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Abstract—Iterative methods on irregular grids have been used real applications which use irregular grids. The best-kmow
widely in all areas of comptational science and engineeringor  example is the FEM (Finite Element Method) for structural
solving partial differential equations with complex geomdry. analysis and many other CAE applications. Irregular grigs a

They provide the flexibility to express complex shapes with . . . .
relatively low computational cost. However, the directionof the essential to allow the analysis of objects with complex sisap

evolution of high-performance processors in the last two deades 1hough it is not impossible to apply regular grids to complex

have caused serious degradation of the computational effamcy shapes, generally irregular grids offer more accurateltsesu

of iterative methods on irregular grids, because of relatiely low with much smaller number of freedoms.

memory bandwidth. Data compression can in principle reduce However, it has become very difficult to achieve even

the necessary memory memory bandwidth of iterative methods P L

and thus improve the efficiency. We have implemented several reasonable efficiency on the SpM.V multiplication (,)n quern

data Compression a|gorithms on the PEZY-SC processor, ugip HPC SyStemS. There are two main reasons for this d|ﬂ:|CU|ty.

the matrix generated for the HPCG benchmark as an example. The first one is the memory bandwidth. Consider the multi-

For the SpMV (Sparse Matrix-Vector multiplication) part of plication of matrix A and vectorz,

the HPCG benchmark, the best implementation without data

compression achieved 11.6Gflops/chip, close to the thedoat y = Ax. (1)

limit due to the memory bandwidth. Our implementation with o o )

data compression has achieved 32.4Gflops. This is of courseFOr real applications, the matrid is too large to fit to the

rather extreme case, since the grid used in HPCG is geometaly cache memory. On the other hand, vecterandy are much

regular and thus its compression efficiency is very high. Hoever, smaller, and there is always the possibility of extensiveada

in real applications, it is in many cases possible to make aige o 56 for them. Thus, the dominant part of memory access for

part of the grid to have regular geometry, in particular when Lt . .

the resolution is high. Note that we do not need to change an SpMV operatlon_ls the reading _Of the (sparse) matrix

the structure of the program, except for the addition of the ~ The exact data size of the matrix depends on the used

data compression/decompression subroutines. Thus, we ele data format, but it cannot be smaller than the number of non-

the data compression will be very useful way to improve the zero elements ofd. The number of floating-point operation

performance of many applications which rely on the use of per one non-zero element of is two. Thus, If the data

irregular grids. f . d is the doubl ision f t ’ dad
Index Terms—Finite Element Analysis, Sparse Matrices, Data ‘?”“at IS USed 1S the double-precision orma ' m_emory r E_i 0

Compression eight bytes takes place for every two floating point operegio

In other words, the “required” B/F (byte per flops) number

is 8/2 = 4. Note that here we ignored the memory read

for the indices. If we use the ELL format, which usually
In this paper, we describe the implementation and perfas- the most efficient format for storing the matrix in FEM

mance of the multiplication of sparse matrix and vector éherapplications, required bandwidth can increase by 50-100%.

after the SpMV multiplication) on the PEZY-SC processor. Iithus, the required memory bandwidth, in terms of the B/F

particular, we focus on the effect of various data compogssinumber can be between six and eight.

schemes on the performance. The multiplication of sparseln the 1980s, vector supercomputers had the memory sub-

matrix and vector is the most time consuming part of margystem which could support at least a fair fraction of the
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the memory bandwidth requirement of the SpMV operatioppssible reason is that in order to achieve actual speeditgp, d
since the hardware B/F number of vector machines in 198@scompression algorithm must be extremely efficient, sinee
ranged between 4 and 12. Here, the hardware B/F numbember of floating-point operations per one matrix element i
of a machine is defined as the theoretical (or measuraaly two. If the decompression algorithm requires more than
memory bandwidth in bytes/second divided by the theorketidaw instructions, it will cause quite significant increadetee
peak performance of the floating-point operation measuredtotal cost. Moreover, generally the decompression algarit
the number of floating-point operations per second. Vectmequires some table-lookup operations, in other words, the
machines in 1980s had sufficient memory bandwidth to keemirect memory access for which modern microprocessers ar
the floating-point unit busy for SpMV multiplications. not particularly efficient.

However, the B/F numbers of microprocessors used forOn the other hand, if the hardware B/F number of a system
modern HPC systems are much smaller. For example, the B$Fextremely low, we might be able to achieve significant
number of K computer is 0.5, and this is rather exceptionalfjerformance improvement on SpMV multiplications by using
high in today’s standard. Recent Xeon-based systems havedhta compression/decompression.

B/F numbers of around 0.2. If the required B/F number is six, In this paper, we report the performance of the ZettaScaler-
this means that the theoretical maximum efficiency of modein5 supercomputer[7] on the SpMV part of HPCG benchmark
HPC systems would be around or less than 5%. [4], [5], with and without the use of data compression/decom

In fact, the ratio between the measured HPL performanpeession.
and measured HPCG performance of machines in the Jundhe ZettaScaler (previously called ExaScaler) system is
2016 top 10 list of HPCG benchmirkanges between 0.4based on the first-generation PEZY-SC 1024-core processor
and 5%, and the numbers of Xeon-based systems are 2-3@hip. It appeared in the TOP500 list of November 2014 and

Thus, the low memory bandwidth of modern HPC systentignked #2 in the Green500 list. In the June 2015 Green500
is clearly the primary reason for the very low efficiency ofist, three ExaScaler systems occupied top three ranks. The
SpMV multiplication on them. system listed #1 achieved the performance per watt excgedin

The second reason is the tendency of designers of modérsflops/W, significantly higher than the number of the #1
to adopt SIMD arithmetic unit with rather wide width (4-system for November 2014 Green500 list. As of June 2016,
8 words). The computing kernel of SpMV operation, foit still keeps the #1 position in the Green500 list.
irregular matrices, requires the indirect access of thmetds ~ The reason why we used the ZettaScaler system as the
of either the vector or the matrix. The performance of incliretestbed for the data compression algorithm is that its harelw
access on modern processors with wide SIMD units aPéF number is rather low, around 0.05. Thus, it is ideal as the
very low. Some processors do not support SIMD operatiotgstbed of algorithms which will be useful for processors in
for indirect memory access. Even on machines with SIMthe near future. In addition, its processor cores do not have
instructions for indirect memory access, their throughisut SIMD units. Thus, we might be able to achieve pretty good
much lower than simple SIMD load/store instructions. Ofpeedup for SpMV multiplication using data compression.
some machines this inefficiency can cause further degadati The ZettaScaler system is rather similar to modern GPGPU-
of performance of SpMV operations. based systems, in which the GPGPUs are connected to Intel

One way to reduce the required memory read is thRgeon processors through PCle interface, and Xeon processor
element-by-element (EbE) method. In the EbE method, tA& connected using Infiniband network. There are, however,
sparse matrix4 is constructed from the original physical andwo unique features of the ZettaScaler system. The first one
topological data of each element on the fly. Since the tot&l of course the use of PEZY-SC processor chip, which is
amount of data for all elements is significantly smaller that 1024-core MIMD processor with physically shared memory
the size of the generated matrix, we can reduce the amo@hgl hierarchical cache. It was developed by a Japanesergentu
of memory access. Even though the calculation cost of ogPmpany, PEZY Computing. The second feature is the im-
the-fly construction of the matrix is fairly high, the totalmersion cooling system in which fluorocarbon (3M Fluorinert
computing time can be significantly reduced by moving t6C-43) is used. For the ZettaScaler system, they designed
the EbE method. EbE method has become widely used mptherboards for Xeon processors and processor cards for
many FEM applications, since it can achieve quite significaREZY-SC processors to achieve high-density packing. The
improvement in the actual speed of calculation, even thougfe of immersion cooling has the potential advantage of
the calculation cost is increased. reducing the PUE number and also reducing the junction

Another way which can potentially be useful in reducing thiémperature of the processor chips, resulting in more gnerg
required amount of memory access is to compress the magfficient operation. However, the primary reason of the high
using some data compression algorithm. However, even thowgrformance-per-watt number of the ZettaScaler systeimeis t
there are many research papers on the use of data compres#@sign of the PEZY-SC processor itself.
in HPC applications, there seems to be little work on the The PEZY-SC processor integrates 1024 MIMD cores,

application of data compression to SpMV multiplicationsieO €ach with fully pipelined double-precision multiply-add
(MAD) unit, into a die of size 400 mi) using TSMC’s

Lhttp://www.hpcg-benchmark.org/custom/index. htmi2li85&slid=288 28HPM process. Its nominal power consumption is only 65



W for the operation with 733 MHz clock. of the DGEMM operation. Thus, the use of this local memory
At least for the HPL benchmark, or more specifically thes essential to achieve high efficiency for DGEMM.
DGEMM operation (double precision dense matrix multipli- Two cores share one L1D cache of 2KB. The size of L2D
cation), the PEZY-SC processor has achieved quite impesstache is 64KB and one L2D cache is shared by 16 cores.
performance per watt, even though the efficiency compareditothe PEZY terminology, cores that share the L2D cache
the theoretical peak performance is still rather low (dligh form a “city”. The size of the L3D cache is 2MB, and 16
better than 50% for HPL). On the other hand, the portifgities” share one L3D cache, to form a “prefecture”. Thus,
of applications could be relatively easy, since the PEZY-S&xch prefecture consists of 256 cores, and the one PEZY-SC
processor is an MIMD manycore processor with hierarchicahip consists of four prefectures. Finally, the chip is cected
(but non-coherent) cache and physically shared memorg, Al$o eight channels of either DDR3 or DDR4 DRAMS.
a fairly well designed subset of OpenCL, PZCL, is supported. Thus, the PEZY-SC processor has three levels of cache
In this paper we first present the performance of HPC@emories. These cache memories aot coherent. Cores
on PEZY-SC processor, with usual optimizations applied imhich share the same L2D cache can read the data written
previous works. Then we proceed to present the performarieother cores only after explicit flush operation and barrie
of “optimized” implementations of SpMV operation with on-synchronization, and the same is true for the L3D cache and
the-fly data compression and decompression. the main memory. Both the flush and barrier synchronization
This paper is organized as follows. First, in sectioh lipstructions are provided to each levels of cache. To beggec
we present the overview of the PEZY-SC processor and ttiee barrier instruction is available also for one core (iplét
ZettaScaler system. In sectign]lll, we describe our implé¢hreads). Clearly, this removal of the cache coherency has
mentation of HPCG on PEZY-SC processor. In secfioh N\greatly simplified the processor design, and made it passibl
we present the performance result. Finally, in secfidn ¥ construct a 1024-core processor with three levels of&ach
we present data compression/decompression algorithms e line sizes of the L1, L2, and L3 data caches are 64, 256,
implemented and its measured performance on PEZY-SC.dnd 1024 bytes. By changing the line size, the designers of
section[V], we summarize the paper and discuss the futuhe PEZY-SC processor kept the bandwidth of L2 and L3 data
directions for research and development. caches very high. The bandwidth of L2D cache is the same
as that for L1D, and L3D offers around half of them.

From the application programmer’s point of view, the
lack of the cache coherency does not seem to pose severe
In this section, we overview the architecture of the PEZYmitation, as far as HPC applications (or their computing
SC processor and the ZettaScaler system. In subséction Ilk&rnels) are concerned. For many applications, prograsimer
we give a brief overview of the PEZY-SC processor. lknow at which moments processors need to communicate.
subsectio II-B, we give a brief overview of the ZettaScalévloreover, they try to minimize the communication between
system. cores to achieve high efficiency. Thus, from the point of view

of tuning, the lack of the cache coherency can be regarded as

A. The PEZY-SC processor the ability of the programmer to control the traffic between

The PEZY-SC processol|[6].1[7] integrates 1024 MIMLCores. Moreover, the barrier synchronization is almosagiv
cores with three levels of cache memory. In this section, weecessary before the communication, since otherwise what
describe the structure bottom-up, starting from the premescore A expects that core B has updated might not be actually
core. updated yet. Efficient hardware-supported flush and barrier

Each of the PEZY-SC core can do one double-precisiegnchronization is thus quite useful.
MAD operation or two single-precision MAD operations per The cache for instruction is also multi-level. For | caches,
cycle. It has the usual load-store architecture. The com ighe line size and the bandwidth are essentially the same for
quite simple dual-issue, in-order core with four-way (can kall levels. As far as all cores run the same and relativelylisma
eight-way) SMT. Thus, the impact of the latency of data cachkernels, this structure works fine.
to the performance is relatively small, even though theriteo  Each PEZY-SC chip has 32 lanes of PCle (Gen3) interfaces,
core is used. which is controlled by integrated two ARM 926 processors.

One rather unusual feature of the PEZY-SC processor coréGle interfaces can be used to transfer the data between the
that each core has 16KB of the local memory, accessible omhain memory of PEZY-SC processor and the host processor,
by that core. It has the separate local address space, andeaitirer by DMA or PIO read/write of the host processor.
be used to store the data which is repeatedly used by the core?EZY-SC processor supports a language called PZCL, a
Since this local memory provides the largest on-chip s#radialect of OpenCL. It supports most of the features of OpenCL
(16MB in total) with very high bandwidth, it is essential tobut there are some limitations in particular when the perfor
take advantage of this local storage to achieve high effigienmance is important (which is of course almost always the
in particular for compute-intensive applications. Forrepde, case). The number of software threads created shousdrbe
there is well-known tradeoff between the required memogs the maximum number of hardware threads (8192 per chip)
bandwidth and required on-chip storage, for the perforreanito achieve best efficiency. Another difference comes from

II. THEPEZY-SCPROCESSOR CHIP AND THE
ZETTASCALER SYSTEM



the fact that the cache is not coherent. Functions to flugfillowing, we first follow [5] and then summarize the changes
appropriate levels of cache should be inserted manually nade.
guarantee the correct result. For small computing kerti@ls,  From the mathematical point of view, the problem solved
is not too difficult, but of course can be a source of hard-ta HPCG is a 3D diffusion equation discretized using 27-poin
fix bugs. stencil on a regular grid of siz@v,n,., nynpy, N1y, ), Where

As one PEZY-SC processor has eight channels of DDRA,,n,,n) is the size of the grid on each MPI process and
DRAMs, the theoretical peak memory bandwidth is 85GB/8y., npy, 1p-) is the MPI process grid. Thus, the total number
when the DDR4 clock is 1333 MHz. The actual read ban@f the MPI processes i8,.1,,7,..
width is around 75 GB/s, and STREAM copy performance In the original specification, HPCG solves this problem
is 40 GB/s. The copy performance is low because the writising the symmetric Gauss—Seidel preconditioned CG iter-

bandwidth is 1/2 of the read bandwidth. ation, and the users are not allowed to change this basic
The read bandwidth of L1, L2 and L3 caches (chip tota}G algorithm. In particular, the multigrid method, which
are 2000, 2000, and 700 GB/s, respectively. is essential if one wants to solve large 3D problems, is
not included. Thus, not surprisingly, this is changed in the
B. The ZettaScaler system current specification. Four-stage V-cycle geometric rgrili

The current generation of the ZettaScaler systepreconditioner is used.
(ZettaScaler-1.5) consists of multiple computing nodes, What is measured in the HPCG benchmark is the weighted
each of which consists of one Xeon (E5-v3) processor aasierage of the computing speed of major operations, in par-
four PEZY-SC processors. The Xeon processor is mountedticular SymGS, SpMV, Restriction, Prolongation, DotProglu
a specially-designed motherboard, and PEZY-SC processansl Waxpby. Usually, two functions, ComputeSPMV and
are mounted to also specially-designed module boards. TBemputeSYMGS, dominate the total computing time and thus
connection between the host Xeon processor and one PEd¥termine the performance.
SC processor is an 8-lane QenS PCle channel. The_n_etw rklmplementation of HPCG on PEZY-SC
between computing nodes is a standard FDR Infiniband. ) } )
The largest existing configuration of ZettaScaler system isOUr reference implementation of HPCG on PEZY-SC is
a 320-node system called “Shoubu”, installed at RmE,grettystralghtforwz_ird.The following six procedures aogtpd
ACCC. Smaller systems are installed at KEK as well 48 PEZY-SC (rewritten using the PZCL language):
RIKEN AICS. « SymGS
A very unique feature of the ZettaScaler system is the uses SpMV
of immersion cooling with fluorocarbon (3M Fluorinert FC- « Restriction
43) coolant. Compared to previously used oil-based coplante Prolongation
fluorocarbon coolant has several advantages like the ease of DotProduct
handling, safety (it is nonflammable), and smaller coefficie « Waxpby
of thermal expansion. The major disadvantages are the pricéoth the matrix data and vector data are kept on the memory
and potential greenhouse effect, though the latter is not 8 PEZY-SC. Therefore, only a small amount of data to be
severe because of the high vaporization temperature of thensferred for convergence check and other operationghand
particular coolant actually used. boundary data to be exchanged between nodes are exchanged
between the host Xeon processor and the PEZY-SC processors.
The rewrite using PZCL is pretty straightforward. As noted
earlier, the main point currently we need to care is thatdke t
In this section, we briefly describe the HPCG benchmarumber of threads should be actually equal to the available
itself and our reference implementation on the PEZY-SC proumber of hardware threads.
cessor. In subsectign TIIA, we describe the HPCG benchmarkSince the changes which directly take advantage of the
and in subsectiof 1I-B, our implementation of HPCG omegular structure of the grid are not allowed in the optirticza
PEZY-SC. phase, algebraic block multicolor ordering [8] is used foz t
SymGS part.
A. The HPCG benchmark Table[] shows the operations performed in one CG itera-
As we've already discussed in sectidn I, the HPCG benctien. Since 4-level V-cycle multigrid method is used, SymGS
mark [4], [8] is, according to its designers, “designed tooutine is called seven times per iteration, and SpMV four
measure performance that is representative of many importimes.
scientific calculations, with low computation-to-datacess
ratios.” As such, it mimics the major operations of FEM usin%
the CG with Multigrid solver, on irregular grid. Unforturedy, A Measured Performance
the currently available official specification of HPCG [5] is We have measured the performance of HPCG on the
rather old, and the algorithm described there and what “Bjisai” ZettaScaler system installed in RIKEN AICS. It
used in the current benchmark code are quite different.dn thas the total of 64 Xeon nodes each with four PEZY-SC

IIl. THE ovERVIEW OFHPCGBENCHMARK AND
IMPLEMENTATION ON PEZY-SC

IV. HPCG BENCHMARK RESULT



TABLE | Prolongation,  Restriction,
OPERATIONS AND COMMUNICATION DURING ONECG ITERATION. P AND WAXPBY 4.00% 1.67% SymGS,

X INDICATE PEZY-SCAND XEON, p THE DIRECTION VECTOR AND z THE 5.91%
PRECONDITIONED RESIDUAL VECTORRESPECTIVELY

DotProduct,
6.22%

Repeat  Operation send buf p z cycle
FillZero

SymGS P>X X—=P
SpMV P—X X—=P
Restriction

FillZero

SymGS P>X X—=P
Prolongation

SymGS P>X X—=P
Dotproduct

Waxpby

SpMV P—X X—P
Dotproduct

Waxpby

Waxpby

Dotproduct

N

CG Fig. 1. Fraction of computing time spent in sections of HPG&@dhmark
code.

B. Performance Analysis of the reference implementation

processors. We made the measurement of the performance _ . . . .
on up to 32 PEZY-SC processors. We assign one PEZY-SC" this section, we discuss whether or not the achieved

processor to one MPI process. Therefore, four MPI procesg&rformance of our reference implementation, in particula

run on each Xeon processor. The core clock of the PEZY—é;Iafit of the single-chip calculation, is reasonably opteiz

processor is 733 MHz. Memory clock is 1333 MHz. The hos}' not._We I_imit our an_alysis to SpMV, to simplity the
CPU is Xeon E5-2618L v3 with 8 cores at 2.3 GHz clocidiscussion. Since the achieved performance numbers of SpMV

Each PEZY-SC processor has 32 GB or DDR4 memory, aﬁgg SI\)I/\TGS a;;e.not mlé?h differhen;[o, vr\]/e pelie;/ﬁ ﬂ:je analysljs
the host Xeon processor 128 GB. of SpMV is sufficient to discuss the behavior of hardware an

oftware.
On 32 PEZY-SC processor, the achieved performance ﬁ)r _ . _
HPCG 3.0 rating is 168.06 Gflops (For HPCG 2.4 rating, The single-chip performance of the SpMV operation on
189.15 Gflops). The problem size used1i86® local grid & PEZY-SC processor is 11.6 Gflops, for the operation at

with 4 x 4 x 2 processor grid, for the global problem sizéhe finest level. Since the matrix is quite large and each

of (704,704, 352). non-zero element of the matrix is used only once per one
For this particular problem size, HPCG reported convepPMV operation, the performance of SpMV is bandwidth
gence after exactly 50 iterations. limited. One element is expressed by one four-byte integer

number and one eight-byte floating-point number, and for

Figure[1 shows the breakdown of the execution time. Afﬁis element two floating-point operations are performete(o

usual, SpMV and SymGS dominate the execution time. Tfﬁ”?ultiplication and one addition). Therefore, to achieve th

speed of these two sections are 238.4 Gflops and 217.6 Gﬂosppseed ofz Gflops, required memory read bandwidth is given

respectively. If we calculate the performance per MPI pssce_. -
(or per PEZY-SC processor), they are 7.45 Gflops and 6.§|6nply by (/2) x 12 = Gz GB/s. Therefore, 11.6 Gflops

Gflops means the read performance of 70 GB/s.

For comparison, we measured the single-process perfordhe theoretical peak memory bandwidth of a PEZY-SC
mance of the same code on one PEZY-SC processor. T{@cessor is 85 GB/s, and the actual measured read perfor-
problem size per MPI process is the same. The speed®#Nce is around 75 GB/s. Therefore, the peak performance
SpMV and SymGS sections are 9.47 Gflops and 8.08 Gf|0§§h|evable by SpMV is around 12.5 Gflops. We can see that

respectively. Thus, we can see the overhead of around 239§ performance of 11.6 Gflops is quite close to what can be
due to parallel execution (primarily due to communicatiofchieved.

overhead). We can thus conclude that we have successfully ported
The result of the comparison between single-process and BIRCG on the PEZY-SC processor, and for the SpMV opera-
process performance numbers indicate that the paralieliva tion we achieve the performance very close to the theotetica
overhead is, though not negligible, fairly small, and thagke- limit determined by the throughput of the external memory.
node performance is the primary factor that determines tfiberefore, we now have a good reference implementation,
total performance. against which we can measure the effect of data compression.



V. IMPLEMENTATION OF THE SPMV MULTIPLICATION Original ELL format for a row

WITH DATA COMPRESSIONDECOMPRESSION AND ITS Value | -1 -1 26 -1 -1
PERFORMANCE Column | 45 49 50 51 65

In this section, we investigate possibilities to reduce th¢lue table
required memory bandwidth, without changing the basic cgvalue | -1 26 |
algorithm or preconditioner algorithm. As discussed irtisec .
k - . Compressed expression for a row
[l one practical possibility to reduce the required memorys
. - T S;i |45 49 51 65 50
bandwidth not explicitly prohibited is the use of on-thedbta

. ; T, 13 4
compression/decompression. The use of the data compmnessioe
in HPC is currently an active area of research, and many Fig. 2. The data compression algorithm
methods, both lossless and lossy, have been propobsked [10].
Many of the previous proposals of the use of data com- TABLE Il

THE EFFECT OF THE DATA COMPRESSION ALGORITHMS APPLIED TO

pression is for storage and checkpointing, but there am als SPMV OPERATION

many studies of the use of data compression on cache and

main memories [11]-[13]. Compression method ~ Measured performance  Theoreticabrpeafice
So far, the use of data compression on the level of mairriginal 11.6GF 12.5GF

memory or cache memory is not quite popular in HPC.Data Table 15.9GF 34.8GF

In many cases, the calculation cost of compression/deconiata+index Table 32.4GF 326GF

pression operations is too high. However, in the case of
the access of the sparse matrix in CG iterations on the
PEZY-SC processor, there are several reasons to expect freftalways be true for general applications of CG method. On
the compression technique can be advantageous. First, tihother hand, if one uses constant-size elements for &z ar
compressed data is reused a number of times. Therefore, Wi uniform physical characteristics, elements with taeng
cost of the compression operation is relatively unimpdrtarvalues do appear quite often. Thus, it is quite likely that ou
We still need a fast and efficient decompression algorith@empression method would work for the large fraction of the
Second, the PEZY-SC processor is a fully MIMD and multirows of the original matrix, even if we limit the size of the
threaded processor, which can generate a very large numgie table to be small. In the case of the matrix in the HPCG
of independent memory access simultaneously. This feat&@@MV operation, the size of; per one node is 27, and;
is particularly important, for table-based data decongices can be two. Thus, one row of the matrix is now compressed to
techniques. Each of the 1024 cores of PEZY-SC processor ¢&# + 2) - 4 = 116 bytes, from the original size of 324 bytes.
execute one load instruction per cycle. On the other hard, th We can further compress the list 8f in the following way.
cores of modern microprocessors with wide-SIMD executidfirst, we convert the actual values of column indices to the
units can generally issue either one or two load per cychalue relative to the diagonal element. Then, we register th
Since the number of cores of these processors are less thattern of this relative displacement of column indices to a
32, PEZY-SC can be more than one order of magnitude fastable to perform the data compression. Since the majority of
in table lookup, resulting in much better performance imradathe nodes have the same index pattern for relative displace-
decompression. ment, this compression can effectively reduce the size @f th
We have tested several implementation of fast comprégdex array to4N bytes, whereN is the matrix dimension.
sion/decompression algorithms for simplified implemeotat Thus, instead of 116 bytes per node, we have now 12 bytes per
of SpMV operation on the PEZY-SC processor. The originalode. If we register to this table the values of matrix eletsen
matrix is the same as what appears in the HPCG benchmdhiemselves, we can probably reduce the size by another facto
So far, the best result is achieved by a simple tabléf three, resulting in essentially four bytes per node.
based compression. In this algorithm, first the entire magri ~ We can probably further compress the data by applying a
scanned and all unique values in the matrix elements aegllissimple run length compression to the final table.
and sorted in the ascending order. We call this list the valueSo far, We have actually implemented the first two com-
table V' andi-th element ofV is v;. Therefore,y; < v;11. pression schemes. Tallg Il show the resulting performance.
Then, for each row of the matrix, the non-zero elements afde first approach of compressing the data array only should
also sorted in the ascending order. Now we have the list thfeoretically give around a factor of three speedup, and-act
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