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Abstract—The interpolated dynamic DFT (IpD2FT) is one of
the most accurate dynamic synchrophasor estimation methods.
But it suffers from infiltration from the second harmonic compo-
nent. In this paper, the estimation errors of the IpD2FT caused by
second harmonic interferences are firstly analyzed. Based on this,
an improved interpolated dynamic DFT (IIpD2FT) synchropha-
sor estimator that considers second harmonic interferences are
proposed. Multiple simulation tests show that, even under large
second harmonic interference conditions, the IIpD2FT is much
more accurate than the IpD2FT.

Index Terms—DFT, synchrophasor, second harmonic interfer-
ence, spectral leakage, window function.

I. INTRODUCTION

Dynamic synchrophasor estimation is very useful and sig-
nificant for power system monitoring and control. Tradi-
tionally, many researchers have paid attention to dynamic
synchrophasor estimation under different dynamic conditions,
such as power oscillations and frequency deviations, and a
series of achievements have been made [1]–[4]. However,
the second harmonic interferences, which may be significant
in distribution networks [5], will also cause large estimation
errors, especially when short length intervals are considered
[6], [7]. As a result, it is neccessary to study accurate syn-
chrophasor estimation methods especially for second harmonic
inference conditions.

The DFT can be used for synchrophasor estimation,
and can sufficiently suppress harmonic interferences un-
der synchronous sampling conditions. However, under non-
synchronous sampling conditions, large errors will occur not
only because of the spectral leakage but also because of the
second harmonic interferences. Many improved DFT-based
methods were proposed to reduce the error caused by spectral
leakage [5], [6], [8]–[12], but these methods share a problem
of no consideration of the second harmonic interferences.
For example, the interpolated dynamic DFT (IpD2FT) syn-
chrophasor estimator is a very useful and accurate tool to
estimate dynamic synchrophasors [6]. However, when the
second harmonic component is significant in a voltage/current
signal, large errors will arise especially under large frequency
deviation conditions.

A series of methods that consider second harmonic inter-
ferences were proposed to estimate dynamic synchrophasors,

such as the Taylor-Fourier transform (TFT), the improved
Taylor weighted least square (ITWLS) method, and second
harmonic filter Based method (SHFM) [7], [13], [14]. The
TFT considers dynamic second harmonic components in the
signal model, which can produce a notch-filter effect around
the second harmonic frequency of the designed filter [13].
However, if under large frequency deviation conditions, the
second harmonic interferences still cannot be clearly filtered.
The ITWLS and SHFM can remove the second harmonic
component in the signal model through two second harmonic
measurement methods [7]. But these harmonic measurement
methods suffer from the spectral leakage from the fundamental
component.

Although the above methods can be used in various cases,
this paper will focus on dynamic synchrophasor estimation
under large second harmonic interference conditions. In this
paper, an improved interpolated dynamic DFT (IIpD2FT) syn-
chrophasor estimator for dynamic synchrophasor estimation is
proposed. The estimation errors of the IpD2FT caused by the
second harmonic component are firstly analyzed. Based on
this, an improved synchrophasor estimation method that can
sufficiently suppress second harmonic interferences in various
cases is proposed.

II. ACCURACY ANALYSIS AND ENHANCEMENT OF THE
IPD2FT

A. Brief Introduction of the IpD2FT

In general, a signal with the second harmonic component
can be defined as

s(t) =
√

2[a1(t)cos(2πft+ ϕ1(t)) + a2cos(2π · 2f · t+ ϕ2)]

=
√

2Re{X(t)ej2πf0t}+
√

2a2cos(2π · 2f · t+ ϕ2)
(1)

where a1(t) and ϕ1(t) are the magnitude (RMS value) and
phase modulations of the fundamental component; a2 and ϕ2

are the magnitude and phase of the second harmonic, which
are assumed as constant values; f and f0 are the actual and
nominal fundamental frequencies (50/60 Hz) respectively;

X(t) = a1(t)ej(ϕ1(t)+2π∆ft)

= p(t)ej2π∆ft (2)



is the synchrophasor, in which ∆f = f − f0 is the possible
frequency deviation between f and f0, and p(t) is the so called
semi-synchrophasor.

Assuming the signal is sampled at a sampling rate fs =
f0N0, and Nw samples are obtained in an observation window
around time t0. Note that Nw should be an odd number
to make t0 lie in the center of the observation window.
c = bNw/N0c is the nominal cycle number (integer) of the
observation window. The Taylor series expansion is used to
express p(t) approximately, which is given by

pK(t) = p0 +
n

fs
p1 + · · ·+ nK

K!fKs
pK

−Nw − 1

2
≤ n ≤ Nw − 1

2

(3)

where pk is the kth order derivative of p(t) at time t0. Then,
the approximate signal without consideration of the second
harmonic component can be expressed as

sK(t) =

√
2

2

K∑
k=0

[
nk

k!fks
pke

j2πft +
nk

k!fks
p∗ke

−j2πft] (4)

where ∗ denotes the conjugate operator. Applying the win-
dowed DFT to (4) at a frequency fb, it follows that

SK(fb) =

√
2

Nw

(Nw−1)/2∑
n=−(Nw−1)/2

sK(n)w(n)e−j2πfbn/fs

=

K∑
k=0

[pkWk(fb − f) + p∗kWk(fb + f)]

(5)

where

Wk(fb) =
1

Nw

(Nw−1)/2∑
n=−(Nw−1)/2

1

k!
(
n

fs
)kw(n)e−j2πfbn/fs (6)

is a function corresponding to the adopted window w(·). By
truncating the Taylor series to second order and applying the
DFT to (4) at three different frequencies fb, with b = 1, 2, 3,
(5) can be rearranged as

S ≈WR(fb)P + WI(fb)P
∗ (7)

where S is a column vector consisting of the DFT of the real
signal at the three frequencies; P and P ∗ are two column
vectors consisting of pk and p∗k, with k = 0, 1, 2; WR(fb)
and WI(fb) are two matrixes consisting of Wk(fb − f) and
Wk(fb + f), with k = 0, 1, 2 and b = 1, 2, 3. Then p̂0 and p̂1

can be obtained by solving (7), and the synchrophasor can also
be estimated according to (2). Based on this, the fundamental
frequency can also be estimated, which is given by

f̂ = f +
fs
2π

Im{p̂1p̂
∗
0}

|p̂0|2
(8)

where Im{·} denotes the operation returning the imaginary
part of the argument. Because the actual fundamental fre-
quency is unknown, three iterations are needed to obtain high
accuracy [6]. In the IpD2FT, the three frequencies used in

Fig. 1. The four components of the windowed DFT of s(t). c = 3, f0 = 50
Hz, f = 55Hz, N0 = 40, and the Hanning window are selected for the
illustration.

the DFT are the bin frequencies, with fb = (c−1)fs
Nw

, cfsNw
, and

(c+1)fs
Nw

.
Theoretically, not only the bin frequencies but also other

frequencies can be used in the DFT, and the second harmonic
interferences at different frequencies are not the same. In this
way, we can find and use frequencies with the smallest second
harmonic interferences in the DFT. In the next subsection,
these issues are discussed.

B. Accuracy Analysis and Enhancement of the IpD2FT

Consider that the signal s(t) in (1) is stationary. By applying
the DFT to s(t) with a cosine-class window (see Appendix),
we can obtain

S =

√
2

2
a1e

jϕ1 ·D(fb − f) ·R(fb − f)

+

√
2

2
a1e

−jϕ1 ·D(fb + f) ·R(fb + f)

+

√
2

2
a2e

jϕ2 ·D(fb − 2f) ·R(fb − 2f)

+

√
2

2
a2e

−jϕ2 ·D(fb + 2f) ·R(fb + 2f)

(9)

where

D(f) =
sinπNwffs

Nwsinπffs

(10)

is the Dirichlet kernel; and

R(f) =

M−1∑
m=0

xm(−1)mcosmπNw
[1− sin2(mπNw )/sin2(πffs )]

(11)

is a function corresponding to the window function. According
to (9), S can be divided into four components, which are the
positive and negative fundamental components, positive and
negative second harmonic components, respectively (see Fig.
1). Because the positive and negative fundamental components
are considered in the signal model of the IpD2FT, its esti-
mation error is mainly caused by the positive and negative



Fig. 2. The maximum interferences caused by the second harmonic
component. (c−1)fs

Nw
, cfs
Nw

, and (c+1)fs
Nw

(c = 3) are the three bin frequencies

used in the IpD2FT; 2f − (c+1)fs
Nw

, 2f − cfs
Nw

, and 2f − (c−1)fs
Nw

are
the frequencies with the smallest second harmonic interferences. f0 = 50
Hz, f = 55Hz, N0 = 40, and the Hanning window are selected for the
illustration.

second harmonic components. Define the second harmonic
interference as

S2 =

√
2

2
a2e

jϕ2 ·D(fb − 2f) ·R(fb − 2f)

+

√
2

2
a2e

−jϕ2 ·D(fb + 2f) ·R(fb + 2f)

(12)

Then, the maximum interference caused by the second
harmonic can be given by

S2max =

√
2

2
a2|D(fb − 2f)| · |R(fb − 2f)|

+

√
2

2
a2|D(fb + 2f)| · |R(fb + 2f)|

(13)

Observe that when 0 < fb < 100Hz, D(fb+2f) ≈ 0. Then
(13) can be approximately expressed as

S2max ≈
√

2

2
a2|D(fb − 2f)| · |R(fb − 2f)|

0 < fb < 100Hz

(14)

Note that, in general, if

fb =



2f − (c− 1)fs
Nw

2f − cfs
Nw

2f − (c+ 1)fs
Nw

(15)

are used in the DFT with a c-cycle M -term cosine-class
window (M ≤ 2), then

|D(fb − 2f)| = 0 (16)

S2max ≈ 0 (17)

That is to say, when these frequencies are used in the DFT,
the second harmonic interferences are the smallest. However,

Fig. 3. The implementation steps of the IIpD2FT.

not the frequencies in (15) but the bin frequencies are used in
the IpD2FT, which makes it suffer from large second harmonic
interferences (see Fig. 2).

Based on this, the IIpD2FT can be proposed by using
these three frequencies. It should be noted that, in a practical
application, the fundamental frequency f is unknown. Three
iterations are also needed to obtain these frequencies. Accord-
ingly, the implementation steps of the IIpD2FT are given in
Fig. 3.

III. SIMULATION TESTS

In order to evaluate the performances of the IIpD2FT and
IpD2FT, several simulation tests under different test types are
taken. The tests are carried out over 50 fundamental cycles
with 40 samples per cycle for a 50-Hz system. Tw = 3/f0

are selected in all simulation tests, and the Hanning window
is used in both estimators. The total vector error (TVE),
frequency error (FE) (an absolute value), and response time
defined in the IEEE standard C37.118.1-2011 [15] (called
the standard in the following) are the coefficients used to
evaluate the performances of both estimators. All the reference
values are set according to the M class requirements of the
standard and its amendment standard C37.118.1a-2014 [16],
with reporting rates RR≥20 fps.

A. Frequency Deviation Tests

The test signal is shown in (18), f is the fundamental
frequency, which is set at 45, 47, 49, 51, 53, and 55 Hz,
respectively; and a is the amplitude of the second harmonic
component, which is set at 0, 0.05, and 0.1, respectively.

s(t) = cos(2πft) + acos(2π · 2f · t) (18)

The maximum TVEs and |FE|s obtained with the IIpD2FT
and the IpD2FT are given in TABLE I. From TABLE I, we
can see that the IIpD2FT can sufficiently suppress the second
harmonic interferences, even under large frequency deviation



TABLE I
MAXIMUM TVES AND |FE|S OBTAINED WITH THE IIPD2FT AND IPD2FT. THE

REFERENCE VALUE OF THE MAXIMUM TVE AND |FE| IN THE STANDARD ARE 1% AND 25 mHz, RESPECTIVELY. THE GRAY CELLS REPRESENT THE
RESULTS OUT OF THE RANGE OF THE REQUIREMENTS OF THE STANDARD.

Test type
TVE (%) |FE| (mHz)

IIpD2FT IpD2FT IIpD2FT IpD2FT
a = 0 a = 0.05 a = 0.1 a = 0 a = 0.05 a = 0.1 a = 0 a = 0.05 a = 0.1 a = 0 a = 0.05 a = 0.1

f = 45Hz 0.00 0.02 0.04 0.00 1.20 2.41 0.00 0.97 4.99 0.00 52.79 108.59

f = 47Hz 0.00 0.02 0.04 0.00 0.54 1.08 0.00 1.93 3.65 0.00 38.01 76.70

f = 49Hz 0.00 0.02 0.03 0.00 0.15 0.30 0.00 1.67 3.19 0.00 14.22 28.50

f = 51Hz 0.00 0.02 0.03 0.00 0.06 0.12 0.00 0.90 1.95 0.00 6.29 12.58

f = 53Hz 0.00 0.02 0.03 0.00 0.13 0.26 0.00 0.77 1.29 0.00 16.97 34.00

f = 55Hz 0.00 0.02 0.03 0.00 0.11 0.23 0.00 0.80 0.59 0.00 16.66 33.37

conditions. As a result, even under these large disturbances,
the IIpD2FT can still fully meet the M class requirements of
the standard. However, when the signal has significant second
harmonic interferences, the maximum TVEs of the IpD2FT
are very large, and are out of the range of the requirements
of the standard under some conditions. For example, if f=45
Hz and a=0.1, the maximum TVE reaches 2.41%, which
is much larger than the requirements of the standard (1%).
Similar conclusions can be drawn in frequency estimation (see
TABLE I). The IIpD2FT can fully meet the requirements of
the standard, and it is much more accurate than the IpD2FT.

B. Power Oscillation Tests

The estimators’ performances under power oscillations,
frequency deviations, and second harmonic interferences are
tested. The test signal is shown in (19), where f = 55 Hz
is the fundamental frequency; a = 0.1 is the amplitude of
the second harmonic component; kx = 0.1 and ka = 0.1 are
the amplitude and phase modulation factors respectively; and
fm is the modulation frequency, which is set at 1, 2,..., 5, Hz
respectively.

s(t) = (1 + kxcos(2πfmt))cos(2πft+ kacos(2πfmt))

+ acos(2π · 2f · t)
(19)

The results are shown in Fig. 4, Fig. 5, and TABLE II.
From Figs. 4 and 5, we can see that the estimated amplitudes
and frequencies obtained with the IIpD2FT are close to the
theoretical value. However, the estimated values obtained with
the IpD2FT have some fluctuations around the theoretical
value. From TABLE II, we can conclude that, even under
power oscillations, large second harmonic interferences and
frequency deviations, the IIpD2FT can still meet the require-
ments, and it is much more accurate than the IpD2FT.

C. Other Performance Tests

Other test types in the standard, such as step change tests
and frequency ramping tests, are also tested. The results are
shown in TABLE III. Note that the performances of the
IIpD2FT and IpD2FT are almost the same. In the frequency
ramping test, the maximum TVE (%) and |FE| (mHz) of the

Fig. 4. The theoretical and estimated fundamental amplitudes obtained with
IIpD2FT and IpD2FT.

Fig. 5. The theoretical and estimated fundamental frequencies obtained with
IIpD2FT and IpD2FT.

IIpD2FT are much smaller than the reference values. Addition-
ally, the same conclusions can be drawn in the amplitude and
phase step change tests. From this evidence, we can conclude
that, even concerning the performance under step change and
frequency ramping conditions, the IIpD2FT can also meet the
M class requirements of the standard.



TABLE II
MAXIMUM TVES AND |FE|S OBTAINED WITH THE IIPD2FT AND

IPD2FT. THE REFERENCE VALUES OF THE MAXIMUM TVES (%) AND
|FE|S IN THE STANDARD ARE 3% AND 300 mHz, RESPECTIVELY.

fm (Hz)
TVE (%) |FE| (mHz)

IIpD2FT IpD2FT IIpD2FT IpD2FT

1 0.05 0.25 1.39 37.03

2 0.07 0.25 3.12 37.01

3 0.09 0.25 6.75 38.60

4 0.11 0.26 13.16 43.98

5 0.14 0.27 23.15 53.04

TABLE III
PERFORMANCES OF THE IIPD2FT AND IPD2FT UNDER DIFFERENT TEST

TYPES. THE RESPONSE TIME IS EXPRESSED IN NOMINAL SIGNAL
CYCLES.

Test
type

Indices
TVE (%) |FE| (mHz)

Std. IIpD2FT IpD2FT Std. IIpD2FT IpD2FT

Freq.
ramp

Maximum
error

1 0.00 0.00 10 0.00 0.00

Phase
step

Response
time

7 2.03 2.00 14 2.15 2.45

Amp.
step

Response
time

7 0.80 0.78 14 2.33 2.30

IV. CONCLUSION

This paper proposes an improved dynamic synchrophasor
estimator for large second harmonic interference conditions.
The estimation errors caused by second harmonic interferences
are mainly divided into the positive and negative second
harmonic frequency components. The optimal frequencies for
interpolation are obtained based on these analysis results.
Even under large frequency deviation and power oscillation
conditions, the IIpD2FT can also sufficiently suppress second
harmonic interferences, and it is much more accurate than the
IpD2FT. Moreover, even for step change and frequency ramp-
ing test, the IIpD2FT can still meet the M class requirements
of the standard.

APPENDIX

After being sampled, a stationary harmonic component can
be expressed as

sh(n) =
√

2ahcos(2π · hf · n/fs + ϕh) (A1)

where h is the harmonic order. Applying the windowed DFT
to (A1) at frequency fb, it follows that

Sh =
1

Nw

N∑
n=−N

s2(n)w(n)e−j2πfbn/fs (A2)

If a cosine-class window

w(n) =

M−1∑
m=0

xmcos(
2πmn

Nw
) (A3)

with M terms is used in (A2) [5], then it can be rearranged
as

Sh =

√
2ah

2Nw
ejϕh×

M−1∑
m=0

N∑
n=−N

e−j
2πn
fs

[(fb−hf)−m] + e−j
2πn
fs

[(fb−hf)+m]

2

+

√
2ah

2Nw
e−jϕh×

M−1∑
m=0

N∑
n=−N

e−j
2πn
fs

[(fb+hf)−m] + e−j
2πn
fs

[(fb+hf)+m]

2

=

√
2

2
ahe

jϕh ·D(fb − hf) ·R(fb − hf)

+

√
2

2
ahe

−jϕh ·D(fb + hf) ·R(fb + hf)

(A4)
where

D(f) =
sinπNwffs

Nwsinπffs

(A5)

is the Dirichlet kernel; and

R(f) =

M−1∑
m=0

xm(−1)mcosmπNw
[1− sin2(mπNw )/sin2(πffs )]

(A6)

is a function corresponding to the window function.
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