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Abstract—Iterative methods on irregular grids have been used
widely in all areas of comptational science and engineeringfor
solving partial differential equations with complex geometry.
They provide the flexibility to express complex shapes with
relatively low computational cost. However, the directionof the
evolution of high-performance processors in the last two decades
have caused serious degradation of the computational efficiency
of iterative methods on irregular grids, because of relatively low
memory bandwidth. Data compression can in principle reduce
the necessary memory memory bandwidth of iterative methods
and thus improve the efficiency. We have implemented several
data compression algorithms on the PEZY-SC processor, using
the matrix generated for the HPCG benchmark as an example.
For the SpMV (Sparse Matrix-Vector multiplication) part of
the HPCG benchmark, the best implementation without data
compression achieved 11.6Gflops/chip, close to the theoretical
limit due to the memory bandwidth. Our implementation with
data compression has achieved 32.4Gflops. This is of course
rather extreme case, since the grid used in HPCG is geometrically
regular and thus its compression efficiency is very high. However,
in real applications, it is in many cases possible to make a large
part of the grid to have regular geometry, in particular when
the resolution is high. Note that we do not need to change
the structure of the program, except for the addition of the
data compression/decompression subroutines. Thus, we believe
the data compression will be very useful way to improve the
performance of many applications which rely on the use of
irregular grids.

Index Terms—Finite Element Analysis, Sparse Matrices, Data
Compression

I. I NTRODUCTION

In this paper, we describe the implementation and perfor-
mance of the multiplication of sparse matrix and vector (here-
after the SpMV multiplication) on the PEZY-SC processor. In
particular, we focus on the effect of various data compression
schemes on the performance. The multiplication of sparse
matrix and vector is the most time consuming part of many

real applications which use irregular grids. The best-known
example is the FEM (Finite Element Method) for structural
analysis and many other CAE applications. Irregular grids are
essential to allow the analysis of objects with complex shapes.
Though it is not impossible to apply regular grids to complex
shapes, generally irregular grids offer more accurate results
with much smaller number of freedoms.

However, it has become very difficult to achieve even
reasonable efficiency on the SpMV multiplication on modern
HPC systems. There are two main reasons for this difficulty.
The first one is the memory bandwidth. Consider the multi-
plication of matrixA and vectorx,

y = Ax. (1)

For real applications, the matrixA is too large to fit to the
cache memory. On the other hand, vectorsx andy are much
smaller, and there is always the possibility of extensive data
reuse for them. Thus, the dominant part of memory access for
an SpMV operation is the reading of the (sparse) matrixA.

The exact data size of the matrixA depends on the used
data format, but it cannot be smaller than the number of non-
zero elements ofA. The number of floating-point operation
per one non-zero element ofA is two. Thus, If the data
format is used is the double-precision format, memory read of
eight bytes takes place for every two floating point operations.
In other words, the “required” B/F (byte per flops) number
is 8/2 = 4. Note that here we ignored the memory read
for the indices. If we use the ELL format, which usually
is the most efficient format for storing the matrix in FEM
applications, required bandwidth can increase by 50-100%.
Thus, the required memory bandwidth, in terms of the B/F
number can be between six and eight.

In the 1980s, vector supercomputers had the memory sub-
system which could support at least a fair fraction of the
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the memory bandwidth requirement of the SpMV operation,
since the hardware B/F number of vector machines in 1980s
ranged between 4 and 12. Here, the hardware B/F number
of a machine is defined as the theoretical (or measured)
memory bandwidth in bytes/second divided by the theoretical
peak performance of the floating-point operation measured in
the number of floating-point operations per second. Vector
machines in 1980s had sufficient memory bandwidth to keep
the floating-point unit busy for SpMV multiplications.

However, the B/F numbers of microprocessors used for
modern HPC systems are much smaller. For example, the B/F
number of K computer is 0.5, and this is rather exceptionally
high in today’s standard. Recent Xeon-based systems have the
B/F numbers of around 0.2. If the required B/F number is six,
this means that the theoretical maximum efficiency of modern
HPC systems would be around or less than 5%.

In fact, the ratio between the measured HPL performance
and measured HPCG performance of machines in the June
2016 top 10 list of HPCG benchmark1 ranges between 0.4
and 5%, and the numbers of Xeon-based systems are 2-3%.

Thus, the low memory bandwidth of modern HPC systems
is clearly the primary reason for the very low efficiency of
SpMV multiplication on them.

The second reason is the tendency of designers of modern
to adopt SIMD arithmetic unit with rather wide width (4-
8 words). The computing kernel of SpMV operation, for
irregular matrices, requires the indirect access of the elements
of either the vector or the matrix. The performance of indirect
access on modern processors with wide SIMD units are
very low. Some processors do not support SIMD operations
for indirect memory access. Even on machines with SIMD
instructions for indirect memory access, their throughputis
much lower than simple SIMD load/store instructions. On
some machines this inefficiency can cause further degradation
of performance of SpMV operations.

One way to reduce the required memory read is the
element-by-element (EbE) method. In the EbE method, the
sparse matrixA is constructed from the original physical and
topological data of each element on the fly. Since the total
amount of data for all elements is significantly smaller than
the size of the generated matrix, we can reduce the amount
of memory access. Even though the calculation cost of on-
the-fly construction of the matrix is fairly high, the total
computing time can be significantly reduced by moving to
the EbE method. EbE method has become widely used in
many FEM applications, since it can achieve quite significant
improvement in the actual speed of calculation, even though
the calculation cost is increased.

Another way which can potentially be useful in reducing the
required amount of memory access is to compress the matrix
using some data compression algorithm. However, even though
there are many research papers on the use of data compression
in HPC applications, there seems to be little work on the
application of data compression to SpMV multiplications. One

1http://www.hpcg-benchmark.org/custom/index.html?lid=155&slid=288

possible reason is that in order to achieve actual speedup, data
decompression algorithm must be extremely efficient, sincethe
number of floating-point operations per one matrix element is
only two. If the decompression algorithm requires more thana
few instructions, it will cause quite significant increase of the
total cost. Moreover, generally the decompression algorithm
requires some table-lookup operations, in other words, the
indirect memory access for which modern microprocessors are
not particularly efficient.

On the other hand, if the hardware B/F number of a system
is extremely low, we might be able to achieve significant
performance improvement on SpMV multiplications by using
data compression/decompression.

In this paper, we report the performance of the ZettaScaler-
1.5 supercomputer [7] on the SpMV part of HPCG benchmark
[4], [5], with and without the use of data compression/decom-
pression.

The ZettaScaler (previously called ExaScaler) system is
based on the first-generation PEZY-SC 1024-core processor
chip. It appeared in the TOP500 list of November 2014 and
ranked #2 in the Green500 list. In the June 2015 Green500
list, three ExaScaler systems occupied top three ranks. The
system listed #1 achieved the performance per watt exceeding
7 Gflops/W, significantly higher than the number of the #1
system for November 2014 Green500 list. As of June 2016,
it still keeps the #1 position in the Green500 list.

The reason why we used the ZettaScaler system as the
testbed for the data compression algorithm is that its hardware
B/F number is rather low, around 0.05. Thus, it is ideal as the
testbed of algorithms which will be useful for processors in
the near future. In addition, its processor cores do not have
SIMD units. Thus, we might be able to achieve pretty good
speedup for SpMV multiplication using data compression.

The ZettaScaler system is rather similar to modern GPGPU-
based systems, in which the GPGPUs are connected to Intel
Xeon processors through PCIe interface, and Xeon processors
are connected using Infiniband network. There are, however,
two unique features of the ZettaScaler system. The first one
is of course the use of PEZY-SC processor chip, which is
a 1024-core MIMD processor with physically shared memory
and hierarchical cache. It was developed by a Japanese venture
company, PEZY Computing. The second feature is the im-
mersion cooling system in which fluorocarbon (3M Fluorinert
FC-43) is used. For the ZettaScaler system, they designed
motherboards for Xeon processors and processor cards for
PEZY-SC processors to achieve high-density packing. The
use of immersion cooling has the potential advantage of
reducing the PUE number and also reducing the junction
temperature of the processor chips, resulting in more energy
efficient operation. However, the primary reason of the high
performance-per-watt number of the ZettaScaler system is the
design of the PEZY-SC processor itself.

The PEZY-SC processor integrates 1024 MIMD cores,
each with fully pipelined double-precision multiply-and-add
(MAD) unit, into a die of size 400 mm2, using TSMC’s
28HPM process. Its nominal power consumption is only 65



W for the operation with 733 MHz clock.
At least for the HPL benchmark, or more specifically the

DGEMM operation (double precision dense matrix multipli-
cation), the PEZY-SC processor has achieved quite impressive
performance per watt, even though the efficiency compared to
the theoretical peak performance is still rather low (slightly
better than 50% for HPL). On the other hand, the porting
of applications could be relatively easy, since the PEZY-SC
processor is an MIMD manycore processor with hierarchical
(but non-coherent) cache and physically shared memory. Also,
a fairly well designed subset of OpenCL, PZCL, is supported.

In this paper we first present the performance of HPCG
on PEZY-SC processor, with usual optimizations applied in
previous works. Then we proceed to present the performance
of “optimized” implementations of SpMV operation with on-
the-fly data compression and decompression.

This paper is organized as follows. First, in section II,
we present the overview of the PEZY-SC processor and the
ZettaScaler system. In section III, we describe our imple-
mentation of HPCG on PEZY-SC processor. In section IV,
we present the performance result. Finally, in section V,
we present data compression/decompression algorithms we
implemented and its measured performance on PEZY-SC. In
section VI, we summarize the paper and discuss the future
directions for research and development.

II. T HE PEZY-SCPROCESSOR CHIP AND THE

ZETTASCALER SYSTEM

In this section, we overview the architecture of the PEZY-
SC processor and the ZettaScaler system. In subsection II-A,
we give a brief overview of the PEZY-SC processor. In
subsection II-B, we give a brief overview of the ZettaScaler
system.

A. The PEZY-SC processor

The PEZY-SC processor [6], [7] integrates 1024 MIMD
cores with three levels of cache memory. In this section, we
describe the structure bottom-up, starting from the processor
core.

Each of the PEZY-SC core can do one double-precision
MAD operation or two single-precision MAD operations per
cycle. It has the usual load-store architecture. The core isa
quite simple dual-issue, in-order core with four-way (can be
eight-way) SMT. Thus, the impact of the latency of data caches
to the performance is relatively small, even though the in-order
core is used.

One rather unusual feature of the PEZY-SC processor core is
that each core has 16KB of the local memory, accessible only
by that core. It has the separate local address space, and can
be used to store the data which is repeatedly used by the core.
Since this local memory provides the largest on-chip storage
(16MB in total) with very high bandwidth, it is essential to
take advantage of this local storage to achieve high efficiency,
in particular for compute-intensive applications. For example,
there is well-known tradeoff between the required memory
bandwidth and required on-chip storage, for the performance

of the DGEMM operation. Thus, the use of this local memory
is essential to achieve high efficiency for DGEMM.

Two cores share one L1D cache of 2KB. The size of L2D
cache is 64KB and one L2D cache is shared by 16 cores.
In the PEZY terminology, cores that share the L2D cache
form a “city”. The size of the L3D cache is 2MB, and 16
“cities” share one L3D cache, to form a “prefecture”. Thus,
each prefecture consists of 256 cores, and the one PEZY-SC
chip consists of four prefectures. Finally, the chip is connected
to eight channels of either DDR3 or DDR4 DRAMs.

Thus, the PEZY-SC processor has three levels of cache
memories. These cache memories arenot coherent. Cores
which share the same L2D cache can read the data written
by other cores only after explicit flush operation and barrier
synchronization, and the same is true for the L3D cache and
the main memory. Both the flush and barrier synchronization
instructions are provided to each levels of cache. To be precise,
the barrier instruction is available also for one core (multiple
threads). Clearly, this removal of the cache coherency has
greatly simplified the processor design, and made it possible
to construct a 1024-core processor with three levels of cache.
The line sizes of the L1, L2, and L3 data caches are 64, 256,
and 1024 bytes. By changing the line size, the designers of
the PEZY-SC processor kept the bandwidth of L2 and L3 data
caches very high. The bandwidth of L2D cache is the same
as that for L1D, and L3D offers around half of them.

From the application programmer’s point of view, the
lack of the cache coherency does not seem to pose severe
limitation, as far as HPC applications (or their computing
kernels) are concerned. For many applications, programmers
know at which moments processors need to communicate.
Moreover, they try to minimize the communication between
cores to achieve high efficiency. Thus, from the point of view
of tuning, the lack of the cache coherency can be regarded as
the ability of the programmer to control the traffic between
cores. Moreover, the barrier synchronization is almost always
necessary before the communication, since otherwise what
core A expects that core B has updated might not be actually
updated yet. Efficient hardware-supported flush and barrier
synchronization is thus quite useful.

The cache for instruction is also multi-level. For I caches,
the line size and the bandwidth are essentially the same for
all levels. As far as all cores run the same and relatively small
kernels, this structure works fine.

Each PEZY-SC chip has 32 lanes of PCIe (Gen3) interfaces,
which is controlled by integrated two ARM 926 processors.
PCIe interfaces can be used to transfer the data between the
main memory of PEZY-SC processor and the host processor,
either by DMA or PIO read/write of the host processor.

PEZY-SC processor supports a language called PZCL, a
dialect of OpenCL. It supports most of the features of OpenCL,
but there are some limitations in particular when the perfor-
mance is important (which is of course almost always the
case). The number of software threads created should besame
as the maximum number of hardware threads (8192 per chip)
to achieve best efficiency. Another difference comes from



the fact that the cache is not coherent. Functions to flush
appropriate levels of cache should be inserted manually to
guarantee the correct result. For small computing kernels,this
is not too difficult, but of course can be a source of hard-to
fix bugs.

As one PEZY-SC processor has eight channels of DDR4
DRAMs, the theoretical peak memory bandwidth is 85GB/s
when the DDR4 clock is 1333 MHz. The actual read band-
width is around 75 GB/s, and STREAM copy performance
is 40 GB/s. The copy performance is low because the write
bandwidth is 1/2 of the read bandwidth.

The read bandwidth of L1, L2 and L3 caches (chip total)
are 2000, 2000, and 700 GB/s, respectively.

B. The ZettaScaler system

The current generation of the ZettaScaler system
(ZettaScaler-1.5) consists of multiple computing nodes,
each of which consists of one Xeon (E5-v3) processor and
four PEZY-SC processors. The Xeon processor is mounted to
a specially-designed motherboard, and PEZY-SC processors
are mounted to also specially-designed module boards. The
connection between the host Xeon processor and one PEZY-
SC processor is an 8-lane Gen3 PCIe channel. The network
between computing nodes is a standard FDR Infiniband.
The largest existing configuration of ZettaScaler system is
a 320-node system called “Shoubu”, installed at RIKEN
ACCC. Smaller systems are installed at KEK as well as
RIKEN AICS.

A very unique feature of the ZettaScaler system is the use
of immersion cooling with fluorocarbon (3M Fluorinert FC-
43) coolant. Compared to previously used oil-based coolant,
fluorocarbon coolant has several advantages like the ease of
handling, safety (it is nonflammable), and smaller coefficient
of thermal expansion. The major disadvantages are the price
and potential greenhouse effect, though the latter is not so
severe because of the high vaporization temperature of the
particular coolant actually used.

III. T HE OVERVIEW OFHPCGBENCHMARK AND

IMPLEMENTATION ON PEZY-SC

In this section, we briefly describe the HPCG benchmark
itself and our reference implementation on the PEZY-SC pro-
cessor. In subsection III-A, we describe the HPCG benchmark
and in subsection III-B, our implementation of HPCG on
PEZY-SC.

A. The HPCG benchmark

As we’ve already discussed in section I, the HPCG bench-
mark [4], [5] is, according to its designers, “designed to
measure performance that is representative of many important
scientific calculations, with low computation-to-data-access
ratios.” As such, it mimics the major operations of FEM using
the CG with Multigrid solver, on irregular grid. Unfortunately,
the currently available official specification of HPCG [5] is
rather old, and the algorithm described there and what is
used in the current benchmark code are quite different. In the

following, we first follow [5] and then summarize the changes
made.

From the mathematical point of view, the problem solved
in HPCG is a 3D diffusion equation discretized using 27-point
stencil on a regular grid of size(nxnpx, nynpy, nznpz), where
(nx, ny, nz) is the size of the grid on each MPI process and
(npx, npy, npz) is the MPI process grid. Thus, the total number
of the MPI processes isnpxnpynpz.

In the original specification, HPCG solves this problem
using the symmetric Gauss–Seidel preconditioned CG iter-
ation, and the users are not allowed to change this basic
CG algorithm. In particular, the multigrid method, which
is essential if one wants to solve large 3D problems, is
not included. Thus, not surprisingly, this is changed in the
current specification. Four-stage V-cycle geometric multigrid
preconditioner is used.

What is measured in the HPCG benchmark is the weighted
average of the computing speed of major operations, in par-
ticular SymGS, SpMV, Restriction, Prolongation, DotProduct,
and Waxpby. Usually, two functions, ComputeSPMV and
ComputeSYMGS, dominate the total computing time and thus
determine the performance.

B. Implementation of HPCG on PEZY-SC

Our reference implementation of HPCG on PEZY-SC is
pretty straightforward. The following six procedures are ported
to PEZY-SC (rewritten using the PZCL language):

• SymGS
• SpMV
• Restriction
• Prolongation
• DotProduct
• Waxpby
Both the matrix data and vector data are kept on the memory

of PEZY-SC. Therefore, only a small amount of data to be
transferred for convergence check and other operations andthe
boundary data to be exchanged between nodes are exchanged
between the host Xeon processor and the PEZY-SC processors.

The rewrite using PZCL is pretty straightforward. As noted
earlier, the main point currently we need to care is that the total
number of threads should be actually equal to the available
number of hardware threads.

Since the changes which directly take advantage of the
regular structure of the grid are not allowed in the optimization
phase, algebraic block multicolor ordering [8] is used for the
SymGS part.

Table I shows the operations performed in one CG itera-
tion. Since 4-level V-cycle multigrid method is used, SymGS
routine is called seven times per iteration, and SpMV four
times.

IV. HPCG BENCHMARK RESULT

A. Measured Performance

We have measured the performance of HPCG on the
“Ajisai” ZettaScaler system installed in RIKEN AICS. It
has the total of 64 Xeon nodes each with four PEZY-SC



TABLE I
OPERATIONS AND COMMUNICATION DURING ONECG ITERATION. P AND
X INDICATE PEZY-SCAND XEON, p THE DIRECTION VECTOR, AND z THE

PRECONDITIONED RESIDUAL VECTOR, RESPECTIVELY.

Repeat Operation send buf p z cycle

3

FillZero

ց
SymGS P→X X→P

SpMV P→X X→P

Restriction

FillZero

3
SymGS P→X X→P

ր
Prolongation

SymGS P→X X→P

CG

Dotproduct

Waxpby

SpMV P→X X→P

Dotproduct

Waxpby

Waxpby

Dotproduct

processors. We made the measurement of the performance
on up to 32 PEZY-SC processors. We assign one PEZY-SC
processor to one MPI process. Therefore, four MPI processes
run on each Xeon processor. The core clock of the PEZY-SC
processor is 733 MHz. Memory clock is 1333 MHz. The host
CPU is Xeon E5-2618L v3 with 8 cores at 2.3 GHz clock.
Each PEZY-SC processor has 32 GB or DDR4 memory, and
the host Xeon processor 128 GB.

On 32 PEZY-SC processor, the achieved performance for
HPCG 3.0 rating is 168.06 Gflops (For HPCG 2.4 rating,
189.15 Gflops). The problem size used is1763 local grid
with 4 × 4 × 2 processor grid, for the global problem size
of (704, 704, 352).

For this particular problem size, HPCG reported conver-
gence after exactly 50 iterations.

Figure 1 shows the breakdown of the execution time. As
usual, SpMV and SymGS dominate the execution time. The
speed of these two sections are 238.4 Gflops and 217.6 Gflops,
respectively. If we calculate the performance per MPI process
(or per PEZY-SC processor), they are 7.45 Gflops and 6.80
Gflops.

For comparison, we measured the single-process perfor-
mance of the same code on one PEZY-SC processor. The
problem size per MPI process is the same. The speed of
SpMV and SymGS sections are 9.47 Gflops and 8.08 Gflops,
respectively. Thus, we can see the overhead of around 20%,
due to parallel execution (primarily due to communication
overhead).

The result of the comparison between single-process and 32-
process performance numbers indicate that the parallelization
overhead is, though not negligible, fairly small, and that single-
node performance is the primary factor that determines the
total performance.

SymGS, 

56.34%

SpMV, 25.86%

DotProduct, 

6.22%

WAXPBY, 

5.91%

Prolongation, 

4.00%

Restriction, 

1.67%

Fig. 1. Fraction of computing time spent in sections of HPCG benchmark
code.

B. Performance Analysis of the reference implementation

In this section, we discuss whether or not the achieved
performance of our reference implementation, in particular
that of the single-chip calculation, is reasonably optimized
or not. We limit our analysis to SpMV, to simplify the
discussion. Since the achieved performance numbers of SpMV
and SymGS are not much different, we believe the analysis
of SpMV is sufficient to discuss the behavior of hardware and
software.

The single-chip performance of the SpMV operation on
a PEZY-SC processor is 11.6 Gflops, for the operation at
the finest level. Since the matrix is quite large and each
non-zero element of the matrix is used only once per one
SpMV operation, the performance of SpMV is bandwidth
limited. One element is expressed by one four-byte integer
number and one eight-byte floating-point number, and for
this element two floating-point operations are performed (one
multiplication and one addition). Therefore, to achieve the
speed ofx Gflops, required memory read bandwidth is given
simply by (x/2) × 12 = 6x GB/s. Therefore, 11.6 Gflops
means the read performance of 70 GB/s.

The theoretical peak memory bandwidth of a PEZY-SC
processor is 85 GB/s, and the actual measured read perfor-
mance is around 75 GB/s. Therefore, the peak performance
achievable by SpMV is around 12.5 Gflops. We can see that
the performance of 11.6 Gflops is quite close to what can be
achieved.

We can thus conclude that we have successfully ported
HPCG on the PEZY-SC processor, and for the SpMV opera-
tion we achieve the performance very close to the theoretical
limit determined by the throughput of the external memory.
Therefore, we now have a good reference implementation,
against which we can measure the effect of data compression.



V. I MPLEMENTATION OF THE SPMV MULTIPLICATION

WITH DATA COMPRESSION/DECOMPRESSION AND ITS

PERFORMANCE

In this section, we investigate possibilities to reduce the
required memory bandwidth, without changing the basic CG
algorithm or preconditioner algorithm. As discussed in section
I, one practical possibility to reduce the required memory
bandwidth not explicitly prohibited is the use of on-the-flydata
compression/decompression. The use of the data compression
in HPC is currently an active area of research, and many
methods, both lossless and lossy, have been proposed [10].

Many of the previous proposals of the use of data com-
pression is for storage and checkpointing, but there are also
many studies of the use of data compression on cache and
main memories [11]–[13].

So far, the use of data compression on the level of main
memory or cache memory is not quite popular in HPC.
In many cases, the calculation cost of compression/decom-
pression operations is too high. However, in the case of
the access of the sparse matrix in CG iterations on the
PEZY-SC processor, there are several reasons to expect that
the compression technique can be advantageous. First, the
compressed data is reused a number of times. Therefore, the
cost of the compression operation is relatively unimportant.
We still need a fast and efficient decompression algorithm.
Second, the PEZY-SC processor is a fully MIMD and multi-
threaded processor, which can generate a very large number
of independent memory access simultaneously. This feature
is particularly important, for table-based data decompression
techniques. Each of the 1024 cores of PEZY-SC processor can
execute one load instruction per cycle. On the other hand, the
cores of modern microprocessors with wide-SIMD execution
units can generally issue either one or two load per cycle.
Since the number of cores of these processors are less than
32, PEZY-SC can be more than one order of magnitude faster
in table lookup, resulting in much better performance in data
decompression.

We have tested several implementation of fast compres-
sion/decompression algorithms for simplified implementation
of SpMV operation on the PEZY-SC processor. The original
matrix is the same as what appears in the HPCG benchmark.

So far, the best result is achieved by a simple table-
based compression. In this algorithm, first the entire matrix is
scanned and all unique values in the matrix elements are listed
and sorted in the ascending order. We call this list the value
table V and i-th element ofV is vi. Therefore,vi < vi+1.
Then, for each row of the matrix, the non-zero elements are
also sorted in the ascending order. Now we have the list of
column indices, sorted by the actual value of the element. We
call this list sorted column listSi. Now, for eachvi of V , we
calculate the last position of that value in the sorted list of
non-zero elements, and record that value to create the list of
“terminal” indices,Ti.

The implicit assumption here is that the size of the value
table is small, which is certainly true for HPCG but might

Original ELL format for a row
Value -1 -1 26 -1 -1
Column 45 49 50 51 65

Value table
Value -1 26

Compressed expression for a row
Si 45 49 51 65 50
Ti 3 4

Fig. 2. The data compression algorithm

TABLE II
THE EFFECT OF THE DATA COMPRESSION ALGORITHMS APPLIED TO

SPMV OPERATION

Compression method Measured performance Theoretical performance

Original 11.6GF 12.5GF

Data Table 15.9GF 34.8GF

Data+Index Table 32.4GF 326GF

not always be true for general applications of CG method. On
the other hand, if one uses constant-size elements for the area
with uniform physical characteristics, elements with the same
values do appear quite often. Thus, it is quite likely that our
compression method would work for the large fraction of the
rows of the original matrix, even if we limit the size of the
value table to be small. In the case of the matrix in the HPCG
SpMV operation, the size ofSi per one node is 27, andTi

can be two. Thus, one row of the matrix is now compressed to
(27 + 2) · 4 = 116 bytes, from the original size of 324 bytes.

We can further compress the list ofSi in the following way.
First, we convert the actual values of column indices to the
value relative to the diagonal element. Then, we register the
pattern of this relative displacement of column indices to a
table to perform the data compression. Since the majority of
the nodes have the same index pattern for relative displace-
ment, this compression can effectively reduce the size of the
index array to4N bytes, whereN is the matrix dimension.
Thus, instead of 116 bytes per node, we have now 12 bytes per
node. If we register to this table the values of matrix elements
themselves, we can probably reduce the size by another factor
of three, resulting in essentially four bytes per node.

We can probably further compress the data by applying a
simple run length compression to the final table.

So far, We have actually implemented the first two com-
pression schemes. Table II show the resulting performance.
The first approach of compressing the data array only should
theoretically give around a factor of three speedup, and actu-
ally realized the speedup by 50%. The second one, in which
both the index array and the data array are compressed, should
theoretically give around a factor of 25 speedup, and actually
achieved the speedup by a factor of 2.8.

The reason why the actual speedup is much smaller than
the theoretical limit is simply that to estimate the theoretical
limit we ignore the access cost of the input vector, which is



currently accessed indirectly with rather large address offsets
in the innermost loop. With reordering of the vector and matrix
we might be able to improve the performance further.

List 1 shows the conceptual code for data and index
compression. The fact indices and data are compressed means
that their actual values are obtained by table lookup operations.
Thus, on modern microprocessors with wide SIMD instruction
sets, it would be difficult to achieve reasonable performance
with the compression algorithm, since the throughput of in-
direct access operations are generally low. The fully-MIMD,
non-SIMD nature of the PEZY-SC processor is critical to
achieve the actual speedup.

Listing 1. A sample code with both data and index arrays compressed

for (int i = 0; i < n; i++){
y[i] = 0;
const int type = columnDiffType[i];
int idx = 0;
for (int valueIdx = 0; valueIdx< valueCount;

valueIdx++){
const doublea ij = value[valueIdx];
for (;idx < valueIdxEnd[i][valueIdx]; idx++){

const int j = i + columnDiff[type][idx];
const doublex j = x[j];
y[i] += a ij ∗ x j;

}
}

}

Note, however, that the problem here is the number of
independent memory access per cycle, and not the difference
between SIMD and MIMD architecture. The gather/scatter
functions of modern SIMD microprocessors are clearly still
in their infancy, and might be improved in the future.

VI. SUMMARY

In this paper, we report the effect of data compression/de-
compression algorithms for the SpMV multiplication on the
ZettaScaler system, in which the 1024-core, MIMD ultra-
many-core PEZY-SC processors are used as accelerators. We
have used the matrix generated by HPCG benchmark code as
the example. Usually, the performance of the well-optimized
implementation of HPCG is limited by the bandwidth of the
sequential read access of the external memory of the processor
(or accelerator). In the case of a PEZY-SC processor, the
theoretical limit of the read bandwidth is 85 GB/s, and actual
measured bandwidth is 75 GB/s. Thus, the performance of
SpMV and SymGS operations are limited to around 10 Gflops.
The actual performance achieved is close to this number.

The theoretical speedup by data and index compression is as
large as a factor of 25. We actually achieved the speedup of a
factor of 2.8 for the SpMV operation. Even though the actual
achieved improvement is much smaller than the theoretical
maximum, we have demonstrated that the used of data com-
pression/decompression can actually improve the performance
of SpMV multiplication on the PEZY-SC processor. We there-
fore conclude that the use of data compression/decompression
will be quite useful technique to improve the performance
of SpMV operations in FEM applications on the current and
future high-performance processors.
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