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Abstract

The importance of high-performance graph processing to solve big data problems

targeting high-impact applications is greater than ever before. Graphs incur highly

irregular memory accesses which leads to poor data locality, load imbalance, and

data-dependent parallelism. Distributed graph processing frameworks, such as

Google’s Pregel, that employs memory-parallel, shared-nothing systems have ex-

perienced tremendous success in terms of scale and performance. Modern shared-

memory systems embrace the so called Non-Uniform Memory Access (NUMA)

architecture which has proven to be more scalable (in terms of numbers of cores

and memory modules) than the Symmetric Multiprocessing (SMP) architecture. In

many ways, a NUMA system resembles a shared-nothing distributed system: phys-

ically distinct processing cores and memory regions (although, cache-coherent in

NUMA). Memory accesses to remote NUMA domains are more expensive than

local accesses. This poses the opportunity to transfer the know-how and design of

distributed graph processing to develop shared-memory graph processing solutions

optimized for NUMA systems (which is surprisingly little-explored).

In this dissertation, we explore if a distributed-memory like middleware that

makes graph partitioning and communication between partitions explicit, can im-

prove the performance on a NUMA system. We design and implement a NUMA

aware graph processing framework that treats the NUMA platform as a distributed

system, and embraces its design principles; in particular explicit partitioning and

inter-partition communication. We further explore design trade-offs to reduce com-

munication overhead and propose a solution that embraces design philosophies of

distributed graph processing system and at the same time exploits optimization op-

portunities specific to single-node systems. We demonstrate up to 13.9× speedup
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over a state-of-the-art NUMA-aware framework, Polymer and up to 3.7× scalabil-

ity on a four-socket machine using graphs with tens of billions of edges.
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Lay Summary

Large-scale graphs processing introduces various performance and efficiency chal-

lenges due to the scale and inherent irregular topology of graphs. Distributed graph

processing frameworks, like Google’s Pregel, that employs multi-node platforms,

have experienced tremendous success in terms of scale and performance. Modern

single-node systems embrace Non-Uniform Memory Access (NUMA) architecture

which is more scalable than other architectures. In many ways, a NUMA system

resembles a distributed system: physically distinct CPUs and memory. This poses

the opportunity to transfer the wisdom of distributed graph processing to NUMA

systems.

In this dissertation, we design and implement a NUMA-aware graph process-

ing framework that explores if a distributed-memory like middleware that makes

graph partitioning and inter-partition communication explicit, can improve the per-

formance on a NUMA system. We demonstrate up to 13.9× speedup over a state-

of-the-art NUMA-optimized framework and up to 3.7× scalability on a four-socket

machine using graphs with tens of billions of edges.
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Chapter 1

Introduction

Graph processing is at the core of a wide range of big data problems, such as

online social networks analysis [11, 18], bioinformatics [19, 29], transport network

analysis [37], financial and business analytics [20], to name a few. Additionally,

graph processing has found new applications in machine learning and data mining.

Graph algorithms incur highly irregular data-dependent memory access pat-

terns, which leads to poor data locality. Further, most of the graph algorithms have

a low compute-to-memory access ratio, i.e., they are memory-bound. Many real-

world graphs are massive: some have hundreds of billions of edges - hence have

huge memory footprint. For example, the Facebook graph [8] and Web Data Com-

mons, a hyperlink graph [4], have more than 100 billion edges, which requires over

two terabytes of memory.

To process such huge graphs, traditionally frameworks like Google’s Pregel [26]

and GraphLab [17] running on large shared-nothing clusters have been used, as

these platforms provide large aggregated memory. Most of these frameworks use

the Bulk Synchronous Parallel (BSP) Processing Model [39]. Here, the graph

is partitioned explicitly among the processing units and as these clusters are not

cache-coherent, the communication between different processing units is explicit.

This is in contrast with graph processing frameworks [30, 35] that target single-

node shared-memory systems, and treat shared-memory system as if it is based on

Symmetric Multi-Processor (SMP) architecture. In SMP architecture the access

time to any location in memory is uniform, therefore, there is no need for data
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partitioning.

Non-Uniform Memory Access (NUMA, a.k.a. distributed shared-memory) ar-

chitecture machines introduce a dilemma: on the one side, they provide shared

memory - thus graph processing frameworks that treat shared-memory system as

SMP architecture, can be directly used. On the other side, the cost of memory

accesses is non-uniform (i.e, a socket has faster access to the local memory associ-

ated with it, than to remote/non-local memory associated with other sockets), thus

explicit data placement is needed to obtain maximum performance and a graph

framework developed in the style of frameworks that target distributed systems

may prove to offer advantages.

1.1 Hypothesis
Since NUMA architecture resembles distributed systems, our intuition is, a graph

processing framework, targeting NUMA-architecture, developed in the style of

frameworks that target distributed systems (explicit partitioning and communica-

tion), provides following three potential avenues for performance improvement: (i)

control over data placement with explicit partitioning, which allows design and ex-

perimentation with different partitioning strategies to improve load balancing and

overall performance, (ii) better locality, and (iii) explicit partitioning helps in ex-

ploring different communication trade-offs since NUMA is a shared-memory sys-

tem. Based on these intuitions, we postulate the following hypothesis: A distributed-

memory like middleware that makes graph partitioning and communication be-

tween partitions explicit, can improve the performance on a NUMA system.

To test this hypothesis, we design and implement a NUMA-aware graph pro-

cessing framework that treats the NUMA platform as a distributed system, hence

embraces its design principles; in particular explicit partitioning and communica-

tion, and evaluate it against the state-of-the-art NUMA-oblivious [15] and NUMA-

aware [42] graph processing frameworks. We further describe optimization tech-

niques to reduce communication overhead. And finally, provide a set of practical

guidelines for choosing the appropriate partitioning and communication strategies.
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1.2 Contributions
The contributions of this dissertation are:

1) Design Exploration: Given their resemblance, there exist opportunities to

transfer the know-how and design philosophies of distributed graph processing to

develop shared-memory graph processing solutions optimized for NUMA systems.

To this end, we explore a reference distributed design (Section 3.3). In particular,

we evaluate the performance of a fully distributed (referred to as NUMA 2-Box de-

sign, §3.3.2) and one shared-memory (referred to as NUMA 1-Box design, §3.3.3)

inter-partition communication strategies (where each partition belongs to a NUMA

domain) and how they compare against a NUMA-oblivious implementation. We

found that, on a NUMA platform, a graph processing solution based on the design

philosophies that targets shared-nothing distributed system, consistently outper-

forms the state-of-the-art NUMA-oblivious shared-memory solution (Section 5.2).

Additionally, we explore two distributed graph partitioning techniques for NUMA,

and introduce a new partitioning technique (Section 3.2) that leads to load balance

of up to 95% and overall performance improvement of up to 5.3×.

2) A New NUMA-aware Design: Based on our design explorations, we pro-

pose a design (referred to as NUMA 0-Box design, §3.3.4), that takes into account

distributed shared-memory nature of NUMA, and consists of explicit graph par-

titioning and implicit communication. It improves data locality through NUMA-

aware partitioning and at the same time minimizes the overhead of remote accesses

by overlapping remote memory operations with computation. (Section 3.3)

Evaluation shows, this new design offers, for BFS up to 2.37×, SSSP up to

2.27× and PageRank up to 1.89× improvement in time-to-solution over the re-

spective NUMA-oblivious implementations. This design, however, did not im-

prove performance of PageRank over the NUMA 2-Box design (explained in Sec-

tion 5.2).

3) Analytical Model for Performance Prediction: We present an analytical

model for predicting algorithm performance for the three aforementioned NUMA

designs (Section 3.4). We demonstrate the effectiveness of our prediction model

for PageRank by comparing with empirical results. (Section 5.3)

4) Evaluation: We evaluate the aforementioned three NUMA-aware designs

3



for the following applications: PageRank, BFS and SSSP, using both real-world

and synthetic graphs (with up to 128 billion undirected edges), on a Intel NUMA

platform with four sockets and 1.5TB memory. Summary of our findings are the

following:

(i) We compare the three graph partitioning strategies and find that our pro-

posed approach offers up to 5.3× speedup and 95% load balanced partitions. (Sec-

tion 5.1)

(ii) We demonstrate scalability on up to four sockets on a NUMA platform:

maximum speedup (over one socket) achieved by PageRank is 3.7×, BFS is 2.9×
and SSSP is 2.8×. (Section 5.2)

(iii) We show RMAT scaling using up to Scale 32 graph. Our BFS imple-

mentation achieves a maximum of 39 giga traversed edges per second (GTEPS).

(Section 5.2)

(iv) We compare our work with a recent NUMA-aware graph processing frame-

work, Polymer and demonstrate that our solution consistently outperforms Poly-

mer, e.g. up to 13.9× faster for BFS. Additionally, our solution is ∼4.4× more

memory efficient. (Section 5.4)

(v) Finally, we present the performance numbers we achieved in Graph500

competition, where we secured World Rank 2 (June, 2018 list) for SSSP kernel,

and among top 3 single-node submissions for BFS kernel. (Section 5.2)m

1.3 Dissertation Structure
The rest of this dissertation is organized as follows. Chapter 2 presents background

and related work. Chapter 3 describes the design of our NUMA-aware graph pro-

cessing framework. Chapter 4 presents the methodology used to implement and

evaluate the designs introduced in Chapter 3. Chapter 5 evaluates the performance

of our designs. And, Chapter 6 concludes the dissertation.
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Chapter 2

Background

This section provides the necessary background information required to understand

the contributions of this dissertation. First, this chapter presents a brief overview

of graph (§2.1) and graph processing (§2.2). Then it describes three common CPU

based hardware platforms (§2.3) used for graph processing. Next, this chapter

describes Bulk-Synchronous Parallel (BSP) model (§2.4), a popular processing

model among distributed systems, and explains thoroughly how it is leveraged in

the context of graph processing (§2.5). Finally, it provides an overview of the graph

algorithms that we have used (§2.6), followed by related work (§2.7).

2.1 Graph
A graph G = (V,E), as shown in Figure 2.1, consists of a set of vertices V and

a set of edges E. If the edges of a graph are unidirectional, the graph is called

a directed graph. While, if all the edges of the graph are bidirectional, then it is

called an undirected graph. Edges of a directed graph are represented by arrows

(pointing towards the destination vertex), as shown in Figure 2.1, while the edges

in an undirected graph are typically drawn as lines.

Graph Storage. Graphs are stored, usually, using either linked-lists or arrays. For

high-performance and to efficiently store large graphs in memory, array based for-

mats like Compressed Sparse Row (CSR), Coordinate (COO), Compressed Sparse

Column (CSC), or Doubly Compressed Sparse Column (DCSC) formats are used.
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Figure 2.1: On left, a directed graph with 6 vertices and 7 edges. On right is
the Compressed Sparse Row (CSR) representation of the graph. CSR
format has two arrays, ‘vertex array’ (or offset array) and ‘edge array’.
‘vertex array’ contains starting index of the outgoing edges originating
from each vertex (represented by the indices of vertex array). ‘edge
array’ contains only the destination vertices of the edges.

Figure 2.1, presents the CSR format, a popular format (that we have also used)

used to achieve better performance and memory efficiency. CSR format targets

directed graphs. To store undirected graphs, each edge of the undirected graph is

represented by two direct edges (one in each direction). As shown in Figure 2.1,

‘vertex array’ and ‘edge array’ are the two CSR data structures. Size of the ‘vertex

array’ is same as the number of vertices in the graph, and it contains the starting

index of the neighbors list of each vertex. Indices of the ‘vertex array’ represents

the vertex ID. ‘edge array’ contains the destination vertices of the edges originating

from source vertex in ‘vertex array’, and its size equals the number of edges in the

graph. For example, in Figure 2.1, vertex 2 has one outgoing edge, to vertex 1. The

value, 3, at index 2 in ‘vertex array’, is the index value of the start of the neighbors

list of vertex 2 in edge array. Size of the neighbors list of a vertex is determined

by subtracting the current value at the index location in vertex array from the next

value or from the edge count for the last vertex. Therefore, neighbors list size of

vertex 2 is (value at index location 2+1) - (value at index location 2) i.e. 4−3 = 1.

6



2.2 Graph Processing
A wide set of big data problems, like analyzing online social networks, bioin-

formatics, financial and business analytics, transport network analysis, to name a

few, can be modeled as graphs. For example, in online social networks, people

are represented by vertices and an edge between the two represents their friend-

ship. Further, domains like machine learning and data mining are also exploring

graph processing at their core. In all these high impact applications, in order to get

meaningful insights from the huge data, these massively large graphs need to be

processed fast yet efficiently (w.r.t cost).

Graph algorithms and workloads pose following key characteristics that make

them challenging to process efficiently.

1. Iterative. A typical graph algorithm processes a graph in rounds, where in

each round only a set of vertices is active and can be processed in parallel.

For example, in BFS, processing starts from a source vertex and it activates

its neighbor vertices only, which then iterate over their respective neighbor

vertices in the next round, and so on.

2. Highly irregular, data-dependent memory access patterns. Graph processing

suffers from highly irregular data-dependent memory access pattern as the

neighbors are scattered in memory. It leads to poor data locality and high

random memory accesses.

3. Low compute-to-memory-access ratio. Most of the graph algorithms, like

BFS and SSSP, have low compute-to-memory-access ratio, i.e. they do very

less computation per memory access, thereby being memory bound. For

example, in BFS, very little processing is done on the data associated with a

vertex, and most of the time is spent in accessing the neighbors.

4. Hard to obtain balanced partitions. Many real-world graphs have heavily

skewed, ‘power-law’ [14] vertex degree distribution: most of the vertices

have low edge degree, while a few vertices have high edge degree (e.g.,

celebrities in online social networks) - that connect to a large part of the

graph. These type of graphs are also called as scale-free graphs.
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If we process these graphs in a distributed system, their heavily skewed de-

gree distribution makes it hard to obtain balanced partitions to achieve better

load balance and over all performance. Further the partitioning algorithms

developed specifically to obtain good partitioning are computationally ex-

pensive.

5. Large memory footprint. Many real-world graphs are massive: some have

hundreds of billions of edges - leading to a huge memory footprint. For

example, current Facebook graph (a social network graph with∼137 Billion

edges) and Web Data Commons - Hyperlink Graph (a web graph with ∼128

Billion edges) [3, 4], require more than 2TB of memory. To process such

large graphs efficiently, the whole graph needs to be in the memory.

2.3 Hardware Platforms
This section aims at describing the three popular CPU-based hardware platforms.

2.3.1 Shared-nothing cluster

A distributed system or a shared-nothing cluster consists of hundreds to thousands

of processing units (also called as nodes), where each processing unit has access to

only its own memory, that are connected with each other through fast interconnects,

like OmniPath and InfiniBand.

Given the huge memory footprint of real-world graphs, traditionally these large

shared-nothing clusters have been used, as they have large aggregated memory.

These memory-parallel, shared-nothing clusters have experienced tremendous suc-

cess in terms of scale and performance, as could be seen in Graph500 Competi-

tion [2] (which ranks supercomputers for data intensive applications), as well as

been used by many distributed graph processing frameworks including Google’s

Pregel [26] and GraphLab [17].

These shared-nothing clusters are not cache-coherent. Here, the graph is par-

titioned explicitly (one partition on each of the nodes) and the communication be-

tween different nodes is explicit. Graph partitioning leads to having boundary

edges that cross-over between nodes. The nodes run the graph algorithm kernel in-
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Figure 2.2: An illustration of SMP/UMA (left) and NUMA (right) architec-
tures.

parallel on their respective partition, and communicate with other processing units

to share the remotely updated vertex state.

2.3.2 Symmetric Multi-Processor (SMP) Architecture

In Symmetric Multi-Processor (SMP) architecture, memory is shared between pro-

cessing units, and it provides uniform access time to any location in memory. It is,

therefore, also termed as Uniform Memory Access (UMA) architecture. As shown

in Figure 2.2 (left), the CPU cores share the same memory bus to access the mem-

ory. This leads to uniform access time from any core to any location in memory. In

recent SMP architecture machines, the memory available could be up to few hun-

dreds of gigabytes. This helps in processing mid-size graphs, that fit into memory,

at a lower development cost compared to distributed system as there is no need of

explicit partitioning and inter-partition communication.

The drawback of this architecture is, as the memory bus is shared among all the

cores, this design leads to contention on the shared bus with increase in the number

of CPU cores. Therefore, the design does not scales with number of CPU cores

and memory.

2.3.3 Non-Uniform Memory Access (NUMA) Architecture

NUMA is a shared-memory architecture consisting of a set of processors (often

called sockets), each with their own local memory. Each socket is connected with

other sockets through an interconnect (Quick-Path Interconnect in Intel systems).

Accessing socket-local memory takes distinctively less time than accessing remote

9
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Figure 2.3: Local and remote memory bandwidth for read and write opera-
tions on 4-Socket Intel Xeon (E7-4870 v2, Ivy Bridge) machine, for
different workloads (size in MB).

memory over the interconnect. NUMA addresses the scalability issues of SMP

architecture, and provides higher overall memory bandwidth.

NUMA distributes memory to each processors: (Fig. 2.2 - right) each processor

has fast access to its local memory, while to access local memory of another pro-

cessor, it has to traverse over the slow interconnect. This reduces contention over

local memory bus as well as provides the opportunity to scale the system. Note

that scalability comes at the cost of remote memory access. Obtaining maximum

performance requires careful placement of data to avoid/minimize remote memory

accesses with lower latency and higher bandwidth.

We benchmark our testbed, a four socket Intel Xeon system (more description

in Section 4.2), by extending Stream [27] benchmark to measure local and remote,

read and write memory bandwidth for both sequential and random accesses. We

measure these access patterns, because they frequently occur in graph processing.

We run the experiments for array size from 1 MB and double the array size until

1 GB (at which point it saturates the memory bandwidth). Table 2.1 presents the

memory bandwidth achieved in different access modes for arrays of size 1 GB. We
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Access Local Remote
Read Throughput (MB/s) Sequential 2464 2069

Random 286 226
Write Throughput (MB/s) Sequential 1438 1024

Random 238 188
Latency (ns) 119 178

Table 2.1: Memory bandwidth characteristics of our Testbed (Four socket In-
tel Xeon, E7-4870 v2; more description in Section 4.2). Memory band-
width is measured with custom benchmark with arrays of size 1 GB.
Memory latency is measured using Intel Memory Latency Checker.

observe that non-local access throughput is up to 26% and 40% slower than local

access throughput for read and write operations, respectively. Interestingly, remote

sequential access throughput is as much as 9× and 6× more than local random

access throughput for read and write operations, respectively. This observation is

important for graph processing, which incurs highly irregular memory access pat-

terns. On the other side, remote memory latency, as measured using Intel Memory

Latency Checker, is 49% more than local memory latency.

2.4 Bulk-Synchronous Parallel (BSP) Processing Model
Bulk-Synchronous Parallel (BSP) model is a popular processing model targeting

distributed systems. Therefore, BSP model implies that the data is partitioned and

partitions are allocated on the processing elements. In the BSP model (Fig. 2.4),

the processing consists of a sequence of rounds or supersteps (in BSP terminol-

ogy). Each superstep consists of three phases (executed in order): computation,

communication, and synchronization.

� In the computation phase, each processing unit processes their respective

partition independently.

� In the communication phase, processing units exchange messages with re-

spective remote partitions, as well as apply the remote updates to their local

buffers.
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Figure 2.4: A high level illustration of the Bulk Synchronous Parallel Model.

� The synchronization phase guarantees that the next cycle restarts only after

all messages have been delivered.

This sequence of supersteps continues until convergence or termination condi-

tions has been satisfied. Finally, if required, the results are aggregated from all the

partitions.

2.5 BSP-Style Graph Processing
Graph computations can be modeled as Gather-Apply-Scatter (GAS) [17], where

the graph processing follows sequences of gather, apply and scatter operations. In

gather phase, vertices gather information from their neighbors to update their local

state in apply phase, and then in scatter phase, they communicate their updated

value to their neighbors. For example, in PageRank, a vertex computes its rank

by gathering rank of its in-degree neighbors, and scatters its new rank to its out-

degree neighbors. The BSP processing model inherently matches with this iterative

nature of graph algorithms, where sequence of gather, apply and scatter operations

12
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the communication phase, the vertex and its shadow copy communicate
to determine the correct state. For example, in SSSP, after communi-
cation, both the vertex and its shadow copy commit to the minimum
distance at that point in traversal.

resembles the three phases of a superstep in BSP model.

Since BSP model implies that the data is partitioned and allocated on the pro-

cessing elements, initial step is to partition the graph (partitions in Figure 2.5 are

of the graph shown in Figure 2.1). Each partition has a set of local vertices and

edges. Since an edge is associated with two vertices, which could be on different

partitions, a map is maintained for the remote vertices (vertex 3 in PID0 and vertex

0 in PID1, in Fig. 2.5) in each partition. Further each partition maintains algorithm

specific state buffer(s) (such as rank array in PageRank) for local vertices (buffer

S0 in PID0 and S1 in PID1, in Fig. 2.5) as well as remote vertices (buffer S
′
1 for

remote vertices in PID0 and S
′
0 for remote vertices in PID1, in Fig. 2.5).

13



The three phases of a superstep of BSP model are performed as follows in the

context of graph processing:

In computation phase, processing units work in parallel, and execute the graph

algorithm specific kernel on the set of vertices belonging to their partition, and

update their local state buffer (buffer S0 and S1 in Fig. 2.5). The local state of ac-

tive remote vertices is also updated and aggregated locally in the respective buffer

(buffer S
′
1 and S

′
0 in Fig. 2.5).

In communication phase, each partition exchange the messages for the bound-

ary edges, and applies the remote updates received to their local state buffers. In

Fig. 2.4, both the partitions transfer the state of remote vertices to make sure local

and remote states of the vertices are same, i.e. S0 and S
′
0 are the same, and S1and

S
′
1 are the same.

Finally, synchronization phase ensures that all the partitions are updated with

the latest state of the remote vertices, before the superstep cycle restarts.

Similar to the generic BSP model, the sequence terminates once every process-

ing unit has finished processing their respective partitions. After termination, final

result is aggregated from all the processing units through a global reduction.

2.6 Graph Algorithms
We consider PageRank, Breadth-First Search - Top Down (BFS-TD), Breadth-First

Search - Direction Optimized (BFS-DO), and Single-Source Shortest Path (SSSP)

algorithms. We use these algorithms to evaluate our work because (i) these al-

gorithms have been widely studied in the context of high-performance graph pro-

cessing systems and have been used in the past studies [5, 15, 17, 30, 35, 36, 42],

(ii) BFS and SSSP are also used as benchmarks for the Graph500 competition [2],

to rank supercomputers for data intensive applications, (iii) they are the building

blocks of more complex graph algorithms (for example, BFS is used as a subrou-

tine in complex graph algorithms like connected components, max flow, betwee-

ness centrality and clustering), and (iv) these algorithms are good representation

for studying the performance of any hardware platform for irregular memory ac-

cess pattern.

A short description of the algorithms is described below.
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2.6.1 PageRank

PageRank [31] is a well-known algorithm used by search engines for ranking web

pages. In PageRank, a vertex computes its rank based on the rank of its neigh-

bors. The algorithm continues until the convergence of the rank of all the vertices,

or a predefined number of iterations have been completed. PageRank has a high

compute-to-memory-access ratio, and the workload is stable in every iteration,

since in each iteration it computes the rank of all its vertices. It could be imple-

mented as a pull-based or push-based algorithm [35]. In the pull-based approach,

each vertex ‘pulls’ the rank of its neighbors, over the incoming edges, to compute

its new rank. In the push-based approach, each vertex ‘pushes’ its rank to its neigh-

bors, over the outgoing edges. Note that the push-based approach is less efficient,

since, its parallel implementation requires atomic operations [30]. We implement

pull-based approach and the algorithm kernel executes for predefined number of

iterations [16].

2.6.2 Breadth-First Search

BFS is a graph traversal algorithm which determines the level of each vertex, start-

ing from a source vertex. It is a fundamental graph algorithm which is also used as a

sub-routine in complex graph algorithms, like connected components, betweeness

centrality, max flow, and clustering. BFS has a low compute-to-memory-access

ratio, and since it is a traversal based algorithm, workload is not stable in every

iteration (or superstep). Like other graph traversal algorithms, BFS presents the

concept of a frontier, which consists of a set of active vertices that are processed in

the current iteration, to build the next frontier. The next frontier can be manipulated

in different ways. We explore three implementations of BFS algorithm.

BFS - Top-Down (BFS-TD)

It is the classic level-synchronous approach of doing BFS. In each iteration it pro-

cesses all the edges of the vertices in the current frontier, to build the next frontier

with the unvisited vertices that can be reached. For power-law graphs, it has been

observed that this approach leads to (1) drastic increase in the frontier in initial few

supersteps followed by steep decrease in frontier size in tailing supersteps, and (2)
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high write traffic, in the initial supersteps, since many edges in the current frontier

tries to add the same vertex in the next frontier [10].

BFS - Direction Optimized (BFS-DO)

Direction Optimized BFS [10] addresses the above mentioned drawbacks of Top-

Down version of BFS, by manipulating the next frontier in bottom-up way when

the current frontier is large. In Bottom-Up step, it iterates over unvisited vertices

and selects those for the next frontier which have a neighbor in the current frontier.

This helps in drastically reducing the number of edges explored especially when

the frontier is large, since once an unvisited vertex, that has a neighbor in current

frontier, is explored, there is no need to explore its other edges. This, especially,

reduces work for high-degree vertices. Further, this approach does not require

any atomic operation as the write operation is done only to update the state of the

unvisited vertex, to include it in next frontier, while rest of the accesses are read

- to check if any of its neighbors are in the current frontier, thereby reduces the

contention [10, 34]. Direction-Optimized BFS kernel starts with Top-Down step,

and once the frontier size is large enough, it switches to Bottom-Up step. For the

final supersteps, when the frontier size is again small, it switches back to Top-Down

step. Note that switching between the steps (from Top-Down to Bottom-Up and
from Bottom-Up to Top-Down) is heuristics based, and one needs to hand-tune
them to attain maximum performance on a particular graph.

BFS-Graph500

Graph500 competition [2] has different requirements for measuring the perfor-

mance. First, it counts an undirected edge as only one edge, while we represent an

undirected edge as two directed edges, one in each direction. Therefore we have

to half the number of edges traversed, while computing the performance. Second,

it requires including algorithm initialization time as well in the algorithm execu-

tion time, not a standard practice in the literature. And finally, it requires the BFS

tree as output rather than the level of each vertex in the BFS tree. We have imple-

mented our BFS-DO as the kernel inside Graph500 skeleton, and modified its data

structures with Graph500 requirements.
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2.6.3 Single-Source Shortest Path

SSSP is a traversal based graph algorithm and finds the shortest path from a source

vertex to every vertex in the connected component. It has wide applications includ-

ing IP routing, transportation networks, and social network analysis. In SSSP, each

edge is associated with a predefined weight which, typically, is a measure of ‘cost’

to make a transition from one vertex to one of its neighbors. Weights increase the

memory footprint of the graph by almost 2× (depending on the data type used).

Following are the two implementations of SSSP algorithm that we use:

SSSP

We adapt Bellman-Ford algorithm [1] to implement SSSP, as it provides better

scope of parallelism and the opportunity to allow the active vertices to perform

relax operation on its edges within the same iteration [16]. This reduces the number

of supersteps, since more number of vertices become active per superstep. The

algorithm gives the distance of each vertex from the given source vertex.

Graph500-SSSP

Along with the distance buffer, containing distance of each vertex from the source

vertex, for SSSP, Graph500 also requires sssp-tree containing parent of each ver-

tex. This is expected to increase the communication overhead in every superstep

by almost 2× because of communicating the parents for boundary edges among

the partitions, along with the respective distance value. We optimize this by not
requiring to communicate the tree at all during supersteps, and aggregate the
tree in only the aggregation phase. In the computation phase, if the edge is a

boundary-edge, we store the partition ID of the remote vertex and the local ID of

the parent vertex in the tree buffer. Distance buffer is updated same as the above

implementation of SSSP. During communication, if for the remote vertex, the dis-

tance in the remote distance buffer is less, then it stores the remote partition ID for

the respective vertex in the local tree buffer. This way it knows that parent is in

the respective remote partition. In aggregation phase, it iterates over the local tree

buffers of all the partitions to aggregate the results. If the value in the local tree

buffer corresponds to a remote partition, it determines the parent by looking at the
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respective tree buffer in that remote partition, and gets the global id of the parent

from the global map.

2.7 Related Work
Since their inception, NUMA architecture has been the source of performance is-

sues, because of their distributed shared-memory, in performance critical applica-

tions targeting shared-memory systems.

This section describes the work done on addressing the performance issues on

NUMA architecture, in general. Then it discusses the graph processing frameworks

which targets single-node shared-memory systems, and are NUMA-oblivious. And,

finally it discusses the graph processing framework that targets shared-memory

NUMA architecture, followed by NUMA-aware graph kernels.

NUMA-aware work. As shared-memory NUMA architectures are becom-

ing ubiquitous in today’s commodity servers, many work have shown the per-

formance issues on running the applications that were implemented for shared-

memory (assuming SMP architecture), and have presented optimizations which

improved their performance on NUMA-architecture based shared-memory sys-

tems. For Databases, works like [22, 25] have shown maximum performance

gain in the range of 3× - 6× on accelerating different data management primitives

and in-memory storage operations, with NUMA optimizations. Further, NUMA

effects are also severe in Machine Learning [28] and Deep Learning [33], where

workload is regular. NUMA-Caffe [33] have shown that the convolution layer (the

most significant and time consuming layer [21]) in Convolution Neural Network

(a type of Deep Neural Network) leads to maximum remote memory accesses, and

with NUMA optimizations they achieved performance gain of 2× to 14×.

Shared-memory Graph Processing Frameworks. Since shared-memory sys-

tems have up to few hundreds of gigabytes of memory available, which is enough to

process mid-size graphs, frameworks like Galois [30], Ligra [35] and Totem [15]

have been developed. These frameworks treats shared-memory system as if it is

based on SMP architecture. And since NUMA architecture is also shared-memory

based, these frameworks run on NUMA architecture as well. But, they suffer from

the distributed nature of the shared-memory in NUMA, and hence do not perform
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and scale well [5].

NUMA-aware Graph Processing Framework. To the best of our knowledge,

Polymer [42] is the only NUMA-aware graph processing framework. It embraces

the design philosophy of distributed systems, and extends Ligra to improve perfor-

mance on NUMA-architecture based shared-memory systems. (discussed in detail

in Section 5.4) NUMA-aware graph kernels. There are work, like [40, 41], that

have optimized specific graph kernels, primarily BFS for Graph500, for NUMA

architecture. The NUMA-aware optimizations that they have done are specific to

graph kernels. On the other hand, all the NUMA optimizations in our work are

graph algorithm agnostic.
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Chapter 3

A BSP-style NUMA-aware Graph
Processing Framework

3.1 Intuition
The NUMA architecture resembles distributed shared-nothing platforms. As de-

scribed in previous section, the BSP processing model naturally matches graph

computation. Therefore, for distributed graph processing, BSP graph processing

model is commonly used. On a NUMA machine, the expected benefits of using

BSP model are: (i) Explicit data placement, which means data is processed at the

node-local level - thus having the potential to reduce processing time through better

locality as during processing no remote accesses are made, (ii) Explicit partition-

ing allows experimentation with different load balancing techniques, and (iii) as

NUMA is a shared-memory system, we can explore different inter-partition com-

munication trade-offs, to reduce communication overhead. The advantages ob-

tained through explicit data placement and partitioning need to be greater than the

overheads present in having BSP model on a shared-memory NUMA system. The

expected overheads are: (i) inter-partition communication overhead, (ii) memory

overhead - since we have to store the state of remote vertices on each partition,

(iii) thread management, (iv) development overhead - designing and implement-

ing partitioning, inter-partition communication and result aggregation, and (v) pre-

processing overhead of partitioning.
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The goal of this study is to evaluate if having a distributed-memory like mid-

dleware on a shared-memory NUMA machine provides performance advantages

in spite of aforementioned overheads.

This chapter describes the design of our BSP-style, NUMA-aware graph pro-

cessing framework, starting with graph partitioning strategies (§3.2), followed by

describing the design opportunities for BSP-style graph processing on shared-

memory NUMA system (§3.3). Then it provides an analytical model to predict

their performance (§3.4). Finally, it describes how the GAS model maps to our

design (§3.5).

3.2 Graph Partitioning
Distributed graph processing begins with partitioning the graph and allocates the

partitions on the processing units. The goals of partitioning are: (i) to process large

graphs - to leverage the large aggregated memory, (ii) to improve load balance, and

(iii) to process the partitions in parallel.

Graph partitioning is an NP-complete problem [7], and having balanced par-

titioning on real-world power-law [14] graphs is challenging [6, 23, 24]. Popular

distributed graph processing frameworks like Pregel [26] and GraphLab [17], do

random partitioning, where vertices are distributed randomly among the processing

units, as it leads to uniform vertex degree distribution. Heterogeneous distributed

system like Totem [15] uses Sorted/Degree-aware partitioning and have shown that

this strategy performs better than Random partitioning on a single-node hybrid

system. The success criteria for a good partitioning strategy are: (i) better load

balance, and (ii) most importantly, better overall performance.

In a NUMA system, explicitly partitioning the graph does not help in process-

ing larger graphs, as the memory available is fixed, but it provides better locality

(by serving all the accesses from local memory of the NUMA node where the par-

tition is assigned to), and enables implementing and experimenting with different

partitioning strategies, designed for distributed systems, to improve load balance

and overall performance. We have implemented two graph partitioning strategies,

random and Sorted/Degree-aware. We also introduce a new partitioning strategy

that leads to better load balance and higher performance, than the above two parti-
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tioning strategies.

Random Partitioning. In this partitioning strategy, vertices are assigned ran-

domly to the processing units. Random partitioning is a popular strategy among the

distributed graph processing systems, like Pregel and GraphLab, targeting graphs

having power-law vertex degree distribution [14]. It increases the probability of

each partition having equal variability in terms of vertex degree.

Sorted or Degree-aware Partitioning. In this approach the vertices are first

sorted by degree, and then they are assigned to the processing units as a contiguous

chunk of vertices with even share of edges. This strategy leads to better locality

since the likelihood of having most of the neighbors in the same partition increases.

It has been shown to perform better than random partitioning in Totem [15], a

heterogeneous distributed system. But, load imbalance increases significantly, as

shown in Fig. 5.1, since few partitions get dense subgraph (chunk with high-degree

vertices will have few vertices) while others get sparse subgraph (tailing chunk

consist of low-degree vertices, thereby the subgraph will have most of the vertices).

New Strategy - Hybrid Partitioning. We observed that Random partitioning

leads to better load balance but suffers from poor data locality. Sorted or Degree-

aware partitioning on the other hand achieves better data locality, but leads to severe

load imbalance. With these observations, we designed and implemented a hybrid

partitioning technique that alleviates this problem. In the first step, we randomly

assign the vertices to the processing units, same as random partitioning. And then,

we sort the vertex list of individual subgraphs by degree. Randomly assigning

the vertices to the processing units increases the probability that each partition

has equal variability in terms of vertex degree (thereby increasing the chance that

the generated load is well balanced). Sorting individual vertex lists improves data

locality [15]. Later we discuss its performance compared to other two strategies in

Fig. 5.1 and Fig. 5.2.

3.3 Design Opportunities for NUMA-aware Graph
Processing

Since we partition the graph and place one partition on each NUMA node, it allows

us to do computation in parallel with all the accesses served from the local mem-
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ory, during the computation phase of a superstep. Since NUMA system is a shared-

memory system, we have the opportunity to explore shared-memory specific op-

timizations to reduce communication overhead. We explore three communication

alternatives that address the motivation of this dissertation: To what degree, de-

signing for NUMA as for a distributed memory system can enable performance (by

explicitly presenting locality), in spite of inherent overheads (message exchange),

in an application agnostic way.

In this section, we describe the data structures we have used in our framework,

and the three design options to optimize communication overhead.

3.3.1 Data structures

To store the graph in-memory, we use Compressed Sparse Row (CSR) format, as

described earlier in Section 2.1 as well as in Figure 3.1 (arrays V and E). As

presented in [16], the arrays V and E represent the CSR data structure, where Vi

contains the start index of the neighbors of the vertex i in the edge array E. In

each partition p, the vertex IDs range from zero to (|Vp| - 1), where Vp is the set of

local vertices belonging to a partition. Edge array E stores the destination vertex

of an edge, which has partition ID encoded in high-order bits (shown in Fig. 3.1

as subscripts). For boundary (or remote) edges, value stored in E depends on the

communication design we select. For NUMA 2-Box (§3.3.2) and NUMA 1-Box

(§3.3.3) designs, value stored is the index to its entry in the outbox buffer (discussed

later), not the remote neighbor ID. But, for NUMA 0-Box design (§3.3.4), value

stored is the remote neighbor ID.

The array S, of length |Vp|, represents the algorithm-specific local state of each

local vertex in the partition. The message (outbox and inbox) buffers allocation

varies by the design options (discussed in details in every design options). The

outbox buffer is for the messages for the remote neighbors, and has an entry for

each remote neighbor. The inbox buffer is for the messages for the local vertices

which are remote to other partitions, therefore has an entry for each local vertex that

is remote to another partition. Both the message buffers have two arrays: one to

store the remote vertex ID, and the other stores the corresponding message. More
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Figure 3.1: High-level illustration of inter-partition communication of
NUMA 2-Box design. V and E are the buffers to represent the graph in
CSR format (as mentioned in Section 2.1 and Figure 2.1). S is the state
buffer for local vertices. Bottom blue and red solid lines depicts commu-
nication paths for NUMA 2-Box, where explicit memory copy through
in - and out - boxes are required. For push-based algorithms, during
computation phase, each partition manipulates its local state buffer S
for local vertices and updates for remote vertices are aggregated locally
in the outbox buffer. During communication phase outbox is copied into
the inbox of the respective remote partition, which are then applied to
the respective local state buffers.

details are provided according to the design options described below.

3.3.2 NUMA 2-Box Design

In this design, we fully embrace the design philosophy of a distributed system,

thereby assuming NUMA as a shared-nothing distributed system - where nodes are

independent and are connected through the interconnect. In this design, as shown

in Fig. 3.1, for communication, it has two message buffers (outbox at source and

inbox at destination partition). Further, as mentioned before, for remote edges,

value stored in E is the index to its entry in the outbox buffer. So, the value in E

for the entries 01 and 21 (in left partition - PID-0), and 40 (in right partition - PID-
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1) is replaced by the index to its entry in respective outbox buffer, i.e. by 01 and

11 (where subscript 1 stands for the outbox for remote partition 1), and 00 (where

subscript 0 stands for the outbox for remote partition 0), respectively.

Following is the BSP-style graph processing in this design for both push-based

and pull-based algorithms (how we implement GAS model in our design is ex-

plained in §3.5).

For push-based algorithms like BFS and SSSP, in computation phase, each

partition manipulates its local state buffer S for updates for its local vertices. All

the updates for remote vertices are aggregated and stored in respective outbox

buffers. In communication phase, as shown in Figure 3.1, the partitions transfer

(blue and red arrows) the respective outbox buffer to the corresponding remote

inbox buffer, and apply the remote updates, received from remote partitions in their

corresponding inbox, to their local state buffers (red arrows from inbox to buffer

S) if necessary conditions are met (for example, in SSSP, remote distance value is

committed if it is lesser than the current value).

For pull-based algorithms, like PageRank, during compute phase, each local

vertex updates its state by reading the state of its incoming-neighbors. The state

of remote incoming-neighbors are accessed from respective outbox buffer. During

the communication phase, the local vertices (which are remote in other partitions)

update their new state in the respective inbox buffer, which is then copied to the

outbox buffer of the remote partition. In the next superstep, this updated state is

utilized to calculate the new state of the local vertices.

Advantages

(i) Zero remote memory accesses. This design leads to zero remote memory ac-

cesses, since all the accesses are local in both computation and communication

phases, and the message buffer (out/in box) is explicitly copied to the remote par-

tition’s message buffer (in/out box).

(ii) Message aggregation. A vertex can be associated with many edges (as aver-

age degree of the vertices is 32 for synthetic workloads and ∼75 for real-world

graphs 4.3). Aggregating the remote updates for the remote vertices locally leads

to sending only one message per remote vertex during the communication phase.
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Figure 3.2: High-level illustration of NUMA 1-Box design. V and E are the
buffers to represent the graph in CSR format (as mentioned in Sec-
tion 2.1 and Figure 2.1). S is the state buffer for local vertices. For
push-based algorithms, during computation phase, each partition ma-
nipulates its local state buffer S for local vertices and updates for remote
vertices are aggregated locally in the outbox buffer. During communica-
tion phase, updates in the remote outbox are sequentially accessed and
applied to the respective local state buffers.

This drastically decreases the inter-partition traffic and the communication time.

Drawbacks

(i) Communication overhead. Since remote vertices are marked and counted dur-

ing partitioning step, the size of the message buffers remain unaltered during the

algorithm execution. Though message aggregation leads to reducing the number

of messages send, there is still communication overhead when the message buffer

is mostly empty, which is often the case while processing for algorithms, like BFS

and SSSP, where communication happens via selective edges only in every super-

step.
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3.3.3 NUMA 1-Box Design

Since NUMA is a shared memory system, instead of having two explicit message

boxes, one at source and another at destination, only one buffer can be physically

allocated on the partition, and the pointer to the box could be swapped during

communication phase. In this design we allocate only one message buffer, at the

source, and assign it to outbox, because of the fact that outbox in source partition is

inbox in the destination partition. Similar to NUMA 2-Box design, the value stored

for remote-edges in E is the index to its entry in the respective outbox buffer.

Following is the BSP-style graph processing in this design for both push-based

and pull-based algorithms.

The computation phase for both push-based and pull-based algorithms are

same as NUMA 2-Box design, as in both the cases outbox is allocated on source

partition, and only the communication phase differs.

For push-based algorithms, in communication phase, the partitions swap the

pointer to the respective outbox message buffer with the corresponding remote

inbox message buffer’s pointer. It does remote sequential access to read the remote

updates, and applies them to their local state buffer, as shown in Figure 3.2.

For pull-based algorithms, during the communication phase, it writes the new

state of its local vertices (which are remote in other partitions), stored in local state

buffer S, to the respective inbox buffer (which is a pointer in this design, and points

to the outbox buffer in the remote partition - inbox in source partition is outbox in

destination partition), by doing remote sequential writes.

Advantages

(i) No explicit message transfer. This design leads to zero remote memory ac-

cesses during computation phase, same as the previous design. In communication

phase, it passes only the pointer to the address of physically allocated box, rather

than the entire message buffer.

(ii) Message aggregation. Message aggregation advantage is same as in the NUMA

2-Box design.
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Figure 3.3: High-level illustration of NUMA 0-Box design, which overlaps
computation with communication. S is the state buffer for local ver-
tices. Note that in this design we get rid of communication infrastruc-
ture. During computation phase, each partition manipulates its local
state buffer S for local vertices and remote updates are directly written
to the respective local state buffer of the remote partition. Atomic writes
are used to ensure correctness.

Drawbacks

(i) Communication overhead. Though this design leads to not transferring the

message buffer explicitly in the communication phase, all the accesses to the mes-

sage buffer are remote sequential, which in turn depends on the costly random

access to update the local state buffer. Further, similar to NUMA 2-Box design,

it suffers from the communication overhead when the message buffer is mostly

empty.

3.3.4 NUMA 0-Box Design

In this design we consider the fact that NUMA is a distributed shared-memory

system. We do explicit partitioning as if NUMA is a distributed system, but we

access the state buffers as if we are in a shared-memory system. As shown in

Fig. 3.3, we do not use communication infrastructure.

During computation phase, for push-based algorithms, if a remote vertex is
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Figure 3.4: Number of Remote vertices vs number of remote updates in each
partition in every superstep of Direction-Optimized BFS (BFS-DO) for
RMAT31 in NUMA 2-Box design. The Y-axis represents frequency (in
millions), in log-scale, of the number of remote updates (per superstep)
and the total number of remote vertices in each partition. The ss-‘x’ on
X-axis represents the sequence of supersteps. We observe that remote
updates are ∼22× less than the number of remote vertices.

visited, the state is updated directly in the local state buffer of the respective remote

partition, thereby it overlaps computation with communication. Atomic operation

is used for updating shared states, to ensure consistency.

For pull-based algorithms, like PageRank, during compute phase, each local

vertex updates its state (e.g. rank for PageRank) by gathering the state of its

incoming-neighbors. For remote incoming-neighbors, it reads the state of the re-

mote vertex from the local state buffer of the respective remote partition.

Note that, in this design, the state of all the boundary edges is accessed re-

motely.

Advantages

(i) Overlapping computation with communication. This design overlaps compu-

tation with communication. It performs better for algorithms like BFS and SSSP,
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where communication happens only via a selective set of edges in every superstep.

For example, from our experiment, as shown in Fig. 3.4, we observe the number

of remote updates in the execution of BFS is ∼22x less than the total number of

remote vertices.

Drawbacks

(i) Communication overhead. Since in this design the state of all the boundary

edges is accessed remotely, it performs poor for algorithms like PageRank where

there is a message via every boundary edge, compared to NUMA 2-Box design,

where number of messages equals the number of remote vertices (not edges). No
message aggregation increases the number of remote memory accesses severely.

3.4 Analytical Model for Estimating Performance
To determine the right communication design for an algorithm, we evaluate the

three designs analytically for PageRank, as a use case. Table 3.1 presents the mem-

ory access pattern of all the designs in computation and communication phases, for

the pull-based PageRank algorithm.

In NUMA 2-Box design, during computation phase, all the accesses being

local, it sequentially updates the rank of all the local vertices, by doing random

accesses to read the value of its neighbors scattered in local memory, including

remote neighbors (that are stored in corresponding outbox buffers). In the commu-

nication phase, it sequentially updates the recent state of the local vertices, which

are remote in other partitions, to the respective inbox buffers. Lastly, it transfers

the inbox buffers to the outbox buffers, allocated on respective remote partitions.

In NUMA 1-Box design, access pattern during computation phase is same as

NUMA 2-Box design. But in communication phase, since the inbox in source

partition points to the outbox in respective remote partition, it performs remote

sequential writes to update the new rank of its local vertices (accessed in local-

random fashion) to the outbox of remote partitions (where the local vertex is re-

mote).

Further note that, for NUMA 1-Box design, message buffer could be allocated

at destination partition. But it leads to much expensive (E’ * Random Remote
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NUMA 2-Box Design
Computation Communication

Local Accesses Local Accesses Memcopy
V * WriteLocal

Seq + (N-1) * V’ * (ReadLocal
Rand (N-1) * memcopy()

(E+E’) * ReadLocal
Rand + WriteLocal

Seq )

NUMA 1-Box Design - Box on Source partition
Computation Communication

Local Accesses Pointer Copy Local + Remote
Accesses

V * WriteLocal
Seq + (N-1) * V’ * (ReadLocal

Rand
(E+E’) * ReadLocal

Rand + WriteRemote
Seq )

NUMA 0-Box Design
Overlapped Computation and Communication

Local Accesses Remote Accesses
V * WriteLocal

Seq +E ∗ReadLocal
Rand E’ * ReadRemote

Rand

Table 3.1: Memory Access Pattern for different NUMA designs, for PageR-
ank algorithm. V/V’ and E/E’ represents number of local/remote ver-
tices and edges in the partition. N is the number of partitions. Memory
accesses are represented by XZ

Y , where X is: read/write operation, Y is:
sequential/random access, and Z is: local/remote memory access.

Read) accesses in computation phase. Therefore, we discard this variation.

Finally, in NUMA 0-Box design, computation and communication phases are

overlapped. In computation phase, rank of each local vertex is computed by read-

ing the rank of its incoming neighbors. To access the rank of its remote neighbors,

it does Random Remote Read accesses.

Having an analytical model helps in selecting the appropriate communication

mode depending on the access pattern of an algorithm. Similar analytical model

could be designed for other algorithms by observing the access pattern during both

computation and communication phase.
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3.5 Mapping GAS model to NUMA design
In this section, we briefly describe how our design matches with the graph compu-

tation that follows GAS (Gather-Apply-Scatter) model by considering the NUMA

2-Box design option as an example.

In our design, the graph computation is implemented either as Gather-Apply-

Scatter, for pull-based algorithms like PageRank, or as Scatter-Apply-Gather, for

push-based algorithms like BFS and SSSP.

In pull-based algorithms, like PageRank, during compute phase, each local

vertex updates its state (e.g. rank for PageRank) in local state buffer S, by gathering

the state of its neighbors. If the neighbor is a remote vertex, the value in edge array

E stores the index to its outbox entry, which contains its state (such as rank in

PageRank). For example, as shown in Figure 3.5, in PID-0 (left), vertex 5 gathers

the rank of its neighbors 40 (local vertex) and 21 (remote vertex). Similarly, in

PID-1, vertex 2 gathers the rank of its neighbor 11 (local vertex). In apply phase,

Figure 3.5, the state of the vertex is updated with the new computed rank. Now,

since the new state of the vertex needs to be in sync with its shadow copy in remote

partition as well, in communication phase it (i) first scatters/updates its value in the

respective inbox buffer, and then (ii) the inbox buffer is transferred to the outbox

buffer on remote partition. In this way, all the shadow copies of a vertex have the

same state, before the next superstep starts.

In push-based algorithms, like BFS, during computation phase, each active ver-

tex scatters its state to its neighbors. For local vertices, the state is applied/synced

implicitly (to its entry in local state buffer S), but for remote vertices, the state is

updated only in their outbox entry. In communication phase, the partitions transfer

the respective outbox buffer to the corresponding remote inbox buffer, and then the

local vertices gather the updated value and commit the change.
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Figure 3.5: Gather, Apply and Scatter phases in NUMA 2-Box design, for
a pull based algorithm. During computation phase, each local vertex
gathers the state of its neighbors and applies the computed value to its
state. In communication phase, it scatters its new state to the respective
inbox buffer, which is then copied to the outbox buffer on remote parti-
tion. In this way, all the shadow copies of a vertex have the same state,
before the start of next superstep.
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Chapter 4

Experiment Design

This section describes the implementation of our graph processing framework, our

NUMA testbed, the synthetic and real-world workloads (graphs) used, and the

experimental methodology we follow.

4.1 System Implementation
To implement our NUMA-aware designs, we extend a state-of-the-art NUMA-

oblivious graph processing framework, Totem [15], that presumes SMP based

CPUs. It does hybrid graph processing on CPU and GPUs, where GPUs have dis-

crete memory, thereby follows distributed systems design. Similar to distributed

systems, it follows Bulk Synchronous Parallel processing model, and does com-

munication between CPU and GPU with message buffers. We use this NUMA-

oblivious framework because: First, in our previous study [5] we observed that it

outperforms state-of-the-art graph processing frameworks including Intel’s Graph-

Mat [36] and Galois [30], by up to an order of magnitude. Second, and most

importantly, its processing model, BSP, matches with our needs.

Fig. 4.1 presents the high level design of our framework. As input, user pro-

vides the graph (workload), graph kernel (e.g. BFS, PageRank), partitioning and

communication strategy, along with optimization options. We allocate all the data

structures belonging to a partition on its respective NUMA node by using libnuma

library. To launch the partitions in parallel and do the computation independently,
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Figure 4.1: High-level design of our BSP-style NUMA-aware framework.

we leverage nested parallelism offered in OpenMP. In the first level of parallelism,

we create as many threads as the number of NUMA nodes available, called parent

threads. From each of these parent threads, child threads, equal to the numbers of

cores available on each NUMA node, are spawned on the respective NUMA nodes.

Threads are assigned to the respective numbered cores (i.e. Thread 0 is assigned to

Core 0, and so on). We set the OMP PROC BIND=spread,close to ensure initial

threads are spawned on different NUMA nodes and child threads are close to their

respective parent thread. Similarly, during the communication phase, especially

35



in NUMA 2-Box design, the parent thread on each NUMA node are responsible

for transferring the content of outbox to inbox of remote partition, and then child

threads applies the updates from inbox to the respective local state buffers. This

process continues until the global finish flag is set.

In our experiments, we evaluate how our NUMA-aware framework performs

against the state-of-the-art NUMA-oblivious framework Totem. Further, we run

the NUMA-oblivious framework with numactl interleave command, which allo-

cates memory on all the NUMA nodes in a round robin fashion, instead of Linux’s

first-touch policy, that allocates data on the memory node touched first by the

thread. We compare against this as well, as it allocates memory pages uniformly

on all the NUMA nodes in a non-deterministic way.

4.2 TestBed
To explore benefits of our designs we use a four socket Intel Xeon machine (E7-

4870 v2, Ivy Bridge), having 60 cores, 1536 GB of Memory and L3 Cache of 120

MB. In Section 2.3.3 we have discussed the key memory characteristics of our

testbed using Figure 2.3 and Table 2.1.

4.3 Workload

Graph #Vertices #Edges Edge-list
(|V|) (2|E|) size (in GB)

RMAT28 256M 8B 64
RMAT29 512M 16B 128
RMAT30 1B 32B 256
RMAT31 2B 64B 512
RMAT32 4B 128B 1024
Twitter50 51M 3.9B 15

clueWeb12 978M 74B 286

Table 4.1: Workload used for evaluation.

We consider both real-world and large Recursive MATrix (RMAT) scale-free

graphs from scale 28 to 32 for evaluating our designs. Twitter [9] is an online
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social network graph, while clueWeb12 [3] is a hyperlink web graph. Synthetic

graphs are generated using the RMAT generator [12] with the following param-

eters: (A,B,C) = (0.57, 0.19, 0.19) and an average vertex degree of 16. All the

graphs were made undirected, following the Graph500 standard. We use RMAT

graphs to evaluate our design because: First, it is adopted by today’s widely ac-

cepted Graph500 benchmark [2]. Second, RMAT graphs have similar characteris-

tics to real-world graphs: they have a low diameter and a ‘power-law’ [14] (highly

heterogeneous) vertex degree distribution.

We use 64-bit vertex and edge id to store the RMAT graphs in-memory, as we

store partition id in the highest ordered bits. The largest graph we run, RMAT32,

has the edge-list of size 1TB (1024 GB). For evaluation, we run the experiments

20 times for each workload and report the average. For BFS and SSSP, we use

different randomly generated source vertex. We use 32-bit weights, for SSSP, in

the range of (0, 1M] so as to have highly diverse weight distribution. For PageRank,

we run each experiment for five PageRank iterations and normalize the execution

time to one iteration.

4.4 Experimental Methodology

Partitioning

Explicit partitioning enables implementation and experimentation with different

partitioning strategies to achieve better load balancing and data locality. We exper-

iment with the three partitioning strategies that we described in Section 3.2. We

define load imbalance as ratio between computation time of the slowest partition

to that of the fastest partition.

Performance Evaluation of Designs

We evaluate the performance of the NUMA designs we introduced in Section 3.3.

We compare the performance of our designs with that of NUMA-oblivious frame-

work Totem and running Totem with non-deterministic numactl, and report the

algorithm execution time. Consistent with the standard practice in the domain,

‘execution time’ does not include time spent in pre- or post-processing steps such
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as graph loading, graph partitioning and result aggregation. We further evaluate

our designs for strong scaling w.r.t resources. For scalability, we consider largest

graph that could fit in the memory of one socket (384 GB). For PageRank and

BFS we consider RMAT30, with edge-list size 256 GB, and for SSSP we consider

weighted RMAT29, with weighted edge-list size 192 GB.

Note: We are unable to provide hardware counters measurement because
hardware counters for remote memory accesses are not supported by the testbed.

Accuracy of the Analytical Model

To select appropriate communication design, we have presented an analytical model

in Table 3.1 for PageRank. We verify its accuracy.

Comparison with Existing Work - Polymer

Finally, we compare against Polymer [42], the only NUMA-aware single-node

graph processing framework (to the best of our knowledge). It has shown to

perform better than state-of-the-art single-node graph processing frameworks Ga-

lois [30], Ligra [35], and X-Stream [32].

38



Chapter 5

Experimental Results

This chapter presents and discusses the experimental results of our designs. We first

discuss the impact of graph partitioning on load balancing and overall performance

improvement. Next, in Section 5.2 we explore the performance of the NUMA

designs (described in Chapter 3) for different graph applications (§2.6) on both

synthetic and real-world graphs(§4.3). In Section 5.3, we evaluate the accuracy

of our analytical model. Finally, we compare our designs with a state-of-the-art

NUMA-aware graph processing framework, Polymer (Section 5.4).

5.1 Impact of Graph Partitioning
Explicit partitioning enables designing and experimentation with different parti-

tioning strategies to achieve better load balancing and overall performance im-

provement. In this section, we evaluate the impact of the three partitioning strate-

gies (discussed in §3.2) on load balancing and overall performance improvement

for PageRank (which has fixed workload in every superstep) and BFS - Direction

Optimized, BFS-DO, (which has dynamic workload per superstep) algorithms.

Figure 5.1 shows the impact of our hybrid strategy compared to Random and

Sorted/Degree-aware (§3.2) strategies, on load balancing for PageRank using the

RMAT31 graph. For PageRank, where workload in every superstep is fixed, Ran-

dom strategy leads to a load imbalance of only 1.03× (i.e. the slowest partition

is only 3% slower than the fastest partition). Sorted/Degree-aware strategy suffers
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Figure 5.1: Load imbalance of traditional (Sorted and Random) and new Hy-
brid partitioning strategy for PageRank algorithm for RMAT31 graph
using NUMA 2-Box design. The x-axis is for supersteps (denoted by
‘ss’) required for execution. The y-axis is for computation time (lower
the better) of the four partitions for the three partitioning strategies.

a load imbalance of 1.46×, but performs 1.69× better than Random partitioning.

This is because, random partitioning strategy increases the probability that each

partition has equal variability in terms of vertex degree. Therefore, we observe

better load balance. On the other hand, it also increases the probability that the

neighbors of a vertex are scattered in memory, leading to poor data locality [16].

While with Sorted strategy, first partition gets the most dense graph (containing few

high degree vertices, for e.g., PID-0 in Figure 5.1) and the last partition gets the

most sparse graph (containing most of the vertices with low degree). Sorted strat-

egy leads to better data locality and over all performance for PageRank, but since

dense partition gets processed faster than the sparse partition, it leads to higher load

imbalance compared to Random strategy.

Hybrid strategy achieves load imbalance of only 1.05×. This leads to an over-

all performance improvement of 1.18× and 2× against Sorted and Random strate-

gies, respectively.
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Figure 5.2: Load imbalance of traditional (Sorted and Random) and new Hy-
brid partitioning strategy for BFS-DO algorithm for RMAT31 graph us-
ing NUMA 2-Box design. The x-axis is for supersteps (denoted by ‘ss’)
required for execution. The y-axis is for computation time (lower the
better) of the four partitions for Traditional and New partitioning strate-
gies.

For BFS-DO, where workload changes drastically in every superstep, as shown

in Figure 5.2, we observe significantly higher load imbalance, of 10.1×, with

Sorted strategy. With Sorted strategy, initial three supersteps are executed with

Top-down kernel, followed by three supersteps with Bottom-up kernel, and the re-

maining again with Top-down kernel. In Top-down stage, frontier builds up quickly

for dense partition (since it has high degree vertices), hence we observe that in su-

perstep 3, the dense partition (PID-0) takes significant amount of time because of

processing the huge frontier. Random strategy achieves load imbalance of 1.35×.

Even for algorithms like BFS-DO, where workload during every superstep is highly

dynamic, Hybrid strategy achieves load imbalance of only 1.13×. Since, BFS-DO

is a memory bound algorithm and cache sensitive, better load balance and locality

leads to better performance. Random strategy performs 3.4× better than Sorted

strategy, while Hybrid strategy performs 5.3× and 1.55× better than Sorted and
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Random strategies, respectively.

Since our hybrid strategy achieves better overall performance, in all the follow-

ing experiments, we use our hybrid partitioning strategy to partition the graph for

NUMA-aware graph processing.

5.1.1 Partitioning - Key Insights

1. Better load balance does not mean better performance (as observed in Ran-

dom vs Sorted strategy). Note that it is important to achieve better load

balance, to optimize resource usage (i.e. to avoid overload of few resources

while the remaining resource are idle). But, the end goal of high performance

graph processing is to process the graph as fast as possible.

2. The hybrid partitioning strategy strikes the right balance between load bal-

ance and locality, hence offers improved performance.

3. Graph partitioning is an NP-Complete problem. There exists sophisticated

partitioning strategies that offer improved load balancing across partitions,

however, are costly. For them, graph partitioning takes much longer than the

simpler partitioning techniques we explored in this dissertation.

4. Real-world graphs are heavily skewed, therefore are very difficult to parti-

tion. The partitioning strategies, leveraged by distributed graph processing

frameworks like Google’s Pregel and GraphLab, and the ones we have exper-

imented with are simple and low-cost. These techniques make the hypothesis

that there are no natural communities in these real-world graphs. But we are

skeptical that there are natural clusters in many of these graphs.

5. Further, our infrastructure is flexible enough that users can plugin and exper-

iment with different partitioning strategies.

5.2 Performance Evaluation of Designs
In this section we first evaluate the performance of our three communication de-

signs on both synthetic and real-world workloads for different graph algorithms.
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Then we provide the strong scaling, w.r.t resources, experiment results of our de-

signs. Finally we mention the performance numbers of our Graph500 submissions.

5.2.1 Performance of NUMA 2-Box design.

As observed in Fig. 5.3, for the RMAT31 graph, NUMA 2-Box is 2.07× and 1.63×
faster than NUMA-oblivious Totem for PageRank and BFS-DO algorithms, re-

spectively.

Since PageRank has a high compute-to-memory-access ratio, most of the time

is spend in computation phase. Further, because of having explicit 2-Box commu-

nication, all the remote updates are send in a batch and all the accesses are local

(in both computation and communication phase). This leads to spending only 3%

of execution time in communication phase.

In BFS-DO, which has a low compute-to-memory-access ratio, as shown pre-

viously in Fig. 3.4, relatively few remote vertices have messages in each superstep.

This leads to higher communication cost of 26.9% of execution time. numactl does

not provide enough performance because the pages are distributed among NUMA

nodes in a non-deterministic round-robin fashion, thereby the data distribution is

not graph topology aware.

Further, Fig. 5.4 and Fig. 5.5, present that (i) for synthetic graphs, NUMA

2-Box performs better than both Totem and numactl for all the algorithms (up

to 2.08×, 1.88×, and 1.91× against Totem, and 20%, 26%, and 33% better

than numactl, for PageRank, BFS-DO and BFS-TD, respectively) except for SSSP.

For SSSP, it performs up to 33% better than Totem, but is up to 91% slower than

numactl (discussed later). (ii) For Twitter graph, NUMA 2-Box is up to 63%,

29%, and 11% faster for PageRank, BFS-TD, and SSSP algorithms, respectively,

against Totem. Real-world graphs like clueWeb are heavily skewed and require

huge number of supersteps to converge (#supersteps: 94 and 135 for BFS-DO,

and 76 and 129 for SSSP, by Totem and NUMA 2-Box, respectively, for clueWeb).

For clueWeb graph, NUMA 2-Box could achieve good performance, of 69%, only

for PageRank. For traversal based algorithms, especially for BFS-DO and SSSP,

it does not perform well. BFS-DO requires hand-tuning the parameters to switch

between Top-down and Bottom-up stages. That’s why we do not observe major
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Figure 5.3: NUMA designs performance against Totem and numactl for
PageRank (left) and BFS-DO (right) algorithms on RMAT31 graph.
The Y-axis is for execution time (lower the better). For NUMA-2B and
NUMA-1B, where we do explicit communication, we show the break-
down of execution time with computation and communication time.

improvement. Since all the scales of synthetic graphs have similar characteristics,

the switching parameters are easy to tune.

For both type of workloads (synthetic and real-world), numactl performs better

than NUMA 2-Box design for SSSP. As mentioned earlier, for SSSP, the opti-

mizations, to activate the neighbors in the same iterations, were done to reduce

the number of supersteps assuming SMP based architecture [16]. This leads to the

partition with source vertex spend more time in the computation phase than others,

in the initial few supersteps. Note that our NUMA-aware design is application
agnostic and we do not modify the applications.

5.2.2 Performance of NUMA 1-Box design.

NUMA 1-Box design performs better than Totem and is competitive with numactl.

Though, it does not perform well compared to NUMA 2-Box because it consumes

more time during communication phase, as it does remote sequential accesses to
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the remote message buffer, which is bounded by slow local random updates to the

state buffer, as shown in Figure 5.3. In NUMA 1-Box design too, all the remote

updates are aggregated in message buffers, in similar way as in NUMA 2-Box

design. Hence, it does not perform well for BFS-DO and SSSP algorithms, but

performs well for PageRank and BFS-TD compared to both Totem and numactl,

as shown in Figure 5.4 and Figure 5.5.

5.2.3 Performance of NUMA 0-Box design.

NUMA 0-Box design performs better for algorithms like BFS and SSSP, where in

each superstep there are messages from selective boundary edges only, not from all.

As shown in Fig. 5.3, for BFS-DO, overlapping computation and communication

(by directly updating the remote vertices) in every superstep leads to better perfor-

mance. Note that the gain, almost equivalent to the communication time in NUMA

2-Box, is achieved because of implicit communication, since the number of remote

updates in every superstep is much less than the number of remote vertices (∼22×
for RMAT31 graph), as shown previously in Fig. 3.4.

From Fig. 5.3, Fig. 5.4 and Fig. 5.5, we observe that NUMA 0-Box design

performs better than Totem, numactl as well as other NUMA designs for PageR-
ank (up to 1.89×), BFS-TD (up to 1.62×), BFS-DO (up to 2.37×) as well as
SSSP (up to 2.27×) algorithms. Further, even though real-world graphs are heav-

ily skewed, it provides better performance improvement, for traversal based algo-

rithms, than other NUMA designs as well as Totem and numactl (except for BFS-
DO on clueWeb graph, which requires hand-tuning the switching parameters).

For BFS-TD, though it performs better, performance gain is less compared to

other NUMA designs. This is because in BFS-TD frontier size increases drasti-

cally, which increases the remote memory accesses. But, for SSSP, it activates

the remote vertices as well, in the same iteration, which increases the likelihood

of every partition having active vertices in the initial supersteps, thereby achieving

better load balance and overall performance.

Further, for algorithms like PageRank, where each vertex calculates its rank by

pulling ranks of all its neighbors, all the remote messages, sent over every boundary

edge, are read/accessed in remote random fashion, which leads to degradation in
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performance.

5.2.4 Communication Designs - Key Insights

1. Although explicit communication can be perceived as extravagant for a cache-

coherent shared memory system, its performance benefits on a NUMA sys-

tem are indisputable.

2. Performance gain in NUMA 2-Box, compared to NUMA 1-Box, comes from

doing local accesses during computation, and copying data in bulk from

source partition to destination partition, followed by local random/sequen-

tial accesses for local read/write operations in communication phase. But in

NUMA 1-Box design, even though the remote updates are read sequentially,

it is bounded by slow local random writes to the local state buffers.

3. NUMA 2-Box design leads to zero remote memory accesses and reduces

the number of messages send during the communication phase to only the

number of remote vertices, regardless of the number of edges associated with

them.

4. NUMA 2-Box performs better for algorithms, like PageRank, where the

communication volume is high (i.e. where most of the neighbors are up-

dated). While, for algorithms which have low communication volume (i.e.

where only a small subset of neighbors are updated), like traversal based

algorithms such as BFS and SSSP, NUMA 0-Box provides better perfor-

mance. This explains why some algorithms are finding better solution with

one design and some with other design.

5. For BFS and SSSP, the partition with source vertex ends up spending more

time in initial supersteps in NUMA 2-Box and 1-Box designs, as the active

vertices are confined to the partition having the source vertex. This degrades

the performance of NUMA 2-Box and 1-Box designs for these algorithms.

On the other hand, for PageRank, NUMA 0-Box ends up doing remote ran-

dom access for each remote edge, hence no message reduction like NUMA

2-Box design, which degrades its performance.
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Figure 5.6: Strong Scaling of Totem, numactl and NUMA designs on our
4-socket machine compared to 1-socket (memory: 384GB). Weighted
RMAT29 (weighted edgelist size: 192GB) is used for SSSP and un-
weighted RMAT30 (edgelist size: 256GB) was used for all other algo-
rithms.

5.2.5 Strong Scaling Experiments

Here we evaluate how our designs scale on our four socket NUMA testbed com-

pared to one socket. We use the largest graph that could fit into the memory of one

socket (384 GB). For SSSP, which requires weighted graph, we use RMAT29 with

weighted edge list size of 192 GB. For all other algorithms we use unweighted

RMAT30 with edge list size 256 GB.

Fig. 5.6 presents that our NUMA design fills the performance gap left by Totem

by scaling to as much as 3.7×, 2.9×, 2.7× and 2.8× compared to 2.0×, 1.7×,

2.1×, and 1.3× achieved by Totem for PageRank, BFS-DO, BFS-TD and SSSP

algorithms, respectively.

5.2.6 Graph500 submissions.

Graph500 competition ranks supercomputers worldwide for data intensive appli-

cations, BFS and SSSP.
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In SSSP, a new kernel addition in Graph500 since November 2017, we secured

World Rank 2 (in June 2018 list, published during ISC conference).

For BFS, a mature kernel in Graph500, we rank among top three single-node

submissions. For RMAT31, our NUMA 0-Box design achieved 10.73 Billion

TEPS, a performance gain of 28% against our previous submission by running

NUMA-oblivious Totem with numactl on the same NUMA machine, 8.37 Billion

TEPS. Note that, this performance improvement is less compared to 50% perfor-

mance improvement of NUMA 0-Box against numactl for plain BFS-DO for the

same RMAT31 workload, as shown in Figure 5.3. This is because, as expected, our

NUMA design consumes more time in initialization (which is timed in Graph500)

than NUMA-oblivious, as it has to initialize the state of all the partitions. Further,

the largest graph submission we made has 128 Billion undirected edges (RMAT32),

with edge list size 1TB. NUMA-oblivious Totem could not run RMAT32 as its mem-

ory requirement are ∼2× the edge-list size, as observed in our previous study [5].

Note that our framework is a generic graph processing framework that enables

users to develop multiple applications, including BFS and SSSP, and applies opti-

mizations in an application-agnostic way. While, the codes we compete against in

Graph500 are developed for these specific applications (as published in the corre-

sponding publications [13, 38, 40, 41]).

5.3 Accuracy of the Analytical Model
From our experiments, we have observed that different designs perform differently

depending on the memory access pattern they provide, along with the communi-

cation volume in different graph algorithms. For example, NUMA 2-Box design,

which offers all the accesses to be local and does message aggregation for remote

vertices, performs best for algorithms having messages for most of the remote ver-

tices in each superstep, like PageRank. While, NUMA 0-Box, which overlaps

computation with communication, gives best performance for algorithms like BFS

and SSSP, where there are messages over selective edges only.

We calculate the expected theoretical time to solution for each of the three

designs for PageRank algorithm using the machine characteristics available in Ta-

ble 2.1 for different workloads. We observed that for all the RMAT graphs and for
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all the partitions, ∼25% of the edges were local and ∼75% were remote (since we

have four partitions, with random distribution, probability of a vertex to be local is

0.25, and 0.75 for being remote), and local vertices and remote/ghost vertices con-

stitute ∼64% and ∼36% of the total vertices (V+V’) in each of the partitions. As

seen in Fig. 5.7 and in Table 5.1, our model correctly predicts the relative sequence
of the designs according to the performance. Note that this is a high level predic-

tion, since we have not taken into account caching, effect of prefetching and other

minute level details; and especially for NUMA 0-Box design, we did not take into

account impact of overlapping computation and communication in the analytical

model.
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Design Cost Model Empirical
NUMA 2-Box 1× 1×

NUMA 1-Box on source partition 1.055× 1.07×
NUMA 0-Box 1.46× 1.21×

Table 5.1: Cost Model evaluation for PageRank algorithm. The numbers rep-
resent average speedup of NUMA 2-Box against other designs, for all
workloads, as predicted by cost model and observed empirically from
experiments.

Application developers can easily extend this model for other applications to

determine the optimal communication strategy, since in all the graph applications,

we only need to look at the memory access pattern as specified in Table 3.1.

5.4 Comparison with Existing Work
Finally, we compare our framework against Polymer, the only NUMA-optimized

graph processing framework we are aware of. It also embraces the design philos-

ophy of distributed systems, and is developed on top of Ligra, a shared-memory

graph processing framework. The key difference between Polymer and our work

is, Polymer does vertex-cut partitioning [17], while we do edge-cut partitioning. In

vertex-cut partitioning, a single vertex is partitioned among multiple nodes. This

requires replicating the vertices on multiple nodes. But, it enables distributing the

computation on a single vertex over multiple NUMA nodes. This is especially

beneficial for highly skewed real-world power-law graphs where few vertices have

millions of edges associated with them. This technique further provides the advan-

tage of placing only those edges on a partition whose destination vertex is also local

to the partition, thereby both the source and the destination vertices are local. This

reduces the number of remote memory accesses. Polymer implements push-based

PageRank and adapts Bellman-Ford algorithm for SSSP. For BFS, it implements

Top-Down BFS, and does not supports Direction-Optimized BFS.

Table 5.2 summarizes the performance of the best performing NUMA design

against Polymer. For BFS, we present the performance of our design for BFS-Top

Down only, since Polymer does not have Direction-Optimized BFS implementa-

tion. Missing data points means Polymer failed (Error: Segmentation fault (core
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Algorithm Workload Polymer NUMA-xB
Time (s) Memory (GB) Time (s) Memory (GB)

PageRank RMAT28 5.1 365 1.46 80
RMAT29 11.6 735 3.48 162
RMAT30 26.2 1401 8.29 330
RMAT31 - - 21.4 674
RMAT32 - - 49.4 1366
Twitter 1.53 144 0.75 21.8

BFS RMAT28 11.37 366 1.29 81
RMAT29 17.17 740 2.36 162
RMAT30 34.63 1302 4.94 322
RMAT31 - - 12.63 653
RMAT32 - - 24.65 1319
Twitter 13.1 93 0.94 19.2

SSSP RMAT28 11.5 437 4.34 115
RMAT29 24.95 886 9.56 232
RMAT30 - - 21.79 452
RMAT31 - - 53.59 867
Twitter 5.3 115 8.4 41

Table 5.2: Execution time (in second) and peak Memory consumption (in
GB) of Polymer and our best performing NUMA design (NUMA-xB).
We show peak memory consumption among all the NUMA designs.
Missing data points means Polymer was out-of-memory.

dumped)) to execute for the respective graph workloads (including clueWeb graph),

as it was out of memory. Our design outperforms Polymer by up to 3.5×, 13.9×
and 2.6× for PageRank, BFS and SSSP algorithms respectively. Polymer does

vertex-cut partitioning, and consumes ∼5.7× more memory than the size of the

respective edge-list of the graph, and ∼4.4×more memory than our NUMA de-
signs. Polymer is faster than our design only on Twitter for SSSP algorithm. It

performs 1.58× better but at the cost of consuming 2.8× more memory.
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Chapter 6

Conclusion

In this dissertation, we postulated our hypothesis that a distributed-memory like

middleware, that makes graph partitioning and inter-partition communication ex-

plicit, improves the performance on a NUMA system. To test our hypothesis, we

designed a NUMA-aware graph processing framework that embraces the design

philosophies of distributed graph processing framework, especially the explicit

partitioning and communication. Based on the lessons from the above design,

we proposed (i) a new hybrid partitioning strategy, which leads to near opti-
mal load balance of 95% and improves the overall performance by up to 5.3×,

and (ii) a new NUMA-aware hybrid design that considers the fact that NUMA
is a distributed shared-memory architecture. It leverages the benefits of dis-

tributed system (by explicitly partitioning the graph among NUMA nodes) and

shared-memory system (by performing implicit communication to access the state

buffers), and overlaps computation with communication. This design provides

performance gain of 1.89×, 2.37×, and 2.27× for PageRank, BFS and SSSP

algorithms, respectively, against state-of-the-art NUMA-oblivious framework, as

well as secured good ranking for us in Graph500 competition.

To summarize, we presented a scalable (up to 3.7×), high performant (up
to 13.9×), memory efficient (∼4.4×), generic NUMA-aware graph processing

framework that outperforms the state-of-the-art NUMA-oblivious (up to 2.37×) as

well as NUMA-aware (up to 13.9×) graph processing frameworks. We observed

that considering NUMA as a distributed system not only improves performance but
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also provides the opportunity to explore different partitioning and communication

strategies in NUMA machine. Finally, since now-a-days each node in a high-end

large-scale distributed system embraces NUMA architecture with at least two sock-

ets, our design has the potential to improve the performance of the entire cluster,

by improving the performance of each node.
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