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Abstract—In the field of computational fluid dynamics, the
Navier-Stokes equations are often solved using an unstructured-
grid approach to accommodate geometric complexity. Implicit
solution methodologies for such spatial discretizations gener-
ally require frequent solution of large tightly-coupled systems
of block-sparse linear equations. The multicolor point-implicit
solver used in the current work typically requires a significant
fraction of the overall application run time. In this work, an
efficient implementation of the solver for graphics processing
units is proposed. Several factors present unique challenges to
achieving an efficient implementation in this environment. These
include the variable amount of parallelism available in different
kernel calls, indirect memory access patterns, low arithmetic
intensity, and the requirement to support variable block sizes.
In this work, the solver is reformulated to use standard sparse
and dense Basic Linear Algebra Subprograms (BLAS) functions.
However, numerical experiments show that the performance
of the BLAS functions available in existing CUDA libraries is
suboptimal for matrices representative of those encountered in
actual simulations. Instead, optimized versions of these functions
are developed. Depending on block size, the new implementations
show performance gains of up to 7x over the existing CUDA
library functions.

I. INTRODUCTION

FUN3D is a suite of computational fluid dynamics software
[1] developed at the NASA Langley Research Center to solve
the Navier-Stokes (NS) equations for a broad range of aerody-
namics applications across the speed range. The NS equations
constitute a complex system of time-dependent nonlinear par-
tial differential equations (PDEs) expressing the conservation
of mass, momentum, and energy and are characterized by
tightly-coupled multiscale interactions. The system is often
closed using auxiliary PDEs governing turbulence quantities.
For high-energy flows, traditional perfect gas assumptions are
invalid and the system must be further expanded to accommo-
date finite-rate chemistry models. For these reasons, accurate
and efficient simulations of complex aerodynamic flows are
challenging and require significant computational resources.

FUN3D uses an implicit time-integration strategy based on
a node-based, finite-volume spatial discretization on mixed-
element unstructured grids. An approximate nearest-neighbor
linearization of the residual equations for each control vol-
ume gives rise to a large tightly-coupled system of block-
sparse linear equations that must be solved at each physical
time step. The block size is determined by the number of

governing equations and may range from five to several
dozen. Multicolor point-implicit iterations are used to solve the
system of linear equations. Although the implementation has
been highly optimized for central processing units, computing
solutions to these linear systems nonetheless accounts for
a significant fraction of the overall runtime in virtually all
FUN3D simulations.

In this paper, an effort to port the multicolor point-implicit
linear solver used within FUN3D to graphics processing units
(GPUs) is described. Many researchers have studied efficient
implementations of iterative solvers on GPUs [2], [3]. Most
of these solvers have been for sparse matrices, and the focus
was primarily on optimization of an underlying sparse matrix-
vector product. The sparse matrix-vector product has also
been explored separately [4], [5], [6], [7], [8], [9]. To achieve
improved performance, implementations have been developed
using cuSPARSE library functions [10], [11].

To develop an efficient GPU implementation of the
multicolor point-implicit solver, functions provided by the
cuSPARSE and cuBLAS [12] libraries have first been consid-
ered. The function cusparseSbsrmv multiplies a block-sparse
matrix with a vector, and the function cublasStrsmBatched
solves block systems of equations by performing forward and
backward substitutions using a previously-factored coefficient
matrix. Numerical experiments show that the performance
of the library functions is suboptimal for linear systems
representative of those encountered in FUN3D simulations.

Optimized implementations of the cusparseSbsrmv and
cublasStrsmBatched functions are proposed. To perform a
sparse matrix-vector product, an algorithm that allocates a
number of warps, or a group of 32 threads, to process a subset
of the blocks in one row of the sparse matrix is proposed.
Additional warps are then allocated to perform forward and
backward substitutions. Several challenges are encountered,
including a variable extent of available parallelism, indirect
memory addressing, low arithmetic intensity, and the need
to accommodate different block sizes. To address these chal-
lenges, particular emphasis is placed on coalesced memory
loads, the use of shared memory and pre-fetching, minimal
thread divergence within warps, and strategic use of shuffle
instructions available on recent hardware.

While FUN3D can achieve coarse-grained parallelism by



using a conventional domain decomposition approach coupled
with standard message passing techniques, the scope of the
current effort is an optimal solver kernel appropriate for
execution on a single device. The extension to node-level
parallelism and multiple devices is relegated to future work.

The remainder of the paper is organized as follows. First, a
description of the linear system and associated data structures
is provided in Section II. Details of the multicolor point-
implicit algorithm are presented in Section III. Section IV
describes the optimized implementation of the solver for GPU
architectures. Computational results are presented in Section V,
including comparisons of the initial approach based on existing
library functions with an optimized implementation developed
in the current work. A summary is presented in Section VI
along with a discussion of future work.

II. LINEAR SYSTEM LAYOUT AND DATA STRUCTURES

The implicit solution approach used within FUN3D results
in linear systems of equations of the form Ax = b that must
be frequently solved during the course of a simulation. For a
spatial mesh containing n grid points, A represents a sparse
n × n matrix, where each matrix entry is a dense block of
scalar coefficients of size nb × nb based on the linearization
of the nonlinear governing equations at each grid point. Each
of the n rows and columns containing nb × nb blocks are
referred to as a brow and a bcol, respectively. The matrix A
is segregated into two separate matrices,

A ≡ D + O (1)

where D and O represent the diagonal and off-diagonal blocks
of A, respectively.

During FUN3D initialization, the grid points are renum-
bered using a reverse Cuthill-McKee (RCM) algorithm [13].
A similar technique is used for other grid entities such as
elements and edges. This approach improves cache locality
during stencil-based operations such as flux and Jacobian
evaluations and yields a tightly-banded matrix structure for
the implicit system of equations. An example of applying this
renumbering strategy to a tetrahedral mesh with n = 983, 633
is shown in Figure 1, where the indicated non-zero off-
diagonal entries represent dense blocks of fixed size for a given
simulation.

The data layout used to store the matrix D is straightfor-
ward. An array D of the form (nb, nb, n) is used to hold
the n blocks of D, where each nb × nb block is stored in
column-major order.∗ Prior to performing each linear solve,
each diagonal block Di is decomposed in-place into lower
and upper triangular matrices Li and Ui, respectively, for
1 ≤ i ≤ n. Values are stored using sixty-four bit precision
for numerical stability during the solution phase.

The sparse n × n matrix O contains nnz non-zero block
entries whose nb × nb blocks are stored using a modified

∗Note that the convention used here employs a boldface symbol to represent
the matrix and italic notation to indicate the array holding the non-zero values
of the matrix.

Fig. 1: Off-diagonal matrix structure after applying RCM
renumbering.

compressed sparse row (CSR) [14] format in which the
diagonal blocks are omitted. In this approach, two integer
arrays ia and ja are used to efficiently capture the sparsity
pattern of the matrix. The array ia is a rank-1 array of size
n + 1 whose i-th entry indicates the leading non-zero block
index in the i-th brow of O. The array includes a fictitious
n+1 entry to facilitate easy traversal of the elements through
the n-th brow. The ja array is a rank-1 array of size nnz that
provides the bcol index for each non-zero block. A third array,
O, of the form (nb, nb, nnz), is used to store the non-zero
entries. Each nb× nb block is stored in column-major order.
Thirty-two bit precision is used for the off-diagonal entries,
which substantially reduces the overall memory requirement
and significantly improves cache performance during the linear
solve. Figures 2 and 3 show a sample block-sparse matrix with
nb = 2 and the corresponding CSR arrays, respectively.

III. MULTICOLOR POINT-IMPLICIT SOLVER

Several linear-solver options are provided within FUN3D;
the scheme most commonly used in practice is a multicolor
point-implicit relaxation. In this scheme, the grid points are
grouped, or colored, such that no two adjacent points are
assigned the same color. All unknowns associated with a grid
point are assigned the color of the point. Since an approximate
nearest-neighbor flux Jacobian is used to construct the matrix
A, unknowns of the same color carry no data dependencies
and may be updated in parallel in a Jacobi-like fashion. Colors
are processed sequentially. Updates of unknowns of each color
use the latest updated values of x corresponding to other
colors. The overall process may be repeated using several outer
sweeps over the entire system.

Since unknowns of the same color cannot be topologically
adjacent, the multicolor approach produces an inherently poor
memory access pattern that discourages cache reuse. To im-
prove cache performance, the system of algebraic equations
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(a)

0 0 0 0 1 3 5 7
0 0 0 0 2 4 6 8
0 0 0 0 9 11 0 0
0 0 0 0 10 12 0 0
13 15 17 19 0 0 0 0
14 16 18 20 0 0 0 0
21 23 0 0 0 0 0 0
22 24 0 0 0 0 0 0


(b)

Fig. 2: Figure (a) shows the sparsity structure of a matrix O.
An entry × indicates a non-zero block. Figure (b) shows O
for a block size of 2× 2.

ia = [1, 3, 4, 6, 7]
ja = [3, 4, 3, 1, 2, 1]
O = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

Fig. 3: CSR storage for the matrix of Figure 2.

is renumbered such that unknowns of the same color appear
in consecutive order and the arrays ia and ja are modified
appropriately to reflect the new matrix structure. In this fash-
ion, stencil-based operations may be performed in a memory-
efficient manner while their contributions to A and b may be
mapped directly to a data layout more amenable to multicolor
relaxation. Upon completion of the linear solve, an inverse
map is used to update the nonlinear solution of the PDEs at
each grid point.

Eleven colors are required to process the matrix shown in
Figure 1. Grouping the matrix rows according to their assigned
colors produces the off-diagonal matrix shown in Figure 4,
where only rows associated with three colors are highlighted
for clarity. The resulting matrix structure has multiple bands;
each band corresponds to a color. The number of rows in each
color band is seen to decrease significantly with increasing
color index. The first few colors typically account for the
majority of the unknowns, while groups corresponding to
colors with a large index may contain only a few entries.

Solutions of linear systems based on matrices of the form
shown in Figure 4 present several challenges for modern accel-
erator and many-core programming environments. (1) With an
average of fourteen off-diagonal blocks per row, the arithmetic
intensity of the computation is quite low (≈ 0.5). This results
in a memory-bound scenario on the NVIDIA R© K40 GPU

Fig. 4: Off-diagonal matrix structure after RCM renumbering
and reordering based on row colors. Only three colors are
highlighted for clarity.

as indicated by the roofline model shown in Figure 5. (2)
Since the number of unknowns within a color may vary
substantially, the amount of parallelism available may also
vary. (3) The solver uses indirect memory addressing. (4) The
implementation must support a broad range of block sizes.

To facilitate discussion of the proposed algorithms, the
following nomenclature is used. The scalar value nc represents
the total number of colors required for the linear system.
The arrays bc(nc) and ec(nc) are used to keep track of the
starting and ending brow indices for each color. The scalar
nk = ec(k)− bc(k)+1 is the number of brows of color k for
1 ≤ k ≤ nc.

For color k, the solution procedure consists of three steps:
1) Compute qi = Oix, for bc(k) ≤ i ≤ ec(k). Here, Oi is

the i-th brow of O. Note that the output vector q has nk

components and its ith component qi has nb elements.
2) Solve for yi in Liyi = qi, for bc(k) ≤ i ≤ ec(k).
3) Solve for xi in Uixi = yi, for bc(k) ≤ i ≤ ec(k).

The output vector x has nk components and its i-th
component xi has nb elements.

Step 1 represents a block-sparse matrix-vector multiplication
between a sub-matrix of O of size nk×nb and corresponding
elements of the vector x. The cuSPARSE library function
that implements this computation is cusparseSbsrmv. The
operations in Steps 2 and 3 represent forward and backward
substitutions, respectively. These computations can be per-
formed using the cuBLAS function cublasStrsmBatched.

IV. GPU IMPLEMENTATION

The GPU device is best suited for computations that can be
executed concurrently on multiple data elements. In general,
a computation is partitioned into thousands of fine-grained



Fig. 5: Roofline model for the NVIDIA R© K40 GPU.

operations, which are assigned to thousands of threads on
a GPU device for parallel execution. The GPU hardware
consists of a number of streaming multiprocessors, which in
turn consist of multiple cores. Threads are organized in blocks,
or cooperative thread arrays (CTAs), where one or more blocks
run on a streaming multiprocessor. The threads in a block
are further partitioned into subgroups of 32 threads known as
warps. A warp runs on eight or sixteen cores of a streaming
multiprocessor in multiple clock cycles.

The initial implementation of the multicolor solver was
performed using functions available in the NVIDIA R© libraries
cuSPARSE and cuBLAS. However, numerical experiments
showed that the performance of these functions was sub-
optimal for matrices representative of those encountered in
FUN3D simulations. Therefore, optimized implementations of
these functions have been developed for block sizes 1 ≤ nb ≤
64. The existing library functions are used for block sizes
nb > 64.

Individual kernels have been developed to perform
block-sparse matrix-vector products for the ranges
nb ≤ 16 and 16 < nb ≤ 64. These functions
are referred to as cuda_matvec_kernel_1_16 and
cuda_matvec_kernel_17_64, respectively. The kernel
cuda_fb_kernel_1_64 has been developed to solve an array
of block triangular systems in the range nb ≤ 64. The overall
structure of the optimized solver is shown in Figure 6. Details
of the optimized kernels are presented below.

A. Block-Sparse Matrix-Vector Multiplication

Two algorithms are proposed for the block-sparse matrix-
vector multiplication qi = Oix, for bc(k) ≤ i ≤ ec(k). The
first algorithm is for nb ≤ 16 and the second algorithm is
for 17 ≤ nb ≤ 64. The first algorithm uses one warp across
multiple blocks; the second algorithm uses one or two warps
to process a single block.

i f ( nb <= 16 ) then
do c o l o r = 1 , nc

c a l l c u d a _ m a t v e c _ k e r n e l _ 1 _ 1 6 ( )
c a l l c u d a _ f b _ k e r n e l _ 1 _ 6 4 ( )

end do
e l s e i f ( ( nb > 16) . and . ( nb <= 6 4 ) ) then

do c o l o r = 1 , nc
c a l l cuda_ma tvec_ke rne l_17_64 ( )
c a l l c u d a _ f b _ k e r n e l _ 1 _ 6 4 ( )

end do
e l s e

do c o l o r = 1 , nc
c a l l c u s p a r s e S b s r m v ( )
c a l l c u b l a s S t r s m B a t c h e d ( ) / / f o r w a r d
c a l l c u b l a s S t r s m B a t c h e d ( ) / / backward

end do
end i f

Fig. 6: Overall structure of the optimized solver.

TABLE I: Parameter values for different block sizes.

nb nw nbk nrbk nb nw nbk nrbk
1 1 32 4 9 4 1 1
2 1 38 4 10 4 1 1
3 1 3 4 11 4 1 1
4 1 2 4 12 5 1 1
5 1 1 4 13 6 1 1
6 2 1 2 14 7 1 1
7 2 1 2 15 8 1 1
8 2 1 2 16 8 1 1

1) Algorithm for nb ≤ 16: A single warp is used to process
a variable number of non-zero blocks in a brow. The exact
number of non-zero blocks processed by a warp is determined
by the block size. For a given block size, three parameters are
defined that control the allocation of work to a warp. These
parameters are as follows:

nw: number of warps allocated to process a brow
nbk: number of non-zero blocks processed by nw warps
nrbk: number of brows allocated to a CTA

These parameters are depicted graphically in Figure 7 and set
using a lookup table based on the values shown in Table I,
which have been selected to improve load efficiency and
occupancy of the GPU device. The number of threads in a
CTA is given by nw × nrbk × 32.

Consider an example of a block-sparse matrix with a block
size of 4. In this case, nw = 1, nbk = 2, and nrbk = 4.
A single warp is used to process a row of the block-sparse
matrix in a loop, where nbk = 2 consecutive non-zero blocks
are processed by the warp at each iteration. The warp handles
32 (2 × (4 × 4)) scalar matrix entries during each iteration.
This allows a single warp to load the required elements of the
matrix in a coalesced fashion. The appropriate elements of
x are also loaded from the read-only data cache, multiplied
by the corresponding elements of O, and the results are
accumulated. After completion of the loop, the partial results
are stored in shared memory to be aggregated at a later time.



𝑛𝑟𝑏𝑘 rows are
processed by 
a 𝐶𝑇𝐴

𝑛𝑏𝑘 non zeros  are
processed by  𝑛𝑤 warps

𝑛𝑏 × 𝑛b
dense
matrix

Fig. 7: Processing of a block-sparse matrix by a CTA.

Now consider the details associated with four non-zeros
occurring in brow i. The relevant range of blocks stored
in the array O is the segment from istart to iend where
istart = ia(i) and iend = ia(i+1)−1. More specifically, the
first and last non-zero elements of brow i are O(1, 1, istart)
and O(4, 4, iend), respectively. During the first iteration, a
thread tid ∈ {1 . . . 32} of the warp works with an element
of O from the first two non-zero blocks in brow i. Thread tid
multiplies O(k, l, istart+nbki) with x(l, ja(istart+nbki)),
where

k = mod(tid− 1, 4) + 1
l = mod(tid− 1, 16)/4 + 1

nbki = (tid− 1)/16

During the second iteration, thread tid multiplies
O(k, l, istart+2+nbki) with x(l, ja(istart+2+nbki)). Once
all non-zero blocks are processed, the partial contributions
reside in shared memory as indicated in Figure 8. Note that a
CTA has four warps and is processing nrbk = 4 consecutive
rows of the matrix with one warp for each row. In Figure 8,
the value 0 ≤ nrbki ≤ 3 is used to identify which of the four
rows a warp is processing.

After all threads have stored their partial terms, they must be
aggregated. Note that a warp creates a block of 4×8 (nb×nb×
nbk) partial terms which must be aggregated along the second
dimension. Four threads of a warp are used to aggregate the
terms for a 4 × 8 block to generate the final four outputs. In
total, the first 16 threads for the first warp of the CTA are used
to aggregate the partial sums.

2) Algorithm for 17 ≤ nb ≤ 64: For this range of block
sizes, nw = (nb − 1)/32 + 1 warps are assigned to process
a non-zero block in a brow i. A CTA consisting of 4 × nw
warps processes all non-zero blocks in a brow by working
with four non-zero blocks at a time.

nbk i = ( t i d −1)/4∗4
fk = 0
do j = i s t a r t , i end −1, 2

fk = fk + O( k , l , j + nbk i )∗ x ( l , j a ( j + nbk i ) )
end do
shared_mem_fk ( k+ nbk i ∗16+ n r b k i ∗32)= fk

Fig. 8: Processing of brow i in the first matrix-vector product
algorithm. The brow i has four non-zero blocks.

i s t a r t = i a ( i )
i e n d = i a ( i +1)−1
fk = 0 . 0
do j = i s t a r t + t h r e a d I d x%y , iend , 4

do i = 1 , nb
fk = fk + O( t h r e a d I d x%x , i , j )∗ x ( i , j a ( j ) )

end do
end do
shared_mem_ps ( t h r e a d I d x%x , t h r e a d I d x%y )= fk

Fig. 9: Processing of brow i in the second matrix-vector
product algorithm. The brow i has eight non-zero blocks.

Consider the example of a block-sparse matrix with a block
size of 32. In this case, nw = 1, and the CTA (32 × 4)
consists of 4 warps. Now consider a brow i with 8 non-zero
blocks. The CTA assigned to this row processes all non-zero
blocks of brow i in two iterations. In the first iteration, warp
l of the CTA works with the lth non-zero block of brow i
for 1 ≤ l ≤ 4. During the second iteration, warp l of the
CTA works with the (l + 4)th non-zero block of brow i. The
appropriate elements of x are also loaded from the read-only
data cache, multiplied by the corresponding elements of O,
and the results are accumulated. After completion of the loop,
the partial results are stored in shared memory to be aggregated
at a later time.

Figure 9 shows the processing of brow i by the assigned
CTA. The value threadIdx%x is initialized to the thread
index within a warp and ranges from 1 to 32, and the value
of threadIdx%y is initialized to the warp number and ranges
from 1 to 4. Note that for aggregating the partial sums stored
in shared memory, only one of the four warps in the CTA is
used.

B. Triangular Solver

For this phase of the solve, all diagonal blocks of D can be
processed in parallel. As outlined in Section III, each diagonal
block Di, 1 ≤ i ≤ n, is processed in a forward phase
and a backward phase. The forward phase requires the lower
triangular portion of the diagonal block Di, while the upper
phase processes the upper portion. An algorithm is proposed
that uses one warp to process a diagonal block for both forward
and backward phases and accommodates block sizes up to 64.
The algorithm is first described for the case nb ≤ 32, followed
by matrices where 33 ≤ nb ≤ 64.

1) nb ≤ 32: During the forward phase, columns of the
lower triangular portion of Di are processed by a warp from



k = mod ( t h r e a d I d x%x−1, nb ) + 1
i f ( t h r e a d I d x%x <= nb ) f1 = q ( k , i )
do j = 1 , nb−1

fb = f1
fb = _ _ s h f l ( fb , j )
fd = 0 . 0
i f ( ( t h r e a d I d x%x >= j +1) . and . &
( t h r e a d I d x%x<=nb ) ) fd =D( t h r e a d I d x%x , j +1 , i )
f1 = f1 − fd ∗ fb

end do

Fig. 10: Processing of a diagonal block Di during the forward
phase.

k = mod ( t h r e a d I d x%x−1, nb ) + 1
i f ( t h r e a d I d x%x <= nb ) f1 = q ( k , n )
pa = D( t h r e a d I d x%x , 1 , i )
do j = 1 , nb−1

fb = f1
fb = _ _ s h f l ( fb , j )
fd = 0 . 0
i f ( ( t h r e a d I d x%x >= j +1) . and . &
( t h r e a d I d x%x <= nb ) ) fd = pa
pa = D( t h r e a d I d x%x , j +1 , i )
f1 = f1 − fd ∗ fb

end do

Fig. 11: Processing of a diagonal block Di with prefetching
during the forward phase.

left to right. The first column, of size nb − 1, is processed
first, followed by the second column, and so forth. Note that
a column cannot be processed until the preceding column has
been completed. As the loop progresses, smaller columns are
encountered, shrinking the amount of parallelism available to
a warp. For each column, results from a thread must be made
available to other threads. This is achieved using the shuffle
instruction provided on the NVIDIA R© K40 hardware.

Figure 10 shows a code segment to process a diagonal block
Di. The kernel is called with a CTA of size 32× 4. Further-
more, the thread index threadIdx%x must be initialized to
a value between 1 and 32 within a warp, and threadIdx%y
must be initialized to a warp value between 1 and 4.

Figure 11 shows how prefetching of D is also performed to
hide memory latency. Experiments have shown performance
benefits of 10−15% using this strategy. Finally, the backward
phase used to process the upper trianglular portion of a
diagonal block Di is analogous to the forward phase. An
example showing the computation for the backward phase for
a diagonal block Di is shown in Figure 12.

2) 33 ≤ nb ≤ 64: In this range, a single warp is still used to
process a diagonal block. Consider the forward phase in which
the lower triangular region of a diagonal block Di is processed.
The triangular structure is decomposed into three subregions
consisting of upper and lower triangles and a rectangular
block as shown in Figure 13. The procedure for the triangular
subregions is identical to that outlined earlier for nb ≤ 32.

i f ( t h r e a d I d x%x == nb ) f1 = f1 ∗D( nb , nb , i )
pa = D( t h r e a d I d x%x , nb , i )
do j = nb , 2 , −1

fb = f1
fb = _ _ s h f l ( fb , j )
fd = 0 . 0
i f ( t h r e a d I d x%x <= j −1) fd = pa
pa = D( t h r e a d I d x%x , j −1, i )
f1 = f1 − fd ∗ fb
i f ( t h r e a d I d x%x == j −1) f1 = f1 ∗ &

D( t h r e a d I d x%x , t h r e a d I d x%x , i )
end do

Fig. 12: Processing of a diagonal block Di with prefetching
during the backward phase. Note that the value of f1 is
computed in the forward phase.

1

2

3

32

33

34

nb

Fig. 13: Partitioning of the lower triangle of a diagonal block
of size nb > 32 into three parts: upper triangle, rectangle, and
lower triangle.

The rectangular subregion is processed in a similar manner;
however, the column size is fixed. Therefore, the amount of
parallelism available to the warp remains constant for this
phase. Processing of the backward phase is similar.

V. RESULTS

The optimized solver has been implemented using CUDA
Fortran. Compilation and execution are based on the Portland
Group R© Fortran Compiler version 15.10 and CUDA Toolkit
7.5. All results have been generated using an Intel R© Xeon E5-
2670 dual socket, eight-core host processor with an NVIDIA R©

K40 GPU device.
Performance is evaluated using a series of block-sparse

matrices based on tetrahedral meshes ranging in size from
n = 6, 309 to n = 983, 633 grid points. Specific attributes of
each test matrix are shown in Table II. For a given sparsity
structure, matrices are populated using random values over a
range of block sizes. Due to memory constraints, testing is
limited to small values of nb for matrices with large values
of n. Timings shown are based on a single traversal of the
matrix.



TABLE II: Test matrices.

n nnz nb nc Max brows Min brows
in a Color in a Color

6,309 85,768 1-100 10 1,076 5
103,178 1,370,396 1-10 10 17,826 15
204,983 2,740,266 1-10 10 35,218 42
394,745 5,309,536 1-10 10 67,748 96
800,322 10,823,162 1-6 11 138,080 1
983,633 13,567,574 1-6 11 166,800 3

Fig. 14: Performance comparison of an optimized solver with a
solver based on cusparseSbsrmv and cublasStrsmBatched
for matrix size 6, 309 and block sizes varying from 1 to 64.

The first test is based on a matrix with n = 6, 309. Due
to the relatively small size of the mesh, a broad range of
block sizes can be accommodated within the available device
memory. The performance of the library-based implementation
is shown as the black line in Figure 14. The performance of
this implementation shows a linear trend with block size over
subintervals of the range nb ≤ 64; however, abrupt increases
in the computational time occur at nb = 18, nb = 34, and
nb = 50. Results from the optimized implementation are
included as the red curve in the figure. The performance
of this implementation is also linear with nb, but is more
consistent than the library-based approach. The optimized
implementation is considerably faster across the entire range
of nb considered, with speedups of up to 7x evident.

The same test case is also used to evaluate the integrated
solver up to nb = 100. Here, the optimized implementation is
invoked for nb ≤ 64, while the library-based implementation
is used for 65 ≤ nb ≤ 100. Results are shown in Figure 15.
The red curve previously shown in Figure 14 is recovered for
nb ≤ 64, after which a dramatic increase in cost is observed
as the library-based implementation is used for larger values
of nb.

Results for the larger-matrix test cases shown in Table II
are limited to smaller block sizes due to memory constraints.
Table III summarizes the performance of the two implemen-
tations for the next three larger matrix sizes, across the range
nb ≤ 10. The optimized implementation outperforms the

Fig. 15: Performance of an integrated solver, where optimized
kernels are used for block sizes below 65 and existing library
functions are used for larger block sizes.

library-based approach by factors similar to those observed in
the smaller-matrix test case. Similarly, results for nb ≤ 6 using
the largest two matrices with n = 800, 322 and n = 983, 633
are included in Table IV. Again, the optimized solver is
substantially more efficient than the solver based on existing
library functions.

VI. SUMMARY AND FUTURE WORK

An optimized implementation of a multicolor point-implicit
solver for unstructured grid applications executing on a sin-
gle GPU device has been developed. Factors critical to the
performance of the underlying matrix-vector multiplication
and forward and backward substitution operations have been
identified, and several challenges specific to the target ap-
plication have been addressed. Efforts have been made to
ensure coalesced memory loads, to achieve optimal use of
shared memory and pre-fetching strategies, to minimize thread
divergence within warps, and to leverage specialized shuffle
instructions. Speedups of as much as 7x over an implemen-
tation based on existing CUDA library functions have been
observed for a broad range of matrix and block sizes relevant
to the target application.

To impact practical applications, the methodology devel-
oped in the current work must be extended to accommodate
multiple devices across leadership-class distributed memory
systems. In these environments, the baseline implementation
relies on conventional domain decomposition and standard
message passing techniques. The serial algorithm is recovered
by performing halo exchanges of the updated values of the
unknowns upon completion of each color group. The message
passing infrastructure within FUN3D has been extended to
accommodate Remote Direct Memory Access calls between
GPU devices, and extension of the solver approach developed
here is a focus of ongoing efforts. Finally, to minimize costly
host/device transfers, GPU implementations of other critical
kernels across FUN3D are also being examined.



TABLE III: Performance comparison of an optimized
solver with a solver based on cusparseSbsrmv and
cublasStrsmBatched for medium-sized matrices with block
sizes varying from 1 to 10.

n = 103, 178 n = 204, 983 n = 394, 745
nb Baseline Optimized Baseline Optimized Baseline Optimized

(ms) (ms) (ms) (ms) (ms) (ms)
1 9.3 1.5 17.2 2.7 31.4 5.1
2 11.8 1.6 20.5 3.0 39.1 5.6
3 14.7 1.9 24.4 3.6 47.5 6.8
4 16.2 2.2 27.7 4.3 52.5 8.1
5 19.6 2.9 35.3 5.5 66.5 10.4
6 27.1 4.8 49.9 9.3 96.5 17.8
7 28.5 5.0 55.1 9.7 104.7 18.7
8 30.3 5.1 57.3 10.0 107.9 19.2
9 42.8 8.4 81.7 16.5 155.9 31.8

10 45.7 9.0 85.8 17.8 165.9 34.3

TABLE IV: Performance comparison of an optimized
solver with a solver based on cusparseSbsrmv and
cublasStrsmBatched for large-sized matrices with block
sizes varying from 1 to 6.

n = 800, 322 n = 983, 633
nb Baseline Optimized Baseline Optimized

(ms) (ms) (ms) (ms)
1 61.9 10.1 74.9 12.5
2 78.2 11.1 92.7 13.8
3 93.0 13.7 112.1 16.9
4 104.6 16.3 130.0 20.0
5 126.8 21.1 164.9 25.7
6 188.7 36.1 236.0 44.2
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