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Abstract—Automatic signal identification (ASI) has various mil-
litary and commercial applications, such as spectrum surveillance
and cognitive radio. In this paper, a novel ASI algorithm is
proposed for the identification of GSM and LTE signals, which
is based on the pilot-induced second-order cyclostationarity.
The proposed algorithm provides a very good performance at
low signal-to-noise ratios and short observation times, with no
need for channel estimation, and timing and frequency synchro-
nization. Simulations and off-the-air signals acquired with the
ThinkRF WSA4000 receiver are used to confirm the findings.

Index Terms—Global system of mobile (GSM), long term
evolution (LTE), cyclostationarity.

I. INTRODUCTION

Automatic signal identification (ASI) has been initially in-
vestigated for military communications, e.g., for electronic
warfare and spectrum surveillance [1]. More recently, ASI
has found applications to commercial communications, in the
context of software defined and cognitive radios [2], [3].

ASI tackles the problem of identifying the signal type
without relying on pre-processing, such as channel estimation,
and timing and frequency synchronization [1], [3]–[14]. While
most of the ASI work in the literature has been done for
generic signals, very few papers investigate the identifica-
tion of standard signals; however, the latter is crucial for
spectrum surveillance and cognitive radio applications. ASI
techniques usually exploit signal features to identify the signal
type [1], [4]–[13], and the feature-based identification of
standard signals has been carried out as follows. In [4], the
authors use second-order cyclostationarity-based features to
classify different IEEE 802.11 standard signals. The pilot-
induced cyclostationarity of the IEEE 802.11a standard sig-
nals is studied in [5], with ASI application. Kurtosis-based
features are proposed in [6], [7] to identify OFDM-based stan-
dard signals. Furthermore, the cyclic prefix (CP)-, preamble-,
and reference-signal-induced second-order cyclostationarity of
LTE and WiMAX standard signals is exploited in [8]–[11] for
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their identification. While the previously mentioned feature-
based ASI techniques are developed for orthogonal frequency
division multiplexing (OFDM)-based signals, they are not
necessarily appropriate to other standard signals, such as GSM.
Therefore, to identify such standard cellular signals, we need
to develop ASI algorithms based on new features. In wireless
communications systems, pilot signals are used for channel
estimation, as well as frequency and timing synchronization.
As the pilot symbols are sent periodically, one can use this
periodicity to identify different wireless standard signals. In
this paper, we propose a low complexity algorithm to identify
the GSM and LTE standard signals, as being widely used in
Canada; off-the-air signals are used for verification.

The rest of the paper is organized as follows. Section II
presents the model for the GSM and LTE standard signals.
Section III introduces the proposed algorithm for the iden-
tification of these signals. In Section IV, results for off-the-
air signals acquired with the ThinkRF WSA4000 receiver are
shown, along with simulation results. The paper is concluded
in Section V.

II. SIGNAL MODEL

In this section, the signal model for the GSM and LTE
downlink (DL) is introduced. More specifically, we present
the pilot signals in these standards, as their periodicity will be
exploited for the identification feature.

A. GSM Signal Model

The GSM frame structure is shown in Fig. 1, including the
normal burst, which carries data, the control bursts, such as
frequency correction and synchronization, as well as the access
bursts [15]. In the normal burst, 26 bits in each time slot are
dedicated to training; these are repeated every time slot and
used for channel estimation. Since the duration of each time
slot is 577 µs, the repetition frequency of the pilot sequence is
1733 Hz. From Fig. 1, one can see that the other GSM bursts
have similar repetitive sequences, but with different lengths;
however, all repeat with the same frequency, i.e., 1733 Hz.
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Fig. 1. Time slot and format of bursts in the GSM systems [15].

Fig. 2. LTE FDD DL frame structure [17].

B. LTE DL Signal Model

The LTE frequency division duplex (FDD) DL frame structure
is shown in Fig. 2. Each LTE frame includes 20 time slots,
each with 6 or 7 OFDM symbols, depending if the short
or long CP is used [16]. In Canada, LTE with short CP
is commonly employed. From Fig. 2, one can see that the
samples which are periodically repeated correspond to the cell
specific reference signals (RSs), and primary and secondary
synchronization channels (PSCH and SSCH), where the RS
is repeated every time slot and PSCH and SSCH are repeated
every 10 time slots. The duration of each LTE time slot is 0.5
ms. Consequently, the repetition frequency for the RSs is 2
kHz, while for the PSCH and SSCH is 200 Hz.

III. PROPOSED SIGNAL IDENTIFICATION
ALGORITHM

In this section, the algorithm proposed for the identification
of GSM and LTE standard signals is presented. First, we
introduce the fundamental concept of signal cyclostationarity
in order to further discuss the identification feature, and then
present the feature-based algorithm and study its complexity.

A. Second-order Signal Cyclostationarity

A signal r(t) exhibits second-order cyclostationarity if its
first and second-order time-varying correlation functions are
periodic in time [18]. In this work, the following second-order
time-varying correlation function is considered

c(t, τ) = E [r(t)r∗(t+ τ)] , (1)

where ∗ denotes complex conjugation, E [.] is the statistical
expectation, and τ is the delay. If c(t, τ) is periodic in time
with the fundamental period M0, then it can be expressed by
a Fourier series as [18]

c(t, τ) =
∑
{α}

C(α, τ)ej2πtα. (2)

The Fourier coefficients defined as

C(α, τ) =
1

M0

∫ M0

0

c(t, τ)e−j2πtα dt, (3)

are referred to as the cyclic correlation function (CCF) at
cyclic frequency (CF) α and delay τ . The set of CFs is
given by {α} = { `

M0
, ` ∈ I , with I as the set of integers}.

Assuming Mr as the number of received samples, CCF at CF
α and delay τ is estimated from the received sequence, r(m),
as [19]

Ĉ(α, τ) =
1

Mr

Mr−1∑
m=0

r(m)r∗(m+
τ

Ts
)e−j2παmTs . (4)

where Ts is the sampling period and τ is multiple integer of
Ts.

Due to the periodicity of the pilot signals in GSM and
LTE standards, one can show that these induce second-order
cyclostationarity with CFs αi = `

Ti
, i =GSM, LTE, where Ti

is the time slot duration of the GSM and LTE standards. The
pilot-induced second-order cyclostationarity will be used as an
identification feature, as presented in the next sub-section.

B. Proposed Second-order Cyclostationarity-based Algorithm

We explore the CCF at CF α and zero delay C(α, 0) to
identify the GSM and LTE standard signals, as follows. In the
first step, Ĉ(α, 0) is estimated at CFs αi = 1

Ti
, i =GSM, LTE.

In the second step, the estimated CCF magnitude is compared
with a threshold, which is set up based on a constant false



alarm criterion. The probability of false alarm is defined as the
probability of deciding that the standard signal is present when
this is not (either an unknown signal or noise is present). An
analytical closed form expression of the false alarm probability
is obtained based on the distribution of the CCF magnitude
estimate for the unknown signal and noise; in this case, one
can simply infer that the CCF magnitude estimate has an
asymptotic Rayleigh distribution [19]. Hence, if the CCF for
a specific CF α and delay τ is used as a discriminating
feature, the probability of false alarm is calculated using the
complementary cumulative density function of the Rayleigh
distribution as

PF = exp(−Γ2

σ2
r

), (5)

where σ2
r is the variance of the received signal. A summary

of the proposed algorithm is provided as follows.

Proposed algorithm
Input: The received sequence r(m), m = 0, ...,Mr − 1.
- Estimate the CCF, Ci = Ĉ(αi, 0), using (4) at CFs αi =
1
Ti

, i =GSM, LTE.
- Estimate the variance of the received signal, σ2

r , and
calculate the threshold using (5).
if Ci > Γ then

- The received signal is identified as i, i =GSM, LTE.
else

- The type of the received signal is not i and it can be
either an intruder or noise.

end if

Computational complexity: We evaluate the computational
complexity of the proposed identification algorithm through
the number of floating point operations (flops) [20], where a
complex multiplication and addition require six and two flops,
respectively. Based on (4), one can easily see that the number
of complex multiplications and additions needed to calculate
the CCF equals 2Mr and Mr−1, respectively. By considering
that the thresholding does not require additional complexity,
it is straightforward that the number of flops needed by the
algorithm equals 14Mr − 2. It is worth noting that with an
average Intel Core i750, the identification process takes 68.5
ms for Mr = 50000; hence, the algorithm can be implemented
in practice.

IV. RESULTS

In this section, the results for simulated and off-the-air
signals are presented.

A. CCF for Simulated Signals

Here we present simulation results for the CCF magnitude
of the GSM and LTE signals. For each case, a signal burst
of 1000 time slots is generated and then transmitted through
a frequency-selective fading channel consisting of Lp = 4
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Fig. 3. CCF magnitude vs. CF for simulated GSM signals.
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Fig. 4. CCF magnitude vs. CF for simulated LTE signals.

statistically independent taps, each being a zero-mean complex
Gaussian random variable. The channel is characterized by
an exponential power delay profile, σ2(p) = Bhexp(−p/5),
where p = 0, ..., Lp−1 and Bh is chosen such that the average
power is normalized to unity and SNR is 20 dB. Fig. 3 presents
simulation results for the GSM signals, while Fig. 4 shows
results for the LTE signals. As expected, one can easily see
that the CCF obtained from the simulated GSM signal has
peaks at CFs equal to multiple integers of 1733 Hz, which
is the reciprocal of the GSM time slot duration. Furthermore,
also as expected, the estimated CCF for the simulated LTE
signal has peaks at CFs equal to multiple integers of 2 kHz,
which is the reciprocal of the LTE time slot duration.

B. CCF for Off-the-air Signals

In this section, results for the CCF magnitude estimated from
the signals received by a WSA4000 receiver is presented. The
location of measurements was the ThinkRF company, in the
north Kanata area of Ottawa, Canada. For each frequency
band, 106 samples were received. The bandwidth of the
signal received by the WSA4000 receiver was 125 MHz, and
the system had a decimation rate parameter to decrease the
bandwidth; as such, depending on the expected bandwidth
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Fig. 5. CCF magnitude vs. CF for a signal received by the WSA4000 system
within the frequency band of 869 MHz.

of the received signal, an appropriate decimation factor was
considered. Please note that the proposed algorithm does not
need to know the exact bandwidth of the received signal; as
long as the signal of interest is in the bandwidth of the received
signal, the proposed algorithm can identify it.

Fig. 5 presents the CCF magnitude results for the signal in
the 869 MHz band, where we expect the GSM signal from
the Rogers base station (BS) located at approximately 460
meter away from our receiver. The decimation factor for this
measurement was 64, corresponding to a 1.951 MHz receive
bandwidth. This bandwidth was enough to cover the GSM
bands supported by the corresponding BS1 . From Fig. 5, one
can see that the CCF estimated from the off-the-air GSM
signal has peaks at CFs equal to multiple integers of 1733
Hz, which agrees with the simulation results.

Fig. 6 presents the CCF magnitude results for the signal in
the 2115 MHz band, where we expect the LTE signal from the
Rogers BS located at approximately 460 meter away from the
receiver (the location of this BS is the same as in the previous
case). The decimation factor for this measurement was 16,
corresponding to a 7.81 MHz receive bandwidth, which covers
the LTE signal transmitted by the BS. From Fig. 6, one can
see that the CCF estimated from the off-the-air LTE signal
has peaks at CFs equal to multiple integers of 2 kHz, which
concurs with the simulation results.

C. Performance of the Proposed Algorithm

In this section, the performance of the proposed algorithm
for the identification of GSM and LTE signals is evaluated
by Monte Carlo simulation through averaging over 1000
iterations. The simulation parameters are the same as in sub-
section IV-A. The threshold is set up based on the constant
false alarm criterion, and in each iteration, data is generated
with a random timing offset taken from a uniform distribution
within the first time slot.

1Each GSM band is 200 kHz.
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Fig. 6. CCF magnitude vs. CF for a signal received by the WSA4000 system
within the frequency band of 2115 MHz.
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Fig. 7. Probability of correct identification for the GSM signals, P (λ =
ξ|ξ), ξ = GSM, versus SNR for different observation times, T .

Fig. 7 presents the performance of the proposed algorithm
for the identification of the GSM signals for different obser-
vation times, with PF = 10−2. From Fig. 7, one can see that
with SNR > 0 dB, the probability of correct identification,
P (λ = GSM|GSM), approaches one at an observation time
as low as 10 ms, while with 50 ms, this occurs at about
-5 dB SNR. Fig. 8 presents the performance of the proposed
algorithm for the detection of the LTE signals for different
observation times, with PF = 10−2. From Fig. 8, one can
notice that with SNR > -5 dB, the probability of correct
correct identification, P (λ = LTE|LTE), approaches one at
an observation time as low as 10 ms. In all cases, the results
obtained for the LTE signal is better than for the GSM
signal; however, one can obtain a good performance at short
observation times and with low SNR for both signal types.

Fig. 9 presents the performance of the proposed algorithm
for the identification of the GSM and LTE signals for different
PF values, with an observation time of T = 10 ms. From Fig.
9, one can see that for LTE signals with SNR > -5 dB, a very
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Fig. 8. Probability of correct identification for the LTE signals, P (λ =
ξ|ξ), ξ = LTE, versus SNR for different observation times, T .

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
(λ

=
ξ
|ξ
),

ξ
=

L
T
E
,
G
S
M

 

 

PF = 10−1

PF = 10−2

PF = 10−3

ξ =LTE

ξ =GSM

Fig. 9. Probability of correct identification for the GSM and LTE signals,
P (λ = ξ|ξ), ξ = GSM, LTE, versus SNR for different PF values. Solid
lines are used for the LTE signal and dashed lines are used for the GSM
signal.

good performance is achieved regardless of the PF value; at
lower SNRs, it is observed that P (λ = LTE|LTE) improves
as PF increases. For the GSM signal, P (λ = GSM|GSM)
approaches one for SNR > 0 dB regardless of the PF value; at
lower SNRs, the performance also enhances as PF increases.
In all cases, a better performance is attained for LTE signal
identification when compared with GSM.

V. CONCLUSION

In this paper, we proposed a very low complexity second-
order cyclostationarity based algorithm for the identification
of the GSM and LTE standard signals, which are commonly
used in Canada. The proposed algorithm attains a very good
performance at low SNRs and with short observation times.
Signals acquired by a ThinkRF WSA4000 receiver were used
to prove the concept.
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