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Abstract—The paper addresses one of the new and most 
important issues arising when Low Power Voltage Transformers 
(LPVT) are used in power network substations for evaluating, 
among others, also the residual voltage. Conversely to open-
triangle inductive instrument transformers, the use of phase 
voltage transformers for measuring the residual voltage gets 
challenging due to the very high accuracy required for the three 
LPVTs. In the paper, an analytical study will be presented along 
with simulation results in order to show the relationship between 
the accuracy class and the uncertainty affecting the residual 
voltage value. 

Keywords — Voltage Transformer; Residual Voltage; 
Simulation; Low Power Instrument Transformer; Power 
Transformer; Accuracy Class; Voltage Error; 

I.  INTRODUCTION 
The decarbonisation of energy systems has been a political 

decision taken in the recent years by all most industrialized 
countries in the world. European Commission’s energy and 
climate policy, such as the SET-Plan, foresees that the context 
of the future scenarios for electric power networks will be that 
of ensuring a stable and secure power supply as Renewable 
Energy Sources (RES) penetration increases up to 100%. 

As a matter of fact, the wide-scale introduction of 
decentralized RES is causing significant and unprecedented 
changes in electrical power grids. Consequently, future 
electrical power grids will require real-time capable control and 
monitoring systems to ensure stability under increasingly 
complex and challenging conditions. 

The generation of analogue measurement and control 
systems in power grid substations are approaching the end of 
their useful lifespan. More often their replacement is based on 
digital substation automation solutions according to IEC 61850 
[1] and the use of new technologies to perform in a more 
efficient way distribution (like the massive use of Ring Main 
Units), measurements and control of the power network 
operation. 

More specifically, Instrument Transformers (ITs) [2-4] are 
experiencing special attention by Utilities and private customers 
for different important reasons. Among the most important ones, 
with the event of Smart Grids and Distributed Energy Resources 
(DER) new performance and features are requested to the IT in 
order to accomplish real-time network control with the highest 
efficiency, speed and accuracy. For instance, the large use of 
power inverters for interconnecting large photovoltaic plants to 

the grid has led to the injection of high order harmonics, which 
can interfere with industrial frequency component or among 
them to give rise to intermodulation. All this needs that such 
spectral components be correctly and accurately measured in 
order to let such systems to run under real-time feedback control. 
Moreover, in case of off-nominal frequency, protection relays 
must now trip faster than before (in few ms, instead of tens of 
ms as in the past). Furthermore, given that energy is no more 
flowing in just one direction (multiple producers or prosumers 
are now inter-connected to the same grid), very accurate energy 
and power measurements must be performed in order to 
correctly split the energy production revenues among them and 
for a proper accurate reactive energy injection into the grid. 
Again, the mass deployment of secondary substations and 
measurement nodes have also yield to have space and size 
constraints. Therefore, new requests for reduced dimensions of 
all electrical apparatus and systems have become a key 
parameter. Last but not least, the development and diffusion of 
digital communications between different nodes of the power 
network have requested for the ITs, as stated before, to feature 
also digital outputs. 

At the light of all this, one of the most important 
measurements for network stability and diagnostic still remains 
the residual voltage. Its measurement is mandatory for 
protection coordination, like the implementation of differential 
protections (fault upstream or downstream the measurement 
node), to correctly classify ground faults, etc. Normally such a 
measurement was and is presently performed by using inductive 
voltage transformers star-connected at the primary-side and with 
open triangle at the secondary side. Typical accuracies required 
for the residual voltage measurements are in the order of some 
percent, while residual voltage values are in the order of few 
percent (typical value is 4%). 

In case the residual voltage is evaluated by using the line 
voltages (hence it is evaluated by summing the three secondary 
voltages of the voltage ITs), reaching such an accuracy in its 
measurement (which, we remember, is few percent of the rated 
voltage) gets very challenging. This is what is requested to the 
new devices used as voltage sensors, the Low Power Voltage 
Transformers (LPVT). Usually such devices reduce the phase-
to-ground primary voltage to amplitudes of few volts. The 
secondary voltage is referred to ground as well. So, when using 
LPVTs in a three-phase system, the residual voltage must be 
evaluated by summing the three phase voltages. In such a case 
matching the existing requirements in terms of accuracy of the 
residual voltage measurement require for the LPITs to feature 
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special accuracy classes (far better than those of the inductive 
voltage transformers). 

The paper is aimed at presenting the results of the study 
performed to correlate the uncertainty affecting the 
measurement of the residual voltage with the accuracy class of 
the LPVT. First of all, the maximum error that can occur when 
the residual voltage is computed as sum of the line-to-neutral 
voltages is determined. Then, an easy-to-use expression for 
estimating the uncertainty on the residual voltage is derived. It 
will be shown that it provides accurate results without the use of 
complex and long calculation as it would be required by the 
application of analytical or numerical methods suggested by the 
GUM [5] as well as its Supplement 1 [6] 

Such a study is requested by industry and for completing 
what is presently reported in the new product Standard on LPVT 
IEC 61869-11, [7], and in future IEC 61869-105, [8], document 
dealing with uncertainty in calibration of ITs. Moreover, it will 
result useful to power network and system designers and 
operators for selecting suitable LPVTs according also to the 
accuracy requested for the residual voltage measurement. 

The paper is structured as follows: in Section II the case 
study is defined and the mathematic development of the residual 
voltage, considering the VTs contributes, is presented. Section 
III contains the maximum error algorithm in order to find which 
combination of ratio and phase errors results in the maximum 
error associated to the residual voltage. In Section IV, the 
aforementioned simplified expression for the uncertainty 
evaluation is presented; finally, Section V summarize the 
presented study along with some conclusions and future works.   

II. RESIDUAL VOLTAGE 

A. Case-study definition 
According to the International Electrotechnical Vocabulary 

(IEV) the residual voltage 𝑣"(𝑡) is defined as “the sum of the 
instantaneous values of all three line-to-hearth voltages, in a 
three-phase system” [9]: 

𝑣"(𝑡) = 𝑣'(𝑡) + 𝑣)(𝑡) + 𝑣*(𝑡)                 (1) 

where 𝑣'(𝑡), 𝑣)(𝑡) and 𝑣*(𝑡) are the instantaneous line to earth 
voltages of line 1, 2 and 3, respectively. In the case of a 
sinusoidal steady-state condition (1) turns into: 

𝑉,- = 𝑉,' + 𝑉,) + 𝑉,*                              (2)  

where 𝑉,. is the phasors of the generic quantity 𝑣.(𝑡). Even if the 
residual voltage is a phasor (as in (2)) or a waveform (as in (1)), 
in practical application only its module is used.   

As mentioned before, the paper presents the study oriented 
to show how the measurement of the residual voltage is affected 
by the accuracy class of the three LPVTs. Fig. 1 shows a typical 
setup for the measurement of such a quantity, referred to as 𝑉,-. 
It consists in three LPVTs and an Intelligent Electronic Device 
(IED), which acquires the LPVTs outputs and computes the 
residual voltage. Therefore, the value attributed to 𝑉,- is affected 
by the effect of the uncertainty sources located in the LPVTs as 
well as in the IED. Usually, the latter can be considered 
negligible with respect to former one. 

B. Mathematic development 
At the light of this, let us consider three LPVTs featuring 

ratio errors 𝜀', 𝜀) and 𝜀* and phase errors ∆𝜑' , ∆𝜑) , and ∆𝜑*  as 
defined in [4]. Therefore, starting from (2), the expression of the 
residual voltage, 𝑉,- can be expressed as a function of such 
uncertainty contributions: 

𝑉,- = 3𝑉'(1 + 𝜀')𝑒6(789∆:8) + 𝑉)(1 + 𝜀))𝑒6(7;9∆:;) +
𝑉*(1 + 𝜀*)𝑒6(7<9∆:<)=                         (3) 

where the 𝑉. and 𝜗. are the generic RMS values and the 
generic phase angles of the related phasors 𝑉,., respectively. 

For the sake of simplicity, as first step of deeper study, a 
symmetrical three-phase system condition, can be assumed. This 
means that: 

𝑉' = 𝑉) = 𝑉* = 𝑉                                (4) 

and  

𝜗' = 0, 𝜗) =
)
*
𝜋 and 𝜗* = −)

*
𝜋                 (5) 

By taking into account (4) and (5), (3) turns into: 

𝑉,- = 𝑉 B(1 + 𝜀')𝑒6(C9∆:8) + (1 + 𝜀))𝑒
6D;<E9∆:;F +

(1 + 𝜀*)𝑒
6DG;<E9∆:<FH                         (6) 

Eq. (6) relates the residual voltage to the contribution of 
uncertainty but more manipulations are needed to highlight how 
the module of 𝑉,- is affected by them. 

To this purpose let us define 𝐴. as: 

 
Fig. 1. Schematic of a typical setup for the measurement of three-phase system of symmetric voltages   



𝐴' = 1 + 𝜀'                                        (7a)                                                             

𝐴) = 1 + 𝜀)                                        (7b) 

𝐴* = 1 + 𝜀*                                        (7c) 

then, using the well-known Euler’s formulas: 

𝑉,- = 𝑉 J𝐴'[cos(∆𝜑') + 𝑗 sin(∆𝜑')] + 𝐴) BcosD
)
*
𝜋 +

∆𝜑)F + 𝑗 sin D
)
*
𝜋 + ∆𝜑)FH + 𝐴* BcosD−

)
*
𝜋 + ∆𝜑*F +

𝑗 sinD− )
*
𝜋 + ∆𝜑*FHS                               (8) 

Through the application of the cosine and the sine of the sum 
of two angles:  

cos(𝛼 + 𝛽) = cos𝛼 cos 𝛽 − sin𝛼 sin𝛽         (9) 

sin(𝛼 + 𝛽) = sin𝛼 cos𝛽 + cos 𝛼 sin𝛽         (10) 

a further simplification of the residual voltage expression can be 
derived:  

𝑉,- =
V
*
W𝐴' cos(∆𝜑') + 𝐴) B−

'
)
cos(∆𝜑)) −

√*
)
sin(∆𝜑))H + 𝐴* B−

'
)
cos(∆𝜑*) +

√*
)
sin(∆𝜑*)H +

𝑗 J𝐴' sin(∆𝜑') + 𝐴) B
√*
)
cos(∆𝜑)) −

'
)
sin(∆𝜑))H +

𝐴* B−
√*
)
cos(∆𝜑*) −

'
)
sin(∆𝜑*)HSY         (11) 

Now, at the light of the amplitudes of the ∆𝜑. (by referring 
to Table I, which reports the limits of the accuracy classes as 
defined in [4]), two approximations can be done: cos(∆𝜑.) ≈ 1 
and sin(∆𝜑.) ≈ ∆𝜑.. Hence: 

𝑉,- = 𝑉 W𝐴' + 𝐴) B−
'
)
− √*

)
∆𝜑)H + 𝐴* B−

'
)
+ √*

)
∆𝜑*H +

𝑗 J𝐴'∆𝜑' + 𝐴) B
√*
)
− '

)
∆𝜑)H + 𝐴* B−

√*
)
− '

)
∆𝜑*HSY   (12)  

At this point, the 𝐴. can be substituted into (12):  

𝑉,- =
V
*
W1 + 𝜀' −

'
)
− √*

)
∆𝜑) −

'
)
𝜀) −

√*
)
𝜀)∆𝜑) −

'
)
+

√*
)
∆𝜑* −

'
)
𝜀* +

√*
)
𝜀*∆𝜑* + 𝑗 J∆𝜑' + 𝜀'∆𝜑' +

√*
)
− '

)
∆𝜑) +

√*
)
𝜀) −

'
)
𝜀)∆𝜑) −

√*
)
− '

)
∆𝜑* −

√*
)
𝜀* −

'
)
𝜀*∆𝜑*SY   (13) 

After some manipulations, the real and imaginary parts of 
(13) are: 

𝑅𝑒𝑎𝑙	{𝑉,-} = 𝑉 D𝜀' −
√*
)
∆𝜑) −

'
)
𝜀) +

√*
)
∆𝜑* −

'
)
𝜀*F  (14) 

𝐼𝑚	{𝑉,-} = 𝑉 D∆𝜑' −
'
)
∆𝜑) +

√*
)
𝜀) −

'
)
∆𝜑* −

√*
)
𝜀*F  (15) 

The module of 𝑉,- is: 

|𝑉,-| = d(𝑅𝑒𝑎𝑙	{𝑉,-})) + (𝐼𝑚{𝑉,-}))                   (16) 

that combined with (14) and (15) turns into: 

|𝑉,-| = 𝑉 eD𝜀' −
√*
)
∆𝜑) −

'
)
𝜀) +

√*
)
∆𝜑* −

'
)
𝜀*F

)
+

D∆𝜑' −
'
)
∆𝜑) +

√*
)
𝜀) −

'
)
∆𝜑* −

√*
)
𝜀*F

)
f
'/)

                   (17) 

 It can be noted that when all 𝜀. and ∆𝜑. are zero, (17) 
provides |𝑉,-| = 0, according to the assumption of symmetrical 
voltages. Therefore, the expression between square brackets 
represents the error on 𝑉,- when a symmetric three-phase system 
of amplitude 𝑉 is considered. Of course, such error can be 
computed only if the values of the accuracy parameters 𝜀 and 
∆𝜑 are already known, for each VT. Otherwise, (17) also allows 
to evaluate the uncertainty on 𝑉,- if 𝜀. and ∆𝜑. are treated as 
random variables and one of the methods, suggested by GUM 
[5] and its supplement 1 [6], is applied. 

III. RESEARCH OF THE MAXIMUM ERROR 

A. Function study 
Eq. (17) provides a relationship between the errors of the 

VTs and that of the residual voltage. Therefore, it is interesting 
to determine which combination of 𝜀. and ∆𝜑. leads to the 
maximum error on 𝑉,-. 

As it is well-known, the derivative of a function must be 
studied to find the local maxima and minima. To this purpose, 
(17) is rewritten as: 

|𝑉,-| = 𝑉 D	𝜀') +
*
h
∆𝜑)) +

'
h
𝜀)) +

*
h
∆𝜑*) +

'
h
𝜀*) −

√3𝜀'∆𝜑) − 𝜀'𝜀) + √3𝜀'∆𝜑* − 𝜀'𝜀* +
√*
)
𝜀)∆𝜑) −

*
)
∆𝜑)∆𝜑* +

√*
)
𝜀*∆𝜑) −

√*
)
𝜀)∆𝜑* +

'
)
𝜀)𝜀* −

√*
)
𝜀*∆𝜑* +

∆𝜑') +
'
h
∆𝜑)) +

*
h
𝜀)) +

'
h
∆𝜑*) +

*
h
𝜀*) − ∆𝜑'∆𝜑) +

√3𝜀)∆𝜑' − ∆𝜑'∆𝜑* − √3𝜀*∆𝜑' −
√*
)
𝜀)∆𝜑) +

'
)
∆𝜑)∆𝜑* +

√*
)
𝜀*∆𝜑) −

√*
)
𝜀)∆𝜑* −

*
)
𝜀)𝜀* +

√*
)
𝜀*∆𝜑*F

'/)
(18) 

Given that (18) is a 6 variables function, 6 partial derivatives 
must be computed and set equal to zero:  

j|Vkl|
jm8

= 0 = 2𝜀' − 𝜀) − 𝜀* − √3∆𝜑) + √3∆𝜑*    (19a) 

j|Vkl|
jm;

= 0 = −𝜀' + 2𝜀) − 𝜀* + √3∆𝜑' − √3∆𝜑*    (19b) 

j|Vkl|
jm<

= 0 = −𝜀' − 𝜀) + 2𝜀* − √3∆𝜑' + √3∆𝜑)    (19c) 

j|Vkl|
j∆:8

= 0 = √3𝜀) − √3𝜀* + 2∆𝜑' − ∆𝜑) − ∆𝜑*    (19d) 

j|Vkl|
j∆:;

= 0 = −√3𝜀' + √3𝜀* − ∆𝜑' + 2∆𝜑) − ∆𝜑*    (19e) 

TABLE I.  RATIO AND PHASE ERRORS LIMITS OF EACH 
ACCURACY CLASS 

Accuracy 
Class 

Ratio 
Error 
(%) 

Phase 
Error 
(mrad) 

0.1 0.1 1.5 
0.2 0.2 3 
0.5 0.5 6 

 



j|Vkl|
j∆:<

= 0 = √3𝜀' − √3𝜀) − ∆𝜑' − ∆𝜑) + 2∆𝜑*    (19f) 

The solution of the system of equations (19) provides the 
combination of 𝜀. and ∆𝜑. for which (17) (or (18)) takes its 
maximum (or minimum). Unfortunately, only 2 out of the 6 
equations are linearly independent. This means that (19) has ∞4 
solutions. Two of the linearly independent equations are, for 
example: 

 𝜀' − 𝜀* +𝑚∆𝜑' − 𝑙∆𝜑) +𝑚∆𝜑*            (20) 

𝜀) − 𝜀* + 𝑙∆𝜑' − 𝑚∆𝜑) − 𝑚∆𝜑*             (21) 

where 𝑚 = 0.57735 and 𝑙 = 1.1547. 

B. Maximum Error algorithm  
To overcome the aforementioned infinite solutions issue, a 

numerical approach has been implemented. In particular, it 
consists in the application of the following steps: 

1. two variables among the six are chosen as 
dependent, for example  𝜀' and 𝜀); 

2. the remaining variables 𝜀*, ∆𝜑' , ∆𝜑)  and ∆𝜑* , are 
varied within the limits of a given accuracy class 
with a certain resolution; in particular:  

a. 0.5-accuracy class has been chosen 
because it contains all the limits of the 
other classes (Table I).  

b. steps of 0.5 mrad for the phase and 0.01% 
for the ratio have been chosen. 

3. in each iteration 𝜀' and 𝜀) have been computed 
according to (20) and (21). The solution is 
discarded if at least one of them falls outside the 
limits of 0.5-accuracy class. Therefore, when it is 
greater than 0.5% or lower than 0.5%. 

4. The value of, |𝑉,-| is computed on the basis of the 
solutions obtained in the previous steps. 

5. At the end of all the iterations (1578126 for the 
considered limits and resolution), the maximum 
value of |𝑉,-| can be easily detected. 

C. Results 
Fig. 2 shows the plot of |𝑉,-| values obtained in all the 

iterations for which a correct solution of (19) (i.e. conditions 
stated in previous step 3 are fulfilled) occurs. It can be observed 
that there are two combinations for which |𝑉,-| takes the highest 
value: about 1%. The values of the parameters 𝜀. and ∆𝜑. 
corresponding to such peaks are shown in Table II. 

It arises that the accuracy class of the LPVTs used in a three-
phase system strongly affect the error affecting the value of |𝑉,-| 
and there is not a unique condition and relationship between the 
ratio and phase errors of the LPVT and the error affecting |𝑉,-|. 

The new Standard on LPVTs [7] reports a table of accuracy 
classes of LPVTs used for special applications (like, in 
particular, for the residual voltage evaluation). However, it does 
not report information and instructions regarding the correlation 
of accuracy class and uncertainty on |𝑉,-|. In this connection, the 
analysis performed in the follows may be of help. 

IV. UNCERTAINTY EVALUATION 
As mentioned in Section II, the residual voltage error can be 

obtained only if the values of the accuracy parameters 𝜀 and ∆𝜑 

are already known, for each VT. However, in practical 
situations, this is not possible and the uncertainty affecting |𝑉,-| 
must be determined. The GUM and its Supplement 1 provide 
detailed explanation on how estimating such value, but the 
implementation of the methods they provided may be quite 
complex and certainty not ease for technicians who are not 
metrologist or university professors. For this reason, in this 
Section, a simplified expression for the uncertainty evaluation of 
the residual voltage measurement is presented. The aim consists 
in obtaining an easy-to use formula directly applicable in field, 
when only the accuracy class of the VTs is known. 

A. Uncertainty formula 
To obtain the aformentioned expression let’s start from (17), 

which expresses the residual voltage module considering all the 
ratio and phase errors contributes of the VTs. Defining: 

𝑋 = 𝜀' −
√*
)
∆𝜑) −

'
)
𝜀) +

√*
)
∆𝜑* −

'
)
𝜀*              (22) 

𝑌 = ∆𝜑' −
'
)
∆𝜑) +

√*
)
𝜀) −

'
)
∆𝜑* −

√*
)
𝜀*           (23) 

(X and Y represents, according to (17), the p.u. real and 
imaginary part of |𝑉,-|, respectively) eq. (17) can be written 
symbolically as: 

𝑍 = √𝑋) + 𝑌)                                    (24) 

where the voltage V from (17) has been intentionally omitted to 
obtain a per-unit expression. In this form, if X and Y are random 
variable with given characteristcs, (24) represents a well-known 
probability density function: the Rayleigh distribution, pending 
X and Y are indipendent random variables having the same 
gaussian distribution 𝑁(0, 𝜎)). 

 
Fig. 2. Graph of the residual voltage when all iterations are 

applied 

TABLE II.  VALUES OF THE SIX PARAMETERS CORRESPONDING TO 
THE PEAK OF THE FUNCTION |𝑉,-|   

𝜺𝟏 𝜺𝟐 𝜺𝟑 ∆𝝋𝟏 
(mrad) 

∆𝝋𝟐 
(mrad) 

∆𝝋𝟑 
(mrad) 

0.499 0.460 0.460 0 6 -6 

-0.499 -0.460 -0.460 0 -6 6 

 



Let’s now consider (22) and (23). Both of them are a linear 
combination of four variables and  it is well known that, given a 
random variable f defined as:  

𝑓 = 𝑎𝑔 + 𝑏ℎ ,                                   (25) 
where g and h are generic random variables and a and b are 
numerical coefficients, its variance 𝜎�) is given by: 

𝜎�) = 𝑎)𝜎�) + 𝑏)𝜎�)                             (26) 

where 	𝜎�) and 𝜎�) are the variances of g and h, respectively. 
Therefore, applied to our case, this leads to: 

𝜎�) = 𝜎m') +
*
h
𝜎∆:)) + '

h
𝜎m)) +

*
h
𝜎∆:*) + '

h
𝜎m*)              (27) 

𝜎�) = 𝜎∆:') + '
h
𝜎∆:)) + *

h
𝜎m)) +

'
h
𝜎∆:*) + *

h
𝜎m*)            (28) 

Another important simplification can be obtained if a 
realistic assumption is considered: 3 VTs of the same accuracy 
class are adopted in the 3-phase system voltage measurement. 
Such a statement is not unrealistic, in fact there is no reason to 
adopt 3 different accuracy class voltage transformers for the 
measurement of 3 voltages of the same line. At the light of this 
(27) and (28) turns into: 

𝜎�) = 𝜎m) +
*
h
𝜎∆:) + '

h
𝜎m) +

*
h
𝜎∆:) + '

h
𝜎m)             (29) 

𝜎�) = 𝜎∆:) + '
h
𝜎∆:) + *

h
𝜎m) +

'
h
𝜎∆:) + *

h
𝜎m)           (30) 

hence: 
𝜎�) =

*
)
�𝜎∆:) + 𝜎m)�                             (31) 

𝜎�) =
*
)
�𝜎∆:) + 𝜎m)�                               (32) 

𝜎�) = 𝜎�)                                           (33) 
 

where the notation assumed is the same as for the generic 
case presented in (25) and (26). From (31) and (32) its clear that 
X and Y have the same the variance. 

Moreover, according to the Central Limit Theorem, X and Y 
as defined by (22) and (23) can be considered as having normal 
distribution given that they are linear combination of random 
variables. 

These result leads to three conclusions relevant to the 
Rayleigh distribution: 

• it has been demonstrated that the two terms X and 
Y of the residual voltage module have the same 
distribution, hence in accordance with Rayleigh 
conditions; 

• X and Y are Normal; 

• if the two variances are identical, the two random 
variables X and Y are strongly correlated, hence not 
indipendent as requested in the Rayleigh 
distribution. 

However, assuming for a moment that the two random 
variables are indipendent, the Rayleigh variance expression can 
be adopted: 

𝜎-) = D2− E
)
F𝜎)                               (34)  

In the following subsection, some results are presented in 
order to prove the effectiveness of such a formula despite from 
the fact that the variables of interest are not indipendent. 

B. Monte Carlo results. 
First of all, let’s consider the 6 variables contained in (17) as 

random variables uniformely distributed with zero mean. Then, 
1 million Monte Carlo trials are computed to obtain the pdf and 
the variance of |𝑉,-|, X and Y. As for |𝑉,-|, fig 3, 4 and 5 show its 
pdfs in the case of three VTs with 0.1, 0.2 and 0.5 accuracy class, 
respectively. Moreover, the pdfs of X and Y are presented in fig. 
6 and 7, only for the 0.1 accuracy class case for the sake of 
brevity. From these two figures, it can be higligthed that the 
linear combination of more than two uniformly distributed 
random variables turns into a gaussian distribution with zero 
mean as known from the literature. Hence, X and Y can be used 
to satisfy the Rayleigh condition. 

At this point, the variances of |𝑉,-|, one calculated applying 
MC to (17), 𝜎V") , and one calculated using the variance of the 

 
Fig. 3. Pdf of the residual voltage when 3 VTs of 0.1 accuracy class are 

considered 

 
Fig. 4. Pdf of the residual voltage when 3 VTs of 0.2 accuracy class are 

considered 

 
Fig. 5. Pdf of the residual voltage when 3 VTs of 0.5 accuracy class are 

considered 



Rayleigh distribution (34), 𝜎-), can be compared. The results of 
the comparison are listed in Table III for the 0.1, 0.2 and 0.5 
accuracy class cases, where the standard deviations 𝜎V" and 𝜎- 
(that is the standard uncertainties) are shown. As it can be seen, 
despite the fact that X and Y are not indipendent, the variances 
(and the standard deviations) are almost identical for all the 
considered accuracy classes: they differ for the second digit 
only. This allows to conclude that the proposed simplified 
expression can be usefully employed to estimate the uncertainty 
on |𝑉,-|.  

V. CONCLUSIONS 
The operation of Smart Grids in presence of Distributed 

Energy Resources has required the introduction of new 
technologies in power systems, like digital communication, new 
type of switchgears, different network topologies (like Ring 
Main Units, redundant radial networks etc.) and the massive us 
of LPIT, which are replacing the conventional Inductive IT. 

The use of LPITs has allowed to implement many new 
operating and measurement functions due to their better 
performance with respect to inductive ITs (bandwidth, accuracy, 
linearity, etc.). However, one critical value, still widely used for 
the diagnostic and the operation of the power networks, namely 
the residual voltage, requires that LPVTs feature higher 
accuracies with respect to those of ITs with open triangle. The 
correlation of the accuracy class of LPVTs to the uncertainty 
affecting the residual voltage is not straightforward. However, 
this relationship is strongly demanded by practitioners and all 
people involved in network design and operation. 

For all this, the presented paper has reported the theoretical 
study and the results of simulations performed in order to 
demonstrate the effects of the accuracy class of the LPIT on the 
residual voltage uncertainty. The assumption assumed in the 
paper concern the analysis of a symmetrical 3-phase system. 
However, future works must investigate the same effects when 
such condition is not satisfied. 

The aim of this study has been to put all such operators in a 
condition to simply evaluate and know which is the expected 
uncertainty affecting the residual voltage when employing 
LPVTs with a given accuracy class. To this purpose, a simplified 
expression based on the Rayleigh distribution has been derived. 
Results demonstrated the effectiveness of this assumption, even 
if a particular request of the Rayleigh distribution was not 
satisfied: the independency of the two variables X and Y. Such 
important supposition requires further studies, exploring more 
cases to prove its success.  
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Fig. 7. Pdf of Y, the imaginary part and the second term of (17), when 

the 3 VTs have 0.5 accuracy class 

TABLE III.  VARIANCES AND STANDARD DEVIATIONS OF |𝑉,-|, 
CALCULATED WITH MONTE CARLO OR CALCULATED WITH THE 

RAYLEIGH FORMULA 

Accuracy class 𝛔𝐕𝐫𝟐  𝛔𝐑𝟐  𝛔𝐕𝐫 𝛔𝐑 
0.1 6.1e-7 6.9e-7 7.8e-4 8.3e-4 

0.2 2.5e-6 2.8e-6 1.6e-3 1.7e-3 

0.5 1.2e-5 1.3e-5 3.5e-3 3.6e-3 

 

 
Fig. 6. Pdf of X, the real part and the first term of (17), when the 3 VTs 

have 0.5 accuracy class 


