

Edinburgh Research Explorer

iPregel: Strategies to Deal with an Extreme Form of Irregularity in
Vertex-Centric Graph Processing
Citation for published version:
Capelli, L, Brown, N & Bull, J 2019, iPregel: Strategies to Deal with an Extreme Form of Irregularity in
Vertex-Centric Graph Processing. in 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures
and Algorithms (IA3). Association for Computing Machinery (ACM), pp. 45-50, 9th Workshop on Irregular
Applications: Architectures and Algorithms, Denver, Colorado, United States, 18/11/19.
https://doi.org/10.1109/IA349570.2019.00013

Digital Object Identifier (DOI):
10.1109/IA349570.2019.00013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures and Algorithms (IA3)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1109/IA349570.2019.00013
https://doi.org/10.1109/IA349570.2019.00013
https://www.research.ed.ac.uk/en/publications/e0e24d1d-26ec-4c45-ae95-b38c567be955

iPregel: Strategies to Deal with an Extreme Form of
Irregularity in Vertex-Centric Graph Processing

Ludovic Anthony Richard Capelli
School of Informatics

The University of Edinburgh
Edinburgh, United Kingdom

l.capelli@ed.ac.uk

Nick Brown
Edinburgh Parallel Computing Centre

The University of Edinburgh
Edinburgh, United Kingdom

n.brown@epcc.ed.ac.uk

Jonathan Mark Bull
Edinburgh Parallel Computing Centre

The University of Edinburgh
Edinburgh, United Kingdom

m.bull@epcc.ed.ac.uk

Abstract—Over the last decade, the vertex-centric program-
ming model has attracted significant attention in the world of
graph processing, resulting in the emergence of a number of
vertex-centric frameworks. Its simple programming interface,
where computation is expressed from a vertex point of view, offers
both ease of programming to the user and inherent parallelism
for the underlying framework to leverage. However, vertex-
centric programs represent an extreme form of irregularity, both
inter and intra core. This is because they exhibit a variety of chal-
lenges from a workload that may greatly vary across supersteps,
through fine-grain synchronisations, to memory accesses that are
unpredictable both in terms of quantity and location.

In this paper, we explore three optimisations which address
these irregular challenges; a hybrid combiner carefully coupling
lock-free and lock-based combinations, the partial externalisation
of vertex structures to improve locality and the shift to an
edge-centric representation of the workload. We also assess the
suitability of more traditional optimisations such as dynamic
load-balancing and software prefetching. The optimisations were
integrated into the iPregel vertex-centric framework, enabling the
evaluation of each optimisation in the context of graph processing
across three general purpose benchmarks common in the vertex-
centric community, each run on four publicly available graphs
covering all orders of magnitude from a million to a billion edges.

The result of this work is a set of techniques which we
believe not only provide a significant performance improvement
in vertex-centric graph processing, but are also applicable more
generally to irregular applications.

Index Terms—vertex-centric, hybrid combiner, structure ex-
ternalisation, edge-centric workload, load-balancing, cache effi-
ciency

I. INTRODUCTION

Graphs have become an ubiquitous data structure due to
their application throughout very many areas of technology.
As such the development of graph processing algorithms is an
important and active area of research, with growing interest in
the development of programming models for this domain in
order to support the expression of complicated algorithms. It
follows that there is a growing interest in programming models
for graph processing.

In 2010, Google introduced the vertex-centric programming
model through Pregel [1], which has attracted great attention,
where the user expresses the graph computation from a vertex

We thank the reviewers for their helpful feedback and suggestions. This re-
search was supported by the UK Engineering and Physical Sciences Research
Council (grant number EP/L01503X/1, CDT in Pervasive Parallelism)

perspective. In this model, verticies can communicate with
each other by sending messages along their outgoing edges and
each have a mailbox for incoming messages. The execution
first begins with all vertices active, a user-defined function is
then applied to each one of these, and vertices can halt and
become inactive as appropriate. Working in iterations, also
called supersteps, once all vertices are processed for a specific
step, message exchanges between vertices are performed and
vertices that receive a message become, or remain, active.
Once all message exchanges are performed, a new superstep
begins: reapplying the user-function to all active vertices, then
performing message exchanges before a new superstep begins.
This iterative execution repeats until all vertices are inactive.

Whilst this model provides significant programmability ad-
vantages, and exposes a large degree of latent parallelism, it
also suffers from numerous irregularities that impact perfor-
mance. In fact, when it comes to common properties associated
with irregular applications, the vertex-centric model exhibits
many sources of irregularity:

• Fine-grain synchronisations: the communications in
vertex-centric programs take place at a vertex’s mailbox
level, hence any data-race protection must be imple-
mented on a per-vertex basis.

• Unpredictable memory access patterns: broadcasting a
message from a vertex to its neighbours means emitting
a vertex-specific number of messages, aggravated by the
power-law distribution of the numbers of neighbours per
vertex. Also, the recipient vertices are unlikely to reside
next to each other in memory, making these memory
accesses unpredictable both in terms of quantity and
location.

• Load-imbalance: the number of active vertices may
drastically vary from a superstep to the next, and the
numbers of neighbours may drastically vary too from a
vertex to the next.

Since the challenges faced in vertex-centric programs echo
those of a larger class of irregular problems, optimisations that
are successful for vertex-centric are likely to be applicable or
adaptable to other heavily irregular applications such as social
network analysis or graph databases for instance.

Vertex-centric programs are inherently difficult to optimise

because they tend to take the form of short user provided
source code, resulting in the fact that the underlying frame-
work is provided with little information to leverage for perfor-
mance. In the meantime, since programmability is the essence
of vertex-centric, any performance optimisations must not
impact the programmability properties of the framework.

There is a serious tension here – performance optimisation
against programmability [2] – and many attempts to optimise
the vertex-centric model have negatively impacted the ability
to easily program this paradigm. By contrast, our approach
integrates the preservation of vertex-centric programmability
in its core. To that end, all the optimisations discussed in this
paper are entirely encapsulated within the iPregel framework,
requiring no user source modification to take advantage of
them.

The main contributions presented in this paper, which can
be summarised as follows:

• A hybrid combiner designed to couple lock-free and
lock-based interactions in order to efficiently handle fine-
grain synchronisations.

• The externalisation of vertex attributes to better cope
with unpredictable memory accesses by improving the
cache efficiency through the grouping of vertex attributes
based on their access frequency.

• An edge-centric workload representation that improves
load-imbalance and preserves both the vertex-centric
paradigm and Pregel user interface.

The rest of this paper is organised as follows: Section II
depicts the context in which this research takes place. Sec-
tions III, IV and V introduce the optimisations considered
in this paper. Section VI describes the environment in which
experiments were conducted while Section VII presents and
analyses the results obtained. This paper then concludes in
Section VIII; summarising the findings of this work as well
as discussing potential future work directions.

II. RELATED WORK

Over the last decade, the vertex-centric programming model
has received great attention due to the programmability it
offers to the user and the amount of parallelism inherently
provided. There have been some attempts by the vertex-centric
community to address the implications of irregular workloads
present in graph processing algorithms.

Bypassing the costly selection of active vertices has been
addressed, whether it has to be done manually by the user
such as GraphChi [3] or automatically thanks to the anal-
ysis of algorithmic patterns as introduced in early iPregel
work [4]. However the dispatching of active vertices to threads
remains an unsolved challenge. Indeed, accurately evaluating
the workload contained in these active vertices is key to an
efficient workload dispatch. The common approach in vertex-
centric frameworks consists in distributing an equal number of
active vertices to each worker. However, this approach is sub-
optimal due to the power-law degree distribution that typically
underpins the graphs processed. This observation led to the
development of PowerGraph [5], where the authors adopted a

more edge-centric approach, but which resulted in an entirely
new interface based on the scatter-apply-gather design instead
of the typical Pregel single user-defined function. As such,
many of the abstraction and programmability benefits of the
vertex-centric model were lost.

The edge-centric approach was taken one step further by X-
Stream [6], whose implementation and interface are entirely
designed from an edge-centric perspective; exposing an edge-
centric Gather-Apply-Scatter interface to the user. The under-
lying motivation for this design was to address the randomness
of memory accesses, by reading the graph’s edges sequen-
tially. Nonetheless, such edge-centric frameworks, which by
definition are no longer vertex-centric hence cannot provide
the same benefits, demonstrate that addressing the vertex-
centric challenges without sacrificing certain aspects of the
actual programming model is not a trivial task.

This is also illustrated in the implementations for the fine-
grain synchronisations required in vertex-centric programs
during message exchange. Typically, either communications
are redesigned as pull-based [3] so they are lock-free, or a
semaphore is needed for each vertex mailbox where appropri-
ate. An alternative approach for the latter is to implement the
message combination as a compare-and-swap, as illustrated in
Ligra [7]. However, despite providing performance benefits,
this design again reduces the level of abstraction and requires
the end programmer to interact with the framework at a lower
level, potentially requiring a rewriting of certain parts of their
code, in addition to raising additional restrictions that will be
discussed in details later in this paper.

As described in this section, the application of optimisa-
tions for dealing with irregular workloads in vertex-centric
frameworks typically results in the sacrifice of vertex-centric
aspects, features or programmability. By contrast, in previous
work [2], we demonstrated that vertex-centric optimisations
could be designed without generating such unwanted side
effects. In this paper, we continue this direction and focus on
developing optimisations to cope with vertex-centric irregular-
ities without sacrificing the actual vertex-centric programma-
bility or requiring a single user source code rewrite.

III. FINE-GRAIN SYNCHRONISATIONS

Vertex-centric programs require each vertex mailbox to be
protected against potential data-races. The write-interactions
with that mailbox are achieved during combination, which
makes combiners a key area for optimisations since any
improvement in their design will have a direct impact on the
performance observed. To implement them, two designs are
available:

• lock: a classic design where vertices acquire the lock
held on the recipient vertex, check if that recipient
vertex already received a message, and if so the sender
vertex combines the existing message with the new one.
Otherwise, it simply pushes the new message, before
releasing the lock.

• compare-and-swap: a lock-free design where vertices
retrieve the existing message from the recipient’s vertex

mailbox, combine it and push it back using a compare-
and-swap operation that atomically checks if the value
of the mailbox message is identical to that read earlier.
If so, it updates it with the new value and returns true;
otherwise, it means the value changed, which implies
that another vertex updated this recipient’s mailbox first,
in which case the entire operation is repeated until it
eventually succeeds.

The second approach has the advantage of avoiding locks,
thus resulting in a performance gain. However, it system-
atically combines the new message with the existing one,
therefore relying on the assumption that mailboxes begin with
a default message value that is neutral to the combination
operation applied. For instance, in a combination operation
that sums messages, vertices mailboxes would begin each
superstep with a message value of 0. This need of a neutral
value implies that either the user must be constrained to a set
of predefined combination operations whose neutral values are
hardcoded, or else the user must somehow declare the neutral
value for the combination operation they write. In the Ligra
version of PageRank, for instance, the combination operation
is a sum (thus having the neutral value 0). For the user, this
results in having to manually reset each vertex mailbox to 0
at the end of every superstep.

The second drawback of a pure compare-and-swap design
comes from the lack of a notion of empty mailboxes. Indeed,
mailboxes always have a message, either representing the
result of a combination, or being the neutral value by default.
Therefore, a vertex knows it has received a message if the
mailbox message value is different from the neutral value.
Yet, in a scenario where the combination operation would
result in the neutral value itself, the vertex would assume it has
not received a message, while in fact it has. In vertex-centric
programs, this can lead to incorrect outputs since receiving
messages is what reactivates inactive vertices.

In order to make the best of both designs, that is; exploiting
compare-and-swap while keeping the notion of an empty mail-
box, as well as letting the user define any arbitrary combination
operation, we designed a hybrid combiner that leverages lock-
based and lock-free interactions with the recipient mailbox. Its
implementation is provided in Figure 1, where vertex attributes
have been shortened for brevity. In this example, ip combine
is the user-defined combination function, has msg next is the
flag indicating whether the vertex already received a message
during this superstep and msg next is the message itself
(whose value is meaningful only if the flag is true).

As shown in Figure 1, the hybrid combiner carefully couples
lock-free and lock-based interactions. Correctness comes from
the guarantee that if the has msg next flag of a recipient vertex
is true, the value held in that vertex mailbox is set. Indeed, as
soon as the has msg next flag is true, potential compare-and-
swap combinations may happen concurrently on that vertex
from other threads. Therefore, the value they will fetch from
that recipient vertex mailbox must have been set by that time.

To satisfy this guarantee, when a thread pushes the first
message to a recipient mailbox, it stores the message (line 25)

void apply_cas(IP_VERTEX_TYPE* dst, 1

IP_MESSAGE_TYPE msg){ 2

IP_MESSAGE_TYPE old_msg = dst->msg_next; 3

IP_MESSAGE_TYPE new_msg = old_msg; 4

ip_combine(&new_msg, msg); 5

while(new_msg != old_msg && 6

!atomic_compare_exchange_strong(7

&dst->msg_next, &old_msg, new_msg)) { 8

old_msg = dst->msg_next; 9

new_msg = old_msg; 10

ip_combine(&new_msg, msg); 11

} } 12

13

void ip_send_message(IP_VERTEX_ID_TYPE dst_id, 14

IP_MESSAGE_TYPE msg) { 15

IP_VERTEX_TYPE* dst=ip_get_vertex_by_id(dst_id); 16

if(dst->has_msg_next) apply_cas(dst, msg); 17

else { 18

ip_lock_acquire(&dst->lock); 19

if(dst->has_msg_next) { 20

ip_lock_release(&dst->lock); 21

apply_cas(dst, msg); 22

} else { 23

dst->message_next = msg; 24

dst->has_message_next = true; 25

ip_lock_release(&dst->lock); 26

} } } 27

Fig. 1. Implementation in iPregel of the hybrid combiner

before setting the flag to true (line 26). In addition, in order
to avoid a potential out-of-order execution, a full memory
barrier is required in-between. It is achieved by declaring
the has msg next flag as atomic, using C11 atomics, which
implicitly enforces a sequentially consistent memory model.
Without it, an out-of-order execution could result in a recipient
vertex entering a state where its has msg next flag is set to
true while not having its msg next message set yet. Another
thread meaning to push a message to that vertex mailbox
would therefore check the flag, see it is true and apply a
compare-and-swap with the very message that is still unset.
Finally, having the has msg next flag as atomic implies that
the read at line 18 and write at line 26 are atomic too;
guaranteeing that a read cannot happen on a flag partially
written to memory.

The rest of the hybrid combiner is rather straightforward;
threads check if the recipient vertex already has a message
and if so they use a compare-and-swap combination, otherwise
they acquire the lock. When the lock is acquired by a thread,
it checks once again the recipient vertex flag in case, while
it was waiting to acquire the lock, another thread that was
holding that lock pushed the first message into that recipient
mailbox. In this event, the recipient vertex now has a mailbox
containing a set message therefore the thread can release the
lock and use the compare-and-swap combination. Otherwise,
it holds the lock and performs the first message push to that
recipient vertex mailbox, making sure the store operations are
issued in the order explained earlier.

IV. UNPREDICTABLE MEMORY ACCESS PATTERNS

In vertex-centric programs, the irregularity in memory
accesses is two-fold. First, the power-law distribution that
typically underpins the graphs processed results in vertices
having widely different numbers of neighbours. Second, the
inherent irregular structure of graphs allows each vertex to
be connected with any other arbitrary vertex. In other words,
the data for neighbouring vertices may reside at any location
in memory, thus unlikely to be contiguous with each other.
As a consequence, when a vertex broadcasts a message to its
neighbours, there are an arbitrary number of memory accesses
to perform each at an arbitrary memory location.

These memory access patterns, although unpredictable, ex-
pose one regularity: the attributes accessed from these neigh-
bours vertex structure. In iPregel, when using the pull-based
version, the vertex structure contains among other attributes a
flag indicating if it has data to broadcast and a variable for the
actual message. The combination consists in iterating through
neighbours, checking their flag and fetching their message.

However, while never accessed during this combination
process, the other vertex attributes are still loaded into cache
along with the meaningful attributes sharing the same vertex
structure. Nonetheless, this cache pollution can be minimised
by reorganising the vertex structure; externalising the fre-
quently accessed attributes into their own structure. In other
words, one array would contain structures made of the flag
and message attributes, while the other array would contain
structures made of the rest of the vertex attributes. Therefore,
such a design allows cache lines to be loaded only with useful
attributes.

V. IRREGULAR WORKLOAD

A common irregularity that parallel programs face is that
of load imbalance, where processes or threads have associated
with them different amounts of work. Vertex-centric programs,
where vertices can become inactive during execution and
contain different numbers of edges, are therefore prone to load
imbalance.

A. Workload evaluation proxy

Finding the right proxy to evaluate the workload is crucial
since it lays down the foundations on which build more
advanced strategies like load-balancing. Logically, implemen-
tations of the vertex-centric programming model represent
workload in terms of vertices. Although this is accurate
with regular data structures, the graphs processed by vertex-
centric programs typically follow a power-law distribution,
resulting in widely different number of neighbours per vertex.
In addition, the runtime of typical vertex-centric programs is
dominated by communications and not computation. While the
latter is related the number of vertices, the former depends on
the number of edges. Based on this observation, our hypothesis
was that the workload of a thread, which results in the number
of combination operations performed and memory writes, or
reads, is better expressed as being correlated to the number of
outgoing, or incoming, neighbours.

B. Work distribution

When parallelising a for loop in OpenMP by using the for
construct, one can apply the schedule clause, which is provided
with a scheduling kind describing how chunks of iterations
will be distributed to threads as well as an optional parameter
specifying how many iterations make a chunk.

One of the scheduling kinds provided by OpenMP is dy-
namic, specifying that chunks of iterations will be distributed
on a first-come-first-served basis. This allows threads that have
been assigned lighter chunks to be assigned more chunks, thus
improving load-balancing.

To be compatible with this technique, the code must be
within a for loop whose iteration set distribution can be freely
managed by OpenMP. This is compatible with all versions of
iPregel that do not rely on the workload shift from vertex-
centric to edge-centric described in Subsection V-A. Indeed,
the edge-centric workload negates the use of OpenMP dynamic
scheduling because the workload is represented as edges
and not vertices. The assigned chunks therefore represent
workloads on a per-vertex basis instead of edge-centric one.

VI. EXPERIMENTAL ENVIRONMENT

This section describes the conditions and configurations in
which the experiments presented in this paper were conducted.

A. Computing environment

Experiments are run on a standard compute node of an
HPE 8600 cluster, set up with CentOS 7 Linux and containing
two 2.1 GHz, 18-core Intel Xeon E5-2695 (Broadwell) series
processors and 256GB of memory split in two 128GB non-
uniform memory access regions, one local to each processor.

The compilation is achieved by using the GCC compiler
version 8.2.0 with OpenMP version 4.5. Compilation flags
passed enable the support for C11 standard (-std=c11) and
level 3 optimisations (-O3).

B. Graph configurations

Table I lists the graphs processed in the experiments pre-
sented in this paper. All four are real-world graphs publicly
available in the Stanford Network Analysis Project [8] online
collection. The smallest graph, the Database and Logic Pro-
gramming Bibliography graph (DBLP), represents the epony-
mous computer science bibliography while LiveJournal, Orkut
and Friendster are network graphs about blogging, social
and gaming respectively. These graphs cover all orders of
magnitude from a million to a billion edges and are undirected,
meaning that the total number of directed edges is twice the
amount presented.

C. Benchmarks

Experiments presented in these paper are conducted on three
benchmarks commonly used by the vertex-centric community.

PageRank, or PR, was originally presented in [9]. This itera-
tive algorithm ranks webpages by evaluating their importance;
taking into account a ratio between incoming and outgoing
hyperlinks. In iPregel, PR is best implemented using the

TABLE I
NUMBER OF VERTICES AND EDGES IN THE GRAPHS SELECTED FOR

EXPERIMENTS

Name Vertex count Edge count

DBLP 317,080 1,049,866
Live Journal 4,036,538 34,681,189
Orkut 3,072,441 117,185,083
Friendster 65,608,366 1,806,067,135

single-broadcast version, where communications are achieved
by pulling messages from their sender’s outbox.

Connected Components, also abbreviated CC, locates in
a graph all the subgraphs in which any two vertices are
connected to each other by paths but connected to no vertex
outside that subgraph. In iPregel, the CC benchmark is best
implemented using the single-broadcast with selection bypass
version, where in addition to leveraging pull-based communi-
cations, the framework keeps track of active vertices to better
dispatch them to threads at every supersteps.

Single-Source Shortest Path, or SSSP, consists in selecting
a vertex and finding the shortest path from that vertex to each
other vertex it can reach. Experiments presented in this paper
use the unweighted version of SSSP, where all edges represent
a distance of 1. In iPregel, SSSP is best implemented using
the selection bypass version described above.

Further details about each internal version of iPregel as
well as a detailed analysis of the benchmarks can be found
in [4] and [2]. As discussed in Section I, we have designed
the optimisations of Sections III, IV and V in a manner that
requires no modifications in user code. As such the versions
of the benchmarks in [4] and [2] have remained unchanged in
the experiments of this paper.

VII. RESULTS

The results presented in Table II consist in applying every
optimisation individually and calculating the speed-up ob-
tained against the baseline version, before repeating the pro-
cess with a version aggregating all applicable optimisations.

A. Individual optimisations

The results presented in Table II show that the hybrid
combiner improves the performance of SSSP on all graphs.
It also proves to be the optimisation yielding both the biggest
speed-up overall, up to 4.07 on Friendster, and on average,
with a geometrical mean of 1.81. In addition, as the size of
the graph increases, so does the speed-up. The reason for this
is that the number of combinations depends on the number
of edges, the benefit of improving the combination therefore
grows along with the number of combinations generated.
These results demonstrate that efficiently handling fine-grain
synchronisations does not have to sacrifice programmability.

Similarly, the externalised structure optimisation is ben-
eficial in all graph-benchmark pairs tested, with a speed-
up of 1.30 on average. The results in Table II show that
externalising vertex attributes generates the best speed-ups

TABLE II
SPEED-UPS OBTAINED FROM EACH OPTIMISATION APPLIED

INDIVIDUALLY, THEN TOGETHER, FOR EACH BENCHMARK, USING 32
THREADS, ON ALL GRAPHS ORDERED BY ASCENDING NUMBER OF EDGES

DBLP Live Journal Orkut Friendster

PR (10 iterations)
Baseline 1.00 1.00 1.00 1.00

Externalised structure 1.31 1.27 1.51 1.13
Edge-centric workload 1.01 2.31 1.67 1.36

Dynamic scheduling 1.23 2.31 1.99 1.44
Final 1.61 3.14 3.07 1.63

CC
Baseline 1.00 1.00 1.00 1.00

Externalised structure 1.58 1.66 1.47 1.65
Edge-centric workload 0.56 1.12 1.27 1.41

Dynamic scheduling 1.23 1.67 1.69 1.20
Final 2.05 2.96 2.41 2.12

SSSP
Baseline 1.00 1.00 1.00 1.00

Hybrid combiner 1.01 1.12 2.35 4.07
Externalised structure 1.08 1.01 1.07 1.10

Edge-centric workload 0.91 0.87 1.28 1.29
Dynamic scheduling 1.11 1.33 1.55 1.69

Final 1.09 1.75 3.18 5.63

for CC and the worst ones for SSSP. The explanation is
twofold, firstly, PR and CC benefit more because they rely on
iPregel versions that use pull-based communications that are
lock-free by design. As a consequence, the memory accesses
performed during the communications are not interleaved with
lock acquisition or release, which reduces further the number
of vertex attributes that are frequently accessed. Secondly, PR
and CC rely on different algorithms; the one underpinning PR
has one loop that can leverage structure externalisation while
the one for CC has two. The overall benefit obtained on CC is
therefore greater since it can leverage this optimisation in two
parts of the code. Overall, structure externalisation therefore
demonstrates that heavily irregular memory access patterns
may exhibit certain regular aspects when analysed from a
different angle, which can be leveraged for performance gains.

The timings reported in Table II also indicate that shifting
to the edge-centric workload proves to be beneficial in 75% of
the experiments; yielding a speed-up of 1.19 on average. The
extremes are observed for PR on Live Journal with a speed-up
of 2.31 and Connected Components on DBLP with only 0.56.
In fact, the edge-centric workload representation performs
better on PR than on any of the two other benchmarks.
The reason for this is that CC and SSSP rely on an iPregel
implementation leveraging the selection bypass optimisation
introduced in [4], which helps cope with variable number of
active vertices but requires the edge-centric workload distribu-
tion to be recalculated at every superstep, therefore increasing
the total overhead.

The OpenMP dynamic scheduling is the fourth optimisation
explored in these experiments. The results presented in Table II
are obtained with an empirically determined chunk size of 256.
Unlike the edge-centric optimisation, the dynamic scheduling
turns out to improve the performance in all experiments;

resulting in speed-ups between 1.11 and 2.31. With an average
speed-up of 1.50, the first-come-first-served dispatch pattern
proves to be an efficient load-balancing strategy.

B. Aggregated optimisations

The optimisations combined, which exclude edge-centric
workload in favour of the better performing dynamic schedul-
ing, do not include the hybrid combiner in the case of PR and
CC since they rely on iPregel versions that are lock-free. For
PR and CC, the speed-up patterns exhibited are identical; the
smallest and biggest graphs benefit the least. Live Journal and
Orkut show better speed-ups, with Live Journal benefiting the
most. In the case of PR, the speed-ups obtained range from
1.61 up to 3.14. For CC, the speed-up range is less spread;
reaching only a maximum of 2.96 but never going below 2.05.

For SSSP, the speed-up pattern exhibited is different: the
bigger the graph, the higher the speed-up as Table II shows.
This can be explained by the presence of the hybrid combiner,
which provides such a speed-up pattern, in addition to the
dynamic scheduling also exhibiting that pattern for SSSP in
Table II. Starting at 1.09 on the smallest graph, the speed-up
obtained increases until reaching 5.63 on the biggest graph.

Overall, when fixing the number of threads at 32, the
optimised versions prove to be beneficial for all benchmarks
on all graphs tested. On average, the optimised versions
cut almost two thirds (59%) of the runtime measured, with
extremes cases observed of 8% and 82%.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we explored multiple optimisations to address
the irregular challenges inherent to vertex-centric programs.

The fine-grain synchronisations that underpin message com-
binations presented in Section III was the first one. By care-
fully coupling compare-and-swap and lock-based operations,
we designed a hybrid combiner that, while transparent to the
user, can drop the runtime by up to 75% as shown in Table II.

In Section IV, we analysed the unpredictable memory access
patterns from a different perspective and found that although
one cannot know which structure will be accessed next, one
knows which structure attribute will. We therefore exploited
this characteristic to redesign vertex structures for cache
efficiency; decreasing the runtime measured by up to 40% as
shown in Table II. We also considered the temporality of these
accesses to leverage software prefetching, despite yielding no
performance benefit in this case due to the bandwidth-intensive
nature of vertex-centric programs.

Our approach for the third challenge, the load imbalance
presented in Section V, was to better evaluate the workload
by representing it with an edge-centric metric while preserving
the user interface. Table II reports that this shift, beneficial in
75% of the tests and providing a runtime reduction of up to
57%, proved to be less productive than the OpenMP dynamic
scheduling which never resulted in performance degradation
while equalling the maximum runtime gain of edge-centric.

Overall, the experiments conducted in this work show that
the optimisations considered yield performance benefits in 37

out of the 40 graph-benchmark pairs tested. When combined,
these successful optimisations proved to yield performance
benefits in all graph-benchmark pairs tested as shows Table II.
This demonstrates that although the vertex-centric model ex-
hibits many sources of irregularity, they can be efficiently
addressed, reducing the runtime measured by up to 82%.

Future directions for this work could include the integration
of work-stealing in the edge-centric workload, for example
by designing an affinity schedule tailored for edge-centric.
Another direction could be that of incrementalisation [10]; an
optimisation area under-explored in vertex-centric but which
could unlock a new level of performance. Finally, focusing on
distributed-memory architectures would raise new challenges,
calling for new optimisations to be designed.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New
York, NY, USA: ACM, 2010, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

[2] L. A. R. Capelli, Z. Hu, T. A. K. Zakian, N. Brown,
and J. M. Bull, “ipregel: Vertex-centric programmability vs
memory efficiency and performance, why choose?” Parallel
Computing, vol. 86, pp. 45 – 56, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819118303788

[3] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a pc,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 31–46.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2387880.2387884

[4] L. A. R. Capelli, Z. Hu, and T. A. K. Zakian, “ipregel: A
combiner-based in-memory shared memory vertex-centric framework,”
Proceedings of the 47th International Conference on Parallel
Processing Companion - ICPP ’18, 2018. [Online]. Available:
http://dx.doi.org/10.1145/3229710.3229719

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs,” in Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
12). Hollywood, CA: USENIX, 2012, pp. 17–30. [On-
line]. Available: https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/gonzalez

[6] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, ser.
SOSP ’13. New York, NY, USA: ACM, 2013, pp. 472–488. [Online].
Available: http://doi.acm.org/10.1145/2517349.2522740

[7] J. Shun and G. E. Blelloch, “Ligra,” Proceedings of the
18th ACM SIGPLAN symposium on Principles and practice of
parallel programming - PPoPP ’13, 2013. [Online]. Available:
http://dx.doi.org/10.1145/2442516.2442530

[8] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[9] S. Brin and L. Page, “Reprint of: The anatomy of a large-
scale hypertextual web search engine,” Computer Networks,
vol. 56, no. 18, pp. 3825 – 3833, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128612003611

[10] T. A. Zakian, L. A. Capelli, and Z. Hu, “Incrementalization of vertex-
centric programs,” in 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2019, pp. 1019–1029.

