
LOW PEAK DERIVATIVE SUM OF SINES 

ABSTRACT 

This paper proposes a method to generate multisines signals 
with reduced peak derivative. This is done by adjusting the 
phases in the Fourier domain with Genetic Algorithm such 
that in the time domain the maximum absolute signal’s 
derivative is minimized. The performance evaluation is made 
by comparing the method to signals with the same spectrum 
but with phase adjusted randomly. It will be shown for an 
audio test signal case study of a multisines signal comprising 
2500 sines that a reduction of 42% with respect to the mean 
maximum peak derivative and 31% with respect to the 
minimum maximum peak derivative over 1 million random 
trials. The proposed method is contrasted with a low crest 
factor signal method. It is found that there is a positive 
correlation between peak amplitude and peak derivative when 
signals are generated with random phases. Moreover, the 
signals obtained by minimizing either the peak amplitude of 
the peak derivative had also good performances with respect 
to the non-optimized criterion. 

Index Terms— Excitation Signal, Crests Factor, LTI, 
Nonlinear, Genetic Algorithms, Room Impulse Response 

1. INTRODUCTION

The multisine signals [1-3] are used for the estimation of 
frequency impulse response in numerous applications such as 
in telecommunications [4], radar technologies [5], biomedical 
measurements [6, 7], and for audio system parameter 
identification [8, 9]. 

Multisines signals have been the subject of numerous 
researches [3, 10-14], especially with respect of the 
minimization of their crest factor (CF), a measure of the 
extreme value of a signal for a given power spectrum [10] and 
is still an open problem [7, 14, 15]. The main approach is to 
adjust the phases of the multisine components in order to 
reduce the extreme values. Both analytical [10] and numerical 
methods [12] have been used for the CF minimization 
problem. The analytical methods generally have good 
performances and are fast but are most effective when the 
sines have equal amplitude. Numerical methods are slow and 
prone to converge to a local minimum, but are very flexible, 
allowing the use of any spectral shape [7, 15]. Excellent 
performances are attainable when initializing the numerical 
methods with results obtained by analytical ones [12]. 
However, this again gives better performances to cases with 

sines of equal amplitude. The reduction of the CF of a test 
signal is beneficial when nonlinearity involving the amplitude 
of the signal is present [9], to reduce the effect of the 
nonlinearity when estimating the linear frequency response 
[1]. Perhaps the simplest and best example of such 
nonlinearities is when a limit is imposed to the signal [11]. 

However, the CF minimization, while reducing the impact 
of the signal amplitude related nonlinearities, does not 
address nonlinearities caused by the derivative of the signal. 
Such derivative related nonlinearities are found in a wide 
variety of systems. Among them, systems involving 
operational amplifiers, where slew rate is important, have a 
limit to the derivative before distortion occurs. The 
operational amplifier is probably the simplest and best 
example of nonlinearities that are induced by the signal’s 
derivative. Also, with antennas used for wideband 
communication, non-static nonlinearities can be important 
[16]. Such nonlinearities which include memory are related 
to the signal’s derivative. As well, loudspeakers are well-
known to be nonlinear. Some aspects of their nonlinearity are 
related to the amplitude, but others are associated with the 
cone velocity. For example, the electro-dynamic coupling 
factor has nonlinear relations with both the cone displacement 
and velocity [17]. 

In this paper, the minimization of the peak derivative of a 
multisine test signal is proposed to mitigate system 
nonlinearity linked to the derivative of its input. The method 
should have applications in frequency response estimation for 
systems that involve nonlinearities caused by high signal’s 
derivative such as operational amplifiers with slew rate, 
wideband communication with antennas which includes 
nonlinearities with memory and loudspeakers with velocity 
related nonlinearities. 

The methods developed for CF minimization are natural 
candidates for peak derivative minimization. However, the 
derivative’s emphasis on the high frequencies restricts the use 
of the methods developed for constant spectrums. For 
example, if a multisine signal has equal amplitude 
components, the multisine resulting of its derivative will not. 
Hence, the analytical methods that need equal amplitude are 
not well suited for the peak derivative minimization. A 
possible exception is the case of pink noise (1/f noise, flicker 
noise) where the derivative yields a constant spectrum. 

To show the differences and similarities between the CF 
minimization and peak derivative minimization problems, the 
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same algorithm is used in both cases. Since the use of the 
analytical method should apply advantageously to the CF 
minimization than to the peak derivative minimization, a fully 
numerical method is preferred. Therefore, a GA approach is 
used, similar to the one proposed in [12], but without the 
initialization phase that used analytical approach. The results 
will be compared with signals with randomly generated 
phases and with a GA CF minimization result. It is found that 
a correlation exists between the amplitude CF and the 
derivative CF. The possibility of using multi-objective 
criterion [18-20] for control over the trade-off between the 
amplitude CF and the derivative CF will be discussed. 

Although the method presented in this paper has 
numerous applications, the example given in was developed 
as a test signal for room impulse response (RIR) estimation 
[21]. There are many methods to generate test signals for RIR 
with different properties [8, 22]. The multisine test signal is 
not the most common. Popular alternatives to the multisine 
signals are the Chirp signals [23] and the maximal length 
sequences (MLS) [24, 25]. Chirp signals have a great (low 
value) CF. They also allow eases of separation of the linear 
RIR from the non-linear distortions introduced by the 
loudspeakers. However, they are well-known for their high 
annoyance level in audio testing context [26]. MLS provides 
white noise type signals, much less unpleasant. However, 
with the MLS, the CF is not controlled and the RIR estimation 
much more sensitive to loudspeaker nonlinearities. The 
multisine approach does not have the annoyance factor of the 
Chirp signals and can have reduced CF, mitigating the 
loudspeaker nonlinear distortions with respect to 
displacement amplitude. The multisine test signals are 
therefore relevant to RIR estimation. 

The paper is organized as follows: Section 2 recalls the 
CF optimization by explaining the multisine signal, the CF 
and the GA. Section 3 describes the proposed derivative 
minimization method, the performance metrics and the 
application example. Section 4 presents and discusses the 
results. Finally, the conclusions are drawn in Section 5. 

2. CREST FACTOR OPTIMIZATION

The fundamentals of multisine signals optimization by 
genetic algorithms are described in this section. 

2.1. Multisine Signals 
A multisine signal is simply a signal composed of a certain 
quantity of sinusoids. However, in the context of CF 
optimization, there is a harmonic relationship between the 
frequencies involved. To ensure that the CF factor stays 
constant with time, the signal must be periodic. The multisine 
is sometimes written as a sum of sines or cosines. The signal 
𝑠𝑠 of length 𝑁𝑁 at sample 𝑛𝑛 with fundamental frequency 𝑓𝑓1,  𝐾𝐾 
components of amplitude 𝑎𝑎𝑘𝑘 and initial phase 𝜑𝜑𝑘𝑘 is written: 

𝑠𝑠(𝑛𝑛) = �𝑎𝑎𝑘𝑘 sin(2𝜋𝜋𝜋𝜋𝑓𝑓1𝑛𝑛/𝑁𝑁 + 𝜑𝜑𝑘𝑘).
𝐾𝐾

𝑘𝑘=1

(1) 

It is generally preferable to keep K<<N. This makes 
possible the evaluation of the CF without oversampling. If the 
number K is high, the computation should be carried by mean 
of the Inverse Fast Fourier Transform (IFFT). This is 
particularly useful when multiple signals must be generated, 
as in the GA optimization method described later. Let’s recall 
that in order to obtain a real signal, the phase spectrum must 
be conjugate symmetric. 

2.2. Crest Factor, Peak Value 
The CF is a measure of the relation between the extreme 

value of the signal with respect to its RMS, or standard 
deviation when the mean is null. In [10], the relation involves 
the difference between the maximum and minimum values 
while [11]. The CF is sometimes normalized with respect to 
the CF of a pure sine wave, which is the square-root of 2. In 
this paper, the simple peak value is preferred, with no 
normalization with respect to the standard deviation of the CF 
of the sine wave. This will be simpler to compare with the 
peak derivative. However, it should be noted that there is no 
impact regarding the improvement with respect to randomly 
generated phase signals. 

2.3. Randomly Generated Signals 
The CF of the test signal can be reduced by adjusting the 

phases of the sines. A simple approach is to generate multiple 
signals with the same amplitude but random phases. Some 
signals will have higher CF, some will have lower CF. The 
signal with the lowest CF can then be selected. 

2.4. Genetic Algorithms Optimization 
The nonlinear nature of the CF minimization problem 

leads naturally to consider GA [27] for minimization of the 
CF. This has been done successfully in [12]. The general idea 
of the GA method applied to the CF minimization problem is 
to generate an initial population of multisine signals with 
randomly generated phases. The signals with the best CF are 
used to generate a second generation of signals. The 
crossover between the selected signals and mutations are used 
to create new diversity in the new population. The selection, 
crossover and mutation process is performed multiple times 
(multiple generations). The main challenge in using the GA 
is to find a set of meta-parameters, such as the number of 
generations, the crossover ratio, the mutation ratio, the 
mutation method and elitism (number of best signals that are 
passed to the next generation untouched.) 

The main challenge in using the GA is to find a set of 
meta-parameters, such as the number of generations, the 
cross-over ratio, the mutation ratio, the mutation method and 
elitism (number of best signals that are passed to the next 
generation untouched.) It should be mentioned that the initial 
population in [12] was generated by another method [11] 
which gave better initial population performances. This 
approach is not used in this paper.  



3. PROPOSED METHOD 

This section presents the proposed maximum absolute 
derivative minimization problem and describes how its 
performances are evaluated. Also, an example of the method 
application is given. 

3.1. Maximum Derivative Minimization Problem 
The approach to minimizing the maximum derivative of a 

test signal with a fixed power spectrum proposed is illustrated 
the GA optimization method to adjust the phases of the 
multisine signal. An initial population of 𝑁𝑁𝐼𝐼 individuals is 
generated. Each individual consists of a vector 𝝋𝝋 containing 
the K phases 𝜑𝜑𝑘𝑘.For each individual, the fitness function is 
evaluated. This fitness function is the maximum value of the 
absolute value of the derivative of the signal obtained with 
the prescribed power spectrum and an individual’s phases. 
The best individuals are used to generate the following 
generation of individuals. The process is repeated as much as 
needed. 

The signal’s derivative is not defined in discreate time. 
We used a sampled derivative: 

𝑠𝑠′(𝑛𝑛) =
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

�
𝑡𝑡=𝑛𝑛

. (2) 

Applying this with (1), the following derivative signal is 
obtained: 

𝑠𝑠′(𝑛𝑛) =
2𝜋𝜋𝑓𝑓1

𝑁𝑁2 �𝑘𝑘𝑎𝑎𝑘𝑘 cos�2𝜋𝜋𝜋𝜋𝑓𝑓1𝑛𝑛/𝑁𝑁 + 𝜑𝜑𝑘𝑘�.

𝐾𝐾

𝑘𝑘=1

(3) 

The fitness function 𝑔𝑔 that must be minimized is: 
𝑔𝑔(𝝋𝝋) = max

n
(|𝑠𝑠′(𝑛𝑛)| ) . (4) 

It worth noting that if the number of multisine components 
𝐾𝐾 is high, the computation of 𝑠𝑠′ can be faster using the IFFT. 

3.2. Performance Metrics 
Since no method have been proposed yet to reduce the 

peak derivative, the performances are principally compared 
to signals with randomly generated phases. This approach is 
found notably in [12] where 100 random trials were 
performed. In this paper, with more powerful computer than 
in [12], it is very reasonable to do the trials over 1 million 
trials. For each trial, the absolute peak and the peak derivative 
are computed. The performances of the GA optimized signals 
are compared to 1) the mean absolute peak and peak-
derivative and 2) the minimum CF and peak-derivative 
obtained from the random trials. The relationship between the 
optimized and random signals are further presented with 
histograms and a scatter plot. 

3.1. Room Impulse Response Test Signal 
The design of a test signal for audio RIR is used as a 

typical application example. The parameters of the test signal 
will hence be selected in order to be useful for audio systems. 
Therefore, 𝐾𝐾 = 2500 sinusoidal components, from 1Hz to 
2500 Hz by steps of 1 Hz, a constant amplitude 𝑎𝑎𝑘𝑘 of the 

components, a sampling of 1 second at the sampling 
frequency of 44.1 kHz (𝑁𝑁 = 44100 samples) is desired. 

4. RESULTS AND DISCUSSION 

The results are presented and discussed in this section. 
Fig. 1 shows the fitness function during the GA 

optimization algorithm for the minimization of the peak 
derivative. The GA was performed by Matlab® with Global 
Optimization Toolbox. The number of generations was 5000 
but only 1000 were shown. No visible improvement was 
obtained after. The population size was 3000. Uniform 
initialization and mutation with a rate of 0.05 were selected 
along with an elitism of a single individual. The same GA 
options were used for the minimization of the peak amplitude 
(CF). In the graphic of Fig. 1, the initial population 
(generation 0) is representative of the randomly generated 
phases, with the mean on the above curve and the minimum 
over 3000 trials in the lower curve. The fitness function of the 
derivative has a high value, in the order of 1E4, because of 
the multiplication by the frequency involved with the 
derivative. 

Fig. 2 shows the power spectrum of the signals (a) and 
their derivative (b). It should be remarked that the power 
spectrums are identical for all the signals, optimized or not, 
since only the phases are different between them. The 
constant value of the signal’s power spectrum is selected in 
order that the signal has a root mean square (RMS) value of 1. 
The effect of the signal derivative in the Fourier domain is a 
linear multiplication. For this reason, in the band of interest, 
the derivative’s power spectrum is a parabola.  

Fig. 3 presents the signals in the time domain. In (a), an 
example of a randomly generated signal is given. In (b), the 
signal has been optimized for peak amplitude (CF) 
minimization while in (c), for peak derivative minimization. 
The signals in (d-f) are the derivative of their left 
counterparts. It is clear that the signal in (b) and (f) have a 

 
Fig. 1.  Average and best (Minimum) performances for each 
generation for peak derivative reduction with GA. 
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limited range while other signals do not have the same 
behavior.  

Fig. 4 shows the distributions of the of the random signal 
peak value (CF) in (a) over 106 trials and the distribution of 
their derivative in (b). The peak value of the signal optimized 
for the peak value is shown in (a) and the peak derivative for 
the signal optimized for the peak derivative is shown in (b). 
These are shown as a version of a one bin histogram, scaled 
for better visualization. It is clear that the optimized versions 
perform better than the best randomly generated signal in 
each case. 

Fig. 5 display the random signals as a scatter point of the 
peak derivative with respect to the peak value (CF). 
Correlation between the amplitude CF and the derivative CF 
was found for the randomly generated signals of 0.28. On the 
same plot are shown the two optimized signals’ features. It 
was also found that the signal optimized with respect to the 
amplitude CF had an excellent derivative CF, as well as the 
signal optimized with respect to the derivative CF had also a 
good amplitude CF. 

Table 1 summarizes the important results. The minimum 
and the mean of the peak and peak derivative for the random 
signals are reported. The peak and peak derivative 
performances of both optimized signals are shown. However, 
the interpretation of the results is more easily performed with 
the relative reduction in peaks given in Table 2. It can be seen 
that the reduction of the peak derivative of the optimized 
signal with respect to the peak derivative is of 42% relative 
to the mean of the random signals’ peak derivative and 31% 
relative to the minimum of the random signals’ peak 
derivative. Also, for the same signal, the performances with 
respect to the peak amplitude are almost as good as the best 
randomly generated signal. The same kinds of results were 

observed for the peak amplitude optimized signal: There is a 
similar proportional reduction for the peak derivative 
optimization as found in for the amplitude peak. 

The correlation between the peak value and peak 
derivative is probably linked to the fact that if there is a strong 
peak in the signal, it has similarities with a filtered Dirac 
function. The vicinity of the filtered Dirac impulse is subject 
to have strong derivative. 

It is expected that trade-off between the amplitude CF and 
the derivative CF could be desired. This could be achieved by 
using multi-objective criterion in the GA’s fitness function 
[18-20]. For this purpose, the flexibility of the GA’s method 
should be contrasted to that of the analytical approach 
methods. As presented in [7, 15], numerical methods can 
address problems with sparse or non-constant power 
spectrums. To this, this paper adds the multi-objective 
criterion combining the crest of the signal and its derivative.  
Further generalization could be considered with multi-
objective criterion combining multiple orders of the signal 
derivative. 

 
Fig. 3. Time domain signals and their derivatives. An example of 
random signal is given in (a) with its derivative in (d). The signal 
optimized for the CF reduction (peak amplitude) is found in (b) 
and its derivative in (e). The signal optimized for peak derivative 
is found in (c) and its derivative in (f). 
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Fig. 2.  Power spectrum of a signal s (a) and of the derivative s’. 
The power spectrums are identical for every signal since only 
the phases are different. 
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 The method was developed with an example of a large 
number of components, which is generally a hard problem. 
Although the results were convincing, there is probably still 
place for better performances. Since the nature of the 
minimization problem, it is possible that only local 
minimums were attained. The GA’s meta parameters can 
probably be improved to find a better solution. Initialization 
methods, such as in [12], could be applied. Also, research on 
analytical solutions, which takes into account the “blue-
noise” nature of the derivative of a constant power spectrum 
signal is desirable. However, pink noise test signals for which 
the derivate signals have a constant power spectrum would 
readily benefit from all the CF minimization techniques 
already existing in the literature that requires a constant 
spectrum.  

5. CONCLUSION 

In this paper, a new optimization problem was proposed, 
leading to low derivative multisine signals. These signals can 
reduce the presence of nonlinearities linked to its derivative. 
Results showed for an audio test signal that a reduction of 
42% could be achieved with respect to the average of 
randomly generated signals. It was also shown that the crest-
factor and maximum derivative were correlated. Future 
research will focus on the trade-off between amplitude crest-
factor and the peak derivative using multi-objective criterion. 
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