the context of an RTOS. The use of an FPU
accelerates the execution of the algorithms using floating-point
format. To compare results with other techniques of hand
gesture recognition, in [11] an execution time of 300 msec on a
16-bit microcontroller was obtained. In [20], an FPGA-based

0.982 0 0 0.009 0 0.009 0 0

0 0.973 0 0 0 0.009 0.009 0.009

0 0 0.982 0 0 0.009 0.009 0

0 0 0.009 0.991 0 0 0 0

0 0 0 0.009 0.991 0 0 0

0.009 0 0 0.009 0.009 0.973 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

estimated
MLP

0.982 0 0 0.009 0 0.009 0 0

0.009 0.973 0 0 0 0 0.018 0

0 0 0.991 0 0 0 0.009 0

0 0 0.018 0.973 0 0 0 0.009

0 0 0.009 0 0.991 0 0 0

0 0.009 0.009 0.027 0.018 0.938 0 0

0 0.027 0.009 0 0 0 0.964 0

0 0.027 0 0 0 0 0 0.973

estimated
SVM

User-dependent User-independent
DTW with AP and CS [5] 99.79 96.00 18

FDSVM [6] 95.21 89.29 12
DTW [11] 93.50 75.40 8

DTW in 3-axes [20] 99.20 96.40 8
PCA and decision tree [21] - 97.35 10

MLP proposed 99.21 98.65 8
SVM with linear kernel

proposed
99.21 97.31 8

Pattern recognition technique
Precision [%] Number of

gestures

Gesture of
17 samples

Gesture of
315 samples

Gesture of
17 samples

Gesture of
315 samples

Gesture of
17 samples

Gesture of
315 samples

IEEE-754
32-bits float

1.274 8.893 16.307 16.638 16.484 16.430

Q5.10 0.887 8.498 3.117 3.068 3.027 3.021
IEEE-754

32-bits float
0.509 3.557 6.523 6.655 6.594 6.573

Q5.10 0.355 3.399 1.247 1.227 1.211 1.208
IEEE-754

32-bits float
0.153 1.084 2.597 2.646 2.578 2.582

Q5.10 0.105 1.021 0.685 0.685 0.704 0.704
IEEE-754

32-bits float
0.089 0.633 1.546 1.576 1.567 1.569

Q5.10 0.061 0.596 0.450 0.448 0.477 0.477
IEEE-754

32-bits float
0.032 0.174 0.440 0.450 0.440 0.440

Q5.10 0.020 0.155 0.108 0.108 0.100 0.100

0.122

SVM with linear kernel
[msec] Clock

[MHz]

PIC24FJ256GB110
(16 bits core)

32

dsPIC33FJ64GP204
(16 bits core)

80

Microcontroller
Numeric
format

Re-sampling and linear
interpolation [msec]

MLP
[msec]

PIC32MX250F128D
(32 bits core)

48

PIC32MX795F512L
(32 bits core)

80

168

STM32F407VGT6
with FPU disabled

(32 bits core)
168

STM32F407VGT6
with FPU enabled

(32 bits core)

IEEE-754
32-bits float

0.006 0.028 0.142 0.146 0.122

1541

development kit is used for implementing an acceleration unit
with an algorithm execution time of 58.3 msec.

The algorithms were implemented and tested in a
smartphone. A Samsung Galaxy S3 Mini smartphone was
used, running the Android operating system (platform 4.03 and
API level 15). Table V shows the algorithms execution times.

TABLE V. MINIMAL EXECUTION TIMES OF THE ALGORITHMS IN
SMARTPHONE RUNNING ANDROID.

The precision obtained in the smartphone test for user-
dependent case was 100%.

VI. CONCLUSIONS
The objective of designing and obtaining a system of

accelerometer-based hand gesture recognition, with good
recognition rate and reduced execution times was reached. The
proposed classifier involves digital signal processing and
pattern recognition techniques, whose algorithms will be
embedded within the hardware. Tests conducted on different
hardware platforms indicate that it is possible to implement the
system with a low-cost 32-bit microcontroller. The
PIC32MX250 microcontroller family is the selected platform.
This platform is chosen because it executes quickly the
algorithms and has enough memories of data and program.
Also, this platform is the lower cost between the tested
platforms. Others important factors for the choice of this
platform are the local market availability and free-use
development tools. In addition, both ANNs models were tested
in a smartphone with good results.

Two types of ANNs were compared for finding an optimal
solution between precision and hardware resources use, with
suitable results in both MLP and SVM with linear kernel
models. To similar processor uses, the MLP showed a slightly
higher performance than the SVM with linear kernel. The MLP
resource usage is controlled varying the number of hidden
layer neurons. The MLP model was found to be the best and
will finally be embedded into the remote control. The design
and implementation of artificial intelligence models for
embedded systems were presented in detail. Different
microcontroller-based hardware platforms were used in order
to perform and document the measurements of execution times
of classification algorithms.

We have demonstrated that the implementation of a system
of hand gesture recognition based on MEMS-accelerometers
and low-cost resource-constrained devices is possible. We have
achieved excellent pattern recognition rates, and execution
times that allow a real-time operation. We have verified the
appropriate use of ANNs-based models for the development of
a more natural and friendly interface in order to improve the
user experience in the context of the digital TV of Argentina.

VII. FUTURE WORK
A database will be collected with the final hardware for

training the MLP model. This model will be embedded into the
remote control. In addition, the number of gestural vocabulary
classes will be increased. A Bayesian filter will be incorporated

to reinforce the correct MLP output. Finally, the automatic
delineation of the beginning and ending of gestures will be
included. This is possible because the system could operate in
continuous mode of hand gesture recognition due to the
reduced execution times obtained.

REFERENCES
[1] S. Mitra and T. Acharya, �Gesture recognition: a survey,� in IEEE

Trans. on Systems, Man and Cybern., vol. 37, pp. 311-324, May. 2007.
[2] S. Zhou, Q. Shan, F. Fei, J. Li, C. Kwong, P. Wu, B. Meng, C. Chan, J.

Liou, �Gesture recognition for interactive controllers using MEMS
motion sensors,� in 2009 4th IEEE International Conference on
Nano/Micro Engineered and Molecular Systems (NEMS 2009), vol. 2,
pp. 935-940, Shenzhen, China, Jan. 2009.

[3] S.Cho, E. Choi, W. Bang, J. Yang, J. Sohn, D. Kim, Y. Lee, S. Kim,
�Two stage recognition of raw acceleration signals for 3D gesture
understanding cell phones,� in 10th International Workshop on Frontiers
in Handwriting Recognition, 2006.

[4] B. Lee Cosío, �ANN for gesture recognition,� M.S. thesis, School of
Eng., Panamerican Univ., Mexico, 2012.

[5] A. Akl and S. Valaee, "Accelerometer-based gesture recognition via
dynamic-time warping, affinity propagation, & compressive sensing," in
IEEE Int. Conference on Acoustics Speech and Signal Processing
(ICASSP), vol. 4, pp. 2270-2273, Dallas, Texas, USA, Mar. 2010.

[6] J. Wu, G. Pan, D. Zhang, G. Qi, S. Li, �Gesture recognition with a 3-D
accelerometer,� in 2009 Proceedings of the 6th International Conference
on Ubiquitous Intelligence and Computing (UIC 2009), vol. 1, pp. 25-
38, Brisbane, Australia, Jul. 2009.

[7] G. Niezen and G. Hancke, �Evaluating and optimising accelerometer-
based gesture recognition techniques for mobile devices,� in AFRICON
2009, vol. 1, pp. 424-429, Nairobi, Kenya, Sep. 2009.

[8] S. Haykin, �Multilayer perceptrons,� in Neural Networks: A
Comprehensive Foundation, 2th ed. New Jersey: Prentice Hall, 1999, ch.
4, sec. 1, pp. 178-180.

[9] V. Vapnik, �An overview of statistical learning theory,� in IEEE Trans.
on Neural Networks, vol. 10, no. 5, pp. 988-999, Sep. 1999.

[10] S. Haykin, �Introduction,� in Neural Networks: A Comprehensive
Foundation, 2th ed. New Jersey: Prentice Hall, 1999, ch. 1, sec. 1, pp.
23-27.

[11] L. Jiayang, W. Zhen, Z. Lin, �uWave: accelerometer-based personalized
gesture recognition and its applications,� in 2009 IEEE Int. Conf. on
Pervasive Computing and Communications (PerCom 2009), vol. 1, pp.
113-121, Galveston, Texas, Mar. 2009.

[12] uWave project database [online]. Available:
http://www.owlnet.rice.edu/~zw3/projects_uWave.html

[13] The R project for statistical computing: http://www.r-project.org
[14] RStudio IDE: http://www.rstudio.com
[15] S. Haykin, �Support Vector Machines,� in Neural Networks: A

Comprehensive Foundation, 2th ed. New Jersey: Prentice Hall, 1999, ch.
6, sec. 4, pp. 351-356.

[16] S. Haykin, �Temporal Processing using feedforward networks,� in
Neural Networks: A Comprehensive Foundation, 2th ed. New Jersey:
Prentice Hall, 1999, ch. 13, sec. 1, pp. 657-658.

[17] M.T. Tommiska, �Efficient digital implementation of the sigmoid
function for reprogrammable logic,� in IEE Proceedings Computers and
Digital Techniques, vol. 150, no. 6, pp. 403-411, Nov. 2003.

[18] Package nnet [Online]. Available: http://cran.r-project.org
[19] Package e1071 [Online]. Available: http://cran.r-project.org
[20] S. Hussain and A. Rashid, �User independent hand gesture recognition

by accelerated DTW,� in Int. Conf. on Informatics, Electronics & Vision
(ICIEV 2012), vol. 2, pp. 1033-1037, Dhaka, Bangladesh, May. 2012.

[21] X. Dang, W. Wang, K. Wang, M. Dong, L. Yin, �A user-independent
sensor gesture interface for embedded device,� in 2011 IEEE SENSORS
Proceedings, vol. 2, pp. 1465-1468, Limerick, Ireland, Oct. 2011.

[22] PIC32MX1xx/2xx datasheet [Online], Microchip, 2012. Available:
http://www.microchip.com

[23] PIC32MX7xx datasheet [online], Microchip, 2010.
[24] STM32F407xx datasheet [online], STMicroelectronics, 2012.

Gesture of
17 samples

Gesture of
315 samples

Gesture of 17
samples

Gesture of
315 samples

Gesture of
17 samples

Gesture of
315 samples

32-bits float 0.03 0.09 0.244 0.244 0.244 0.244

Numeric
format

Re-sampling and linear
interpolation [msec]

MLP
[msec]

SVM with linear kernel
[msec]

1542

