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Abstract—This paper presents a smart embedded Functional
Electrical Stimulator (FES), able to stimulate a muscle only when
a specific movement pattern occurs. This pattern is detected
using an inertial measurement unit (IMU) coupled with a feature
detector and a neural classifier. Architecture of the FES is first
presented, then embedded processing algorithms composed of
feature extraction and neural network classification are detailed.
Results show that the muscle vibration happening when stimu-
lation is needed can be recognized in more than 90% of cases
using less than 3% of average embedded processor resources on
a ARM M4F.

Index Terms—Functional Electrical Stimulator, Embedded
Learning, Pattern Detection, Embedded system

I. INTRODUCTION

Functional Electrical Stimulation (FES) is an important
medical device for rehabilitating or strengthening patients
having injuries in order to restore their walking function, or for
preventing muscular atrophy on disabled subjects. Common
areas of application are mostly the upper and lower extremities
[1].

In this paper, we focus on the design of a smart non invasive
FES device, which can be used in medical environments as
well as in patient’s homes. Stimulation is done by applying
an electrical pulse on nerves to shrink targeted muscles and to
induce natural limbs movements. Stimulating signal is applied
via surface electrode on human skin using a biphasic pulse
with null average value. This increases the time before patients
get fatigue, allowing the use of the stimulator device for longer
time [2].

The stimulating pulse has three key parameters having
effects on muscular fatigue: shape, frequency and duty cycle.
Shape of the biphasic signals is usually a square wave that
improves cells and fiber recruitment compared to other wave-
forms [3]. Common frequency values are 5 to 50Hz, with
a pulse width of 50µs to 2ms. It is important to note that
electrical stimulation leads to a long or short term muscular
fatigue whatever the parameters used are [1], [4]–[7]. This
fatigue can even lead to tetanization.

Consequently, there is a strong interest to use FES only
when it is really necessary; namely, when muscles are no more
able to contract without assistance.

Fig. 1: Picture of the presented smart FES

In our FES, detection of these situations is done using an
Inertial Measurement Unit (IMU), coupled with embedded
signal processing feature detectors and a neural network for
classifying them.

In this paper, we focus on a smart but low cost and low
supply voltage FES that can be embedded in a portable Internet
of Things (IoT) device. Smart features, such as a detector
triggered only when stimulation is necessary, are not present in
most of the FES implementations existing in the literature [5],
[7]–[10]. A recent work presents an embedded solution (cost
around 70$) working on a 3V power supply, producing 46V
biphasic pulses [10]. This voltage is too low for a medical
use (output voltage up to 120V is necessary to be efficient
with any type of skin). Another recent work presents an
embedded solution working on a 6V power supply composed
of 2 coin cells CR2032 [7]. Output voltage is limited to 21V ,
which is again not useable in medical applications. One more
recent work is focused on an electric muscle stimulator (EMS)
with an interesting error amplifier closed loop, but its voltage
amplification is limited to a factor 20 because of the structure
of the boost converter, leading to a maximum voltage of 74V
on a 3.7V lithium cell [9]. This voltage is also too limited for
medical applications.

Another work uses fly-back power converters and a push
pull current stage which requires double high voltage supply of
+150V and −150V [8], which cannot also work on batteries



and are not relevant for IoT applications.
These solutions have in common several limitations. First,

their output voltage amplification is limited. An explanation
is that the boost converters used are usually working correctly
with duty cycles up to 90% [11], corresponding to an
amplification by a factor 10, but are not stable at higher
amplifications. In our case, we want to amplify the input
voltage from 3.7V to 120V or more. This leads to a boost
converter amplification factor of more than 40. Second, used
pulses generators work mainly with integrated solutions
limited to voltages lower than 100V and are relatively
expensive when low-cost applications are targeted (less than
10$).

For these reasons, a novel smart FES implementation is
presented in this paper, which is divided in four parts :

• In section II, architecture and circuits of the smart FES
is presented.

• In section III, embedded algorithms and neural classifiers
used for smart detection are presented.

• In section IV, the results and a discussion are presented
• In section V, conclusion is presented.

II. SMART FUNCTIONAL ELECTRICAL STIMULATOR
ARCHITECTURE

Proposed FES architecture is presented in Fig.2. It can be
supplied with a single 3.7V Li-Ion battery whereas it generates
output pulses going up to 120V , with a bill of materials
reduced to less than 20$.
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Fig. 2: System block diagram.

The most important parts of this architecture are :
• An electro stimulation circuit: this electrical part is com-

posed of a boost converter amplifying the voltage from
3.7V to 120V , a pulse generator for generating biphasic
pulses, and a current sense and feedback for adjusting
current applied to the patient.

• An Inertial Measurement unit (IMU) for movement cap-
ture.

• A micro-controller for system management and move-
ment processing, including feature extraction and neural
network pattern recognition.

All these parts are detailed in the following sub-sections.

A. Electro Stimulation Circuit

It aims at amplifying voltage and generating controlled
current pulses applied to the patient. It is composed of different
blocks with specific features.

1) Boost Converter: When operating on a single cell battery
in a low power and low cost embedded system, generating
a high voltage is complex. Indeed, using a standard boost
converter with an inductor as shown in Fig.3 leads to the
equation :

Vout =
Vin

1 −D
(1)

Fig. 3: Standard boost converter

where D is the duty cycle in percent of the period. However,
this duty cycle is limited to a maximum value, for example
90% when using a TPS61170 boost converter [11]. Beyond
this value, boost converter is not working properly. From 1,
voltage amplification is also limited to 10 using this kind of
amplifier, and so output voltage cannot exceed 37V , which is
too low for a versatile FES.

In order to cope with this problem, the standard inductor
was replaced with a coupled inductor as shown in Fig. 4.

Fig. 4: High voltage boost converter

Using a LPR4012-103 from CoilCraft, the turn ratio of
the secondary inductor is 3, meaning that if a voltage V1
is applied on the primary inductor, a voltage V2 = 3V1
is obtained on the secondary inductor. If both coupled
inductors are mounted in series, an amplification by a factor
4 is obtained. Combined with the amplification by a factor
10 obtained with the TPS61170 boost converter, overall
amplification is 40, leading to a maximum output voltage of
144V with a 3.7V battery in input. This is adequate for our
needs and requires only an additional cost in production of 3$.

2) Pulse Generator: Pulse generation is another key feature
in FES. Using a high voltage power supply while having a
low cost implementation is challenging. In [10], a solution is



proposed using an integrated LMD18200 H-bridge, but this
solution has two important drawbacks : its input voltage range
is limited by the H-bridge to 55V , and its cost is important.
In order to cope with these drawbacks, a discrete components
solution has been proposed, relying on standard NMOS and
PMOS transistors as shown in Fig. 5.

Fig. 5: Functional electrical stimulator

This implementation is composed of 2 symmetrical pulses
generators, each one driving as an half bridge composed by
a pair of PMOS and NMOS transistors. Transistors must be
driven with respect to their maximum gate-source voltage. This
absolute value of this voltage is equal to 20V for the low cost
ZV P1320F PMOS transistor used in the design. Maximum
gate-source voltage is the same for the ZV N3320F NMOS
transistor also used in the design. Considering the commands
VIN1 and VIN2 are outputs of a micro-controller delivering
3.3V , the NMOS transistor M1 is easy to drive, whereas the
PMOS M3 is much more complicated, because it requires a
potential of more than 130V at the gate of the PMOS transistor
for being turned on if Vdd = 150V . In order to achieve that,
two level shifters are used in input of NMOS transistors M2,
M4 and PMOS transistor M3. They work as follows :

1) When VIN1 = 3.3V , M1 NMOS transistor is turned
on, setting the gate voltage of M2 NMOS transistor to
0V . The M2 being blocked, gate voltage of the PMOS
transistor M3 is equal to Vdd, turning off this transistor
whereas the lower NMOS transistor M4 is turned on by
VIN1, connecting the electrode to the ground.

2) When VIN1 = 0V , M1 NMOS transistor is turned off,
setting the gate voltage of M2 NMOS transistor to 19V ,
through the voltage divider composed of R1 = 100kΩ
and R2 = 15kΩ. Consequently, transistor M2 is turned
on, connecting R4 to the ground. Gate voltage of M3

PMOS transistor is then equal to 0.87Vdd = 131V due
to the voltage divider (level shifter) composed of R4 =
100kΩ and R3 = 15kΩ and this transistor is turned on
connecting the electrode to Vdd.

Pulse generator is fully functional as shown in Fig. 6 in the
case where boost output voltage is equal to Vdd = 50V . Using
low cost ZV P1320F and ZV N3320F transistors and the
boost converter described in subsection II-A1, turn on and
turn off times of pulses are equal to less than 2µs with a
boost output voltage equal to 150V . This allows to generate

Fig. 6: FES biphasic pulses (in yellow).

biphasic pulses with an extremely precise pulse width control
and at a maximum operational frequency limited to 100kHz
as shown in yellow in Fig. 7. It is interesting to notice that
output voltage of the boost converter is lowering at very high
frequencies, but that is not a problem because skin impedance
is lower [12], [13]. In addition, both electrodes are connected
to ground when no signal is applied, this is safer than some
others implementations where both electrodes are connected
to 150V .

Fig. 7: FES high frequency pulses (in yellow)

Components cost of this portion of circuit is approximately
1.3$ in production, which is really cheap considering the
wide range of pulses able to be generated.

3) Current Sense and Feedback: As shown in introduction,
body load impedance is sensitive to many parameters and can
vary from 10kΩ.cm−2 to 1MΩ.cm−2 as shown in [12], [13].
For this reason, current in electrodes has to be controlled by
a feedback system in order to adjust its value precisely.

A voltage feedback is included in most integrated boost
converters in the market. In the TPS61170, a feedback pin FB
is used for regulating VFB voltage to a defined value equal
to 1.229V . Inserting a low value resistor R between ground
and NMOS transistors of the full-bridge allows to monitor
the current I in the electrodes. If this resistor is tied to FB,
the feedback loop will ensure that the resistor voltage will
be equal to 1.229V , and that the current in the electrodes
will be equal to I = 1.229

R . In the case R = 12.29Ω, current
in the electrodes will be fixed to 0.1A, the maximum value
needed. Of course, this current value will be obtained only
if the corresponding Vdd value doesn’t exceed the maximum
value that can be produced by the boost converter (150V ).

Controlling current in the electrode is important, but it has
also to be adjustable in order to let the user choose the strength
of the FES. In the TPS61170, reference voltage VFB can be
adjusted by using a PWM control on the CTRL pin. In this



case, reference voltage VFB = Duty × 1.229V where Duty
is the duty cycle of the PWM in percent.

Fig. 8: Boost converter feedback control in TPS91170

This solution relies on a low pass filter as shown in Fig. 8,
creating a delay on the feedback reference voltage adjustment.
However, this delay is not a problem even at a high pulse
repetition frequency with very short pulses.

B. Inertial Measurement Unit

Assistance of the FES is necessary when the muscle is
unable to create a movement by itself. In this case, the muscle
often tries to contract without success, leading to a vibration.
This pattern can be detected for activating the FES in order
to stimulate the muscle.

Capturing moves is done using a low power 9-Axis MEMS
Motion Tracking device (TDK ICM-20948), using only its
3-axis accelerometer with programmable sensitivity of ±2g,
±4g, ±8g, or ±16g, at a maximum sample rate of 1.125[kHz].

Considering muscles vibration base frequency is around
5Hz, IMU is used at a 100sps (samples per second). Ac-
celerometer only will be used in order to reduce power
consumption. Chosen sensitivity value is ±8g.

C. Embedded processor and system management

A 48 MHz ARM® Cortex®-M4F Processor is used for sys-
tem management, movement processing and pattern detection.
Movement data from the 3-axis accelerometer is grabbed using
a SPI interface.

The system is powered by a rechargeable battery, charged
using the USB connection. A micro SD data storage has
been added, enabling to record data used for offline machine
learning. Micro SD operations are performed using SPI. USB
can be used for real-time monitoring of the system.

ARM® Cortex®-M4F processor communicates through a
hardware interface called the RF doorbell with a second
processor, an ARM® Cortex®-M0 in charge of handling the
Bluetooth Low Energy RF protocol used for connecting the
smart FES to a smartphone.

III. EMBEDDED SIGNAL PROCESSING AND NEURAL
PATTERN RECOGNITION

Even though this device can be used for any part of the body,
our FES is used for rehabilitation after elbow and shoulder
injuries. Our goal is to switch on the FES only when the
muscle is unable to create a movement by itself. As explained
before, this situation leads to several successive unsuccessful
contractions of the muscle, generating a vibration. This pattern
has to be detected and classified for activating the FES.

Artificial Neural
Network

Features
extraction

Accelero-
meters

Vibrations
Detection

Fig. 9: Feature extraction and pattern recognition chain

Embedded signal processing operations are presented in Fig.
9 and are described in the following subsections.

A. Movement capture

As a first step, movement is measured using the IMU ac-
celerometer. Fig.10 shows the signal during muscle vibration,
and during recovery.

Fig. 10: 3D acceleration during muscle vibration and recovery.

B. Features extraction

Pattern recognition using neural networks requires high
level features extraction from the raw signal [14]. These
features have to be as relevant as possible for characterizing
the signal.
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Fig. 11: Features extraction module blocks diagram.

Features extraction is composed of the following succession
of operations as described in Fig. 11 :

• removal of the gravity using a 0.5Hz high pass filter on
acceleration signals Ax, Ay and Az.

• computation of the acceleration magnitude:
• centering of the acceleration magnitude (Fig.12) using a

0.5Hz high-pass filter.
• computation of frequency spectrum (Fig.13) using a Fast

Fourier Transform (FFT) on 256 points.
• detection of FFT peak : amplitude and frequency of

the highest 3 peaks of the FFT spectrum are used as
inputs of the neural network, sorting them by amplitude
in decreasing sense.

C. Neural network pattern recognition

1) Neural Network Structure: Artificial neural network is
presented in Figure 14. It is a standard three layers neural
network, the first layer (Input Layer) is composed by six
neurons (magnitude and frequency of the 3 most important



Fig. 12: Centered acceleration magnitude during muscle vi-
bration and recovery.

Fig. 13: FFT spectrum of the acceleration magnitude during
muscle vibration.

FFT peaks), then second one (Hidden Layer) with forty
neurons and the last one (Output layer) is composed by one
neuron, telling if the processed movement is classified as
relevant vibrations or not. Neural network equations are:

Fig. 14: Artificial neural network for vibrations detection.

z[0] = W [0]a[0] + b[0] (2)

where z[0] is an array of forty elements, W [0] the weights
matrix of forty rows and six columns, b[0] the bias array of
forty elements and a[0] is the six rows input array with the
frequencies and magnitudes.

a[1] = g(z[0]) (3)

where g is the activation function chosen for the neural
network (sigmoid), and a[1] is the output of the second layer
with forty elements.

z[1] = W [1]a[1] + b[1] (4)

where z[1] is an array of one element, W [1] the weights matrix
of one rows and forty columns and b[1] the bias array of one
element.

a[2] = g(z[1]) (5)

The neural network output is a[2] and it represents the
probabilities of a vibration move detection.

2) Training: Training of the pattern recognition neural
network in supervised learning has been done off-line in C#.
The data collection involved 10 people (3 females and 7
males between 20 and 40 years) and is composed of 290
samples. The data set is divided into a training set of 120
samples, 60 with muscle vibrations and 60 without vibration,
and a test set containing 125 samples for no vibration moves
and 45 samples for vibration moves. No vibration moves test
set is bigger than vibration moves test set because there are
many kinds of movement corresponding to a situation without
vibration. Learning and testing all these situations is necessary
for avoiding false positive detections since it would activate
FES module when it is not necessary.
Learnt weights and bias of the network have been saved and
transmitted to the micro-controller for embedded real time
feature extraction and neural classification.

IV. RESULTS AND DISCUSSION

A. Classification results

Fig. 15: ANN ROC curves.

For evaluating the performance of the neural network,
Receiver Operating Characteristic (ROC) curve and average
precision (AP) are used as proposed in [15]. ROC curve is
presented in Fig. 15. which shows a comparison between the
ANN presented and the same ANN having 70 neurons in the
hidden layer instead of 40. AP of the ANN is presented in
Table I. It allows a second comparison for both ANN (40 and
70 neurones in the hidden layer).

B. Computation time

Embedded processing time for these detection are the fol-
lowing ones:



TABLE I: ANN Average precision.

Neurons in hidden layer 40 70
Average Precision 0.739 0.886

• Feature extraction:
Fast Fourier Transform: 1.774ms.
Peak Detection: 175µs.

• Pattern recognition:
Neural Network Computation:

Hidden layer of 40 neurons: 234µs.
Hidden layer of 70 neurons: 398µs.

At a 100Hz accelerometer frequency, detecting the presence
of vibration every 100ms using a 256 samples window is
largely enough. Detection is triggered by a microcontroler
internal timer. This leads to a computation time of 23.5ms
every second using a 70 neurons internal layer, leading to a
2.35% average usage of the embedded processor for this task.

C. Discussion

As shown in the classification results, using a 70 neurons
hidden layer on the learning network is better than using 40
neurons, with a very small impact on the overall computation
time. Increasing the number of neurons in the hidden layer has
been tested, but doesn’t improve a lot classification results.
Moreover, it can lead to an overlearning if the training set is
not large enough.

An optimal situation for our use is to avoid false positives
leading to activate FES when it is not necessary. As shown in
Fig.15, this can be achieved using a 70 neurons network with
a classification threshold equal to 0.7. In this case, results are
the following ones :

• No vibration moves : 125 true detections and 0 classifi-
cation errors.

• Vibration moves : 29 true detections and 16 classification
errors.

Precision of vibration move detection is TPRate = 64%,
precision of non-vibration move detection is FPRate = 0%.
This leads to an overall accuracy equal to 90.6%. Moreover, it
is important to notice that there are no false positive detection
of non-vibration moves : that means the FES is not triggered
if it is not necessary.

Many different features have been tested for this work. Our
conclusion is that the choice of the features extracted is es-
sential for a good pattern recognition and a high classification
rate.

V. CONCLUSION

In this paper, a novel approach for a smart embedded
functional electrical stimulation is proposed. In order to reduce
muscle fatigue, FES is triggered only when the muscle is
not strong enough to make a movement. In this situation,
resulting vibrations are detected using an inertial measurement
unit coupled with a feature extraction and a neural classifier.
Detection accuracy is 90.6% and requires only 2.35% of

the average embedded processor usage, with no classification
errors in the case of non-vibrating moves.

This novel FES can be used for Internet Of Things (IoT)
application, such as wearable devices thanks to it low cost
(about 10$), and its reduced size and power consumption.
Moreover, it can be operated on a single 3.7V Li-Ion cell
used very often in IoT applications.
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