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Abstract

Fast domain propagation of linear constraints has become a crucial component of today’s best algorithms
and solvers for mixed integer programming and pseudo-boolean optimization to achieve peak solving per-
formance. Irregularities in the form of dynamic algorithmic behaviour, dependency structures, and sparsity
patterns in the input data make efficient implementations of domain propagation on GPUs and, more gen-
erally, on parallel architectures challenging. This is one of the main reasons why domain propagation in
state-of-the-art solvers is single thread only. In this paper, we present a new algorithm for domain propaga-
tion which (a) avoids these problems and allows for an efficient implementation on GPUs, and is (b) capable
of running propagation rounds entirely on the GPU, without any need for synchronization or communica-
tion with the CPU. We present extensive computational results which demonstrate the effectiveness of our
approach and show that ample speedups are possible on practically relevant problems: on state-of-the-art
GPUs, our geometric mean speed-up for reasonably-large instances is around 10x to 20x and can be as high
as 180x on favorably-large instances.

1 Introduction

Given a matrix A ∈ Rm×n, vectors b ∈ Rm, c ∈ Rn, and a subset I ⊆ N = {1, . . . , n}, a mixed integer linear
program (MIP) is an optimization problem that can be written as

min{cTx | Ax ≤ b, x ∈ Rn, xj ∈ Z for all j ∈ I}. (1)

Typically, MIPs are NP-hard to solve, but surprisingly fast algorithms exist in practice [5, 15]. The most
successful methods to solve MIPs are the branch-and-bound algorithm and its extensions. The main idea of this
algorithm is to split the original problem into subproblems which are easier to solve (branching). By repeatedly
branching on the subproblems, a search tree is obtained. At each subproblem, the bounding step uses relaxations
to compute lower bounds and prune suboptimal nodes of the tree in order to avoid enumerating exponentially
many subproblems. Relaxations are typically obtained by dropping integrality requirements on variables xj for
j ∈ I, at which point a linear program (LP) is obtained and solved by, e.g., the simplex algorithm [17].

One of the supplementary techniques used to improve the initial problem formulation and decrease the size of
the branching tree is to limit the domains of the variables xj to the value assignments which can be completed to
feasible solutions of a given (sub)problem. The process of computing these ranges is called domain propagation [4,
8].

Whereas many areas of applied mathematics (e.g., Deep Learning) have strongly profited from the increased
computing power of parallel coprocessors like Graphics Processing Units (GPUs), success in using these resources
to solve MIPs has been very limited [9]. The main challenges for developing GPU-accelerated MIP techniques
have been (a) highly sparse input data with irregular sparsity patterns; (b) inherent sequential properties of
many of the best methods used in the field; and (c) their non-uniform algorithmic behavior. On top of this,
many of the existing algorithms were designed with a sequential execution model in mind, which does not allow
to transform them easily to an efficient GPU implementation.

1

ar
X

iv
:2

00
9.

07
78

5v
5 

 [
cs

.D
C

] 
 2

5 
A

ug
 2

02
1



In this paper, we focus on domain propagation and propose an efficient algorithm for GPUs. In addition to being
able to obtain results faster with this algorithm under almost all circumstances, we hope that this work can pave
the way for the implementation of other methods or motivate the development of new optimization methods on
GPUs. Our algorithm is capable of running propagation rounds entirely on the GPU, without the involvement
of the CPU. Consequently, this also presents an opportunity to investigate the use of domain propagation in
conjunction with existing or future methods that also run completely on the GPU. This is especially interesting
given the fact that state-of-the-art MIP solvers largely do not exploit GPUs during the solving process, leaving
them idle.

We begin by formally introducing the necessary background and notation.

1.1 Domain Propagation

Domain propagation is an iterative technique used to tighten the bounds of variables at each node of the
branch-and-bound tree. It is also used as a pre-processing technique to improve the formulation of a given MIP
model [18]. In the following, we consider linear constraints of the form

β ≤ aTx ≤ β, (2)

where β, β ∈ R ∪ {−∞,∞} are left and right hand sides, respectively, and a ∈ Rn is the vector of constraint
coefficients. We assume that variables xj have lower and upper bounds `j , uj ∈ R ∪ {−∞,∞}. Before stating
the formulas for updating variable bounds, we need the following definition.

Definition 1 (activity bounds) Given a constraint of form (2) and bounds ` ≤ x ≤ u, we call

α :=

n∑
i=0

aibi with bi =

{
`i if ai > 0

ui if ai ≤ 0
(3a)

the minimum activity, and

α :=

n∑
i=0

aibi with bi =

{
ui if ai > 0

`i if ai ≤ 0
(3b)

the maximum activity of the constraint.

Then domain propagation is based on three observations [4, Sec. 7.1] and translate into the following algorithmic
steps.

1: If β ≤ α and α ≤ β, then the constraint is redundant and can be removed.

2: If α > β or β > α, then the constraint cannot be satisfied and hence the entire (sub)problem is infeasible.

3: Let x satisfy (2), then for all j = 1, . . . , n with aj > 0,

β − α
aj

+ uj ≤ xj ≤
β − α
aj

+ `j , (4a)

and for all j = 1, . . . , n with aj < 0,

β − α
aj

+ uj ≤ xj ≤
β − α
aj

+ `j . (4b)

If xj is integral, lower bounds can be rounded up and upper bounds can be rounded down to strengthen them
further.
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If Steps 1 and 2 are not applicable, the propagation algorithm computes new bounds `newj , unewj in Step 3. If
`newj > `j or unewj < uj for some j, then the bounds of variable xj are updated. To apply domain propagation
to a MIP formulation, one simply applies these steps to all of its constraints.

An actual implementation may skip Steps 1 and 2 without changing the result. This is because for redundant
constraints Step 3 correctly detects no bound tightenings, and for infeasible constraints, Step 3 leads to at least
one variable with an empty domain, i.e., `newj > unewj .

Let us consider what happens when the steps are applied to all constraints of the system and some bound changes
have been found. First, note that the formulas for computing new variable bounds in (4a) and (4b) depend on
the activity bounds α and α. The activity bounds themselves depend on `j and uj . Second, note that several
constraints typically share the same variable xj . In this case, updating the bounds of xj during the processing
of one constraint changes the bound and activity values for all other constraints that contain xj . Propagating
the affected constraints again can then lead to further tightenings.

Hence, domain propagation is usually applied iteratively. Each iteration of applying Steps 1 to 3 to all or a
subset of the constraints is also called a propagation round. If no bound updates are found during a given round,
then no further improvements are possible, and the algorithm terminates.

As pointed out in [8], iterated domain propagation can be interpreted as a fixed-point iteration in the space of
variable and activity bounds, and there exists a unique limit point of this fixed-point iteration. Iterated domain
propagation converges to this well-defined result, however, not necessarily in finite time [8]. Also, convergence
can be very slow in practice [4]. The most common way to deal with non-finite or slow convergence in practice
is to terminate when the improvements made fall below a specified threshold. Such tolerance-based termination
criteria yield finite termination, but may fail to compute the tightest bounds possible.

1.2 Graphics Processing Units

In this section we briefly introduce GPU concepts used throughout the paper. Although the key concepts
are independent, we restrict our notation to NVIDIA’s GPUs and the CUDA programming model. GPUs are
massively parallel processors capable of running hundreds of thousands of threads. Threads are grouped into
warps in hardware (usually 32 threads each) and forced to execute in a SIMD (Single Instruction Multiple Data)
fashion and share the same resources. On the programming level, threads are divided into thread blocks. Different
thread blocks are scheduled for execution independently, but they all have access to the same global memory.
Threads inside a single thread block can be synchronized and a given amount of exclusive shared memory is
available to each block. Accesses to shared memory are usually much faster than accesses to global memory.

1.3 Related Work

While our motivation to study domain propagation are MIPs and we restrict ourselves to linear constraints,
the concept is more general and has been rediscovered several times since the 1970s in different communities.
First, it was used in the AI (Artificial Intelligence) and CP (Constraint Programming) communities, where its
origins can be traced back to the Waltz algorithm [22]. Several other techniques related to domain propagation
are widely used in AI and CP and known under the names domain filtering, domain reduction, bound reduction,
range reduction and constraint propagation. In MIP, domain propagation was first discussed in the context of
presolving [7,18]. In global optimization and mixed integer non-linear programming, it is most commonly known
as feasibility-based bounds tightening (FBBT) and was first used in [19].

The literature on previous efforts to successfully exploit GPUs in exact MIP methods is scarce. We refer to
the recent survey by Boyer et al. [9] and references therein and we only provide a very brief summary here.
Most work in this direction has focused on the simplex method (especially its linear algebra), on dynamic
programming approaches for solving the knapsack problem, and on branch-and-bound implementations for a
few special problem classes. Somewhat more attention was paid to GPU implementations of metaheuristic
methods which aid exact methods, as their compute tasks seem more amenable to an efficient implementation
on GPUs.
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1.4 Contribution

To the best of our knowledge, this paper presents the first algorithm for domain propagation on GPUs. We
discuss and address two main sources of irregularity that challenge efficient GPU implementations: 1. the
dynamic behaviour of the existing CPU-based algorithms, and 2. the highly sparse and irregular structure of
the constraint matrix A. We propose a new algorithm which is better suited to the throughput-based model of
GPUs.

To deal with the highly irregular structure of the input matrix A, we found inspiration in existing work on
parallelizing sparse linear algebra and demonstrate that some of these ideas can be carried over to domain
propagation. As a result, we obtain an efficient method that runs entirely on the GPU and yields significant
speedups for domain propagation on the MIPLIB 2017 test bed, the de-facto standard for MIP solvers. The
computational results are presented for both double- and single-precision arithmetic. Finally, we validate our
baseline algorithms against the domain propagation implementation in the CPU-based PaPILO presolve library
[11].

The rest of the paper is organized as follows. In Section 2 we discuss existing state-of-the-art implementa-
tions of domain propagation and the challenges they present for efficient GPU parallelization, alongside the
main approach we take in overcoming these challenges. In Section 3 we focus on the handling of the irregular
(sparse) structure of the constraint matrix and other implementational issues. Finally, in Section 4 we present
computational results.

2 Parallelizing Domain Propagation

We strive to exploit two sources of parallelism from the domain propagation algorithm: First, we exploit the
fact that we can apply the propagation reductions to each constraint, i.e., to each row of A, independently and
thus do so fully in parallel. The repercussions of this on the algorithm are discussed in Section 2.2. Second, we
exploit parallelism inside the processing of each constraint. This itself comes from two sources: (a) we parallelize
the computation of minimum and maximum activities, see Sections 3.1 through 3.4, and (b) we parallelize the
updating of bounds, see Section 3.5.

2.1 Features of Sequential Domain Propagation

We first present the main features of the sequential domain propagation algorithm and discuss why this algorithm
is not suited for efficient implementation on GPUs. CPU-based, sequential implementations of the domain
propagation algorithm follow the latency-based sequential programming model. The main steps of this algorithm
are summarized in Algorithm 1.

Informally speaking, this algorithm starts with the first non-zero entry of A, computes everything it can for
the corresponding variable, tightens its bounds if possible, and then moves on to the next non-zero. It can
stop processing a constraint or a variable early if the sufficient conditions in Line 9 and Line 11 are met. This
avoids unnecessary work as these checks can be performed before the new bound candidates are computed and
compared to the old bounds. In addition, this algorithm takes advantage of the fact that a constraint can trigger
propagation of other constraints only if they share at least one variable by implementing a marking mechanism
(Lines 1, 6, 7 and 20).

This irregular behaviour poses challenges for an efficient implementation on a GPU. Threads assigned to units
of work that are stopped early would remain idle during the rest of the execution in a given propagation
round, leaving hardware underutilized. The remaining threads would potentially be accessing memory far apart,
resulting in uncoalesced accesses. Notice that we do not know a priori which parts would terminate early and
at which level, or which constraints will be marked in the next round. This induces highly dynamic behaviour
both inside a given propagation round and between different rounds as well.

Additionally, notice that the amount of work a given thread would perform heavily depends on where, if at
all, it will terminate early. Computing α and α in Line 8, e.g., also requires a loop over the variables in the
constraint, see (3a) and (3b). The marking operation in Line 20 involves iterating over the columns of A and
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Algorithm 1 Sequential domain propagation

Input: System of linear constraints β ≤ Ax ≤ β, ` ≤ x ≤ u
Output: Tightened variable bounds `new ≤ x ≤ unew
1: mark all constraints c in β ≤ Ax ≤ β
2: bound change found ← true

3: while bound change found do
4: bound change found ← false

5: for each constraint c in β ≤ Ax ≤ β do
6: if c marked then
7: unmark c
8: compute α, α via (3a) and (3b)
9: if can c propagate then

10: for each variable v in c do
11: if can v be tightened then
12: compute `newv , unewv via (4a) and (4b)
13: if `newv > `v then
14: `v ← `newv

15: bound change found ← true

16: if unewv < uv then
17: uv ← unewv

18: bound change found ← true

19: if bound change found then
20: mark all constraints c with v in c
21: return `new, unew

finding all constraints that contain the variable in question. The dynamic behaviour of the algorithm described
in the previous paragraph would also make load balancing the work between different threads difficult.

2.2 The Price of Parallelism

As mentioned earlier, the constraints of a given system can be propagated independently. Exploiting this
parallelism, however, comes at a cost; it will result in a less efficient algorithm in the worst-case scenario. The
main reason for this is that a bound change found during the sequential execution of the algorithm becomes
immediately available to the propagation of the subsequent constraints. If this bound change triggers propagation
of one of the subsequent constraints, this propagation can be done during the same round. In the parallel case
however, all constraints are propagated independently, hence propagation triggered in this way would have to
wait until the next propagation round.

The worst case of such a propagation pattern is a cascading propagation pattern, where Constraint 1 triggers
propagation of Constraint 2, then Constraint 2 triggers Constraint 3, and so forth. A sequential implementation
could propagate this pattern in one round, while a parallel implementation that propagates each constraint
independently would require m rounds, where m is the number of constraints in the system. In the best-case
scenario, the parallel and sequential algorithm propagate the system in the same number of rounds.

To roughly gauge this “price of parallelism” effect, we conducted a preliminary experiment over 893 instances from
the MIPLIB 2017 test set [12] on which both our parallel and sequential implementations converge to identical
results. In this experiment, the average number of propagation rounds of the sequential implementation was 3.1,
but increased to 4.4 rounds on average for the parallel implementation, hence an average increase by a factor
1.4. However, the maximum increase observed for an instance was as large as 22.0.

2.3 A GPU-Targeted Parallelization

In this section, we describe the proposed GPU-parallel domain propagation algorithm and discuss why it better
matches the GPU model. Finally, we highlight how the missing features of this algorithm, compared to the
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sequential algorithm, are mostly remedied by the massively parallel GPU model.

The parallel algorithm we propose for implementation on the GPUs is shown in Algorithm 2. It does not contain
the early termination checks and the marking mechanism of the Algorithm 1. This means that at the expense
of performing more computations we avoid the irregular behaviour of the CPU version induced by these checks.
Taking constraint marking as an example, note that unmarked constraints would not be processed by the CPU
algorithm, while the GPU algorithm would process such constraint even though it cannot yield improved bounds.
What we gain though is an algorithm with a static sequence of computations that can exploit the massively
parallel GPU model.

Algorithm 2 GPU-parallel domain propagation (schematic)

Input: System of linear constraints β ≤ Ax ≤ β, ` ≤ x ≤ u
Output: Tightened variable bounds `new ≤ x ≤ unew
1: bound change found ← true

2: while bound change found do
3: for constraint c in A parallel do
4: compute α, α via (3a) and (3b)
5: for constraint c in A parallel do
6: for variable v in c parallel do
7: compute `newv , unewv via (4a) and (4b)
8: if `newv > `v then
9: `v ← `newv

10: bound change found ← true

11: if unewv < uv then
12: uv ← unewv

13: bound change found ← true

14: return `new, unew

Notice the shift in the way the two algorithms progress through the computation. The CPU-based Algorithm 1
starts with the first constraint and its first variable and continues processing that variable until no more processing
is possible. It then moves to the next variable and the process is repeated. Hence, the activities α and α are
computed for the first constraint, then all the variables in that constraint are processed, then the process is
repeated on the remaining constraints. The GPU-based Algorithm 2 instead starts with computing α and α
for all constraints. Then it computes new bound candidates for all non-zeros of A. A useful analogy to graph
algorithms here is that the CPU Algorithm 1 resembles a “depth-first search” and the GPU algorithm resembles
a “breadth-first search” of a graph. In terms of the GPU model, the new algorithm allows for better load
balancing, maximizing the throughput.

This parallel algorithm also allows us to access large parts of necessary memory in a coalesced way. However, to
understand how the memory is accessed, we also need to take in account the sparsity pattern and the storage
scheme of A. Thus, we discuss memory accesses in Section 3 which deals with the irregular structure of A.

For an example of why our proposed algorithm leads to better load balancing in the parallel case, notice that all
variables in a given constraint share the same α and α. If we first use all available threads to precompute the
activities, then synchronize and perform bound updates, no threads are left idle and no computation is repeated.
Otherwise, either all the threads compute the same activity values (best-case scenario we get the result in
the time a single thread takes to compute the activity) or some of them are idle and waiting for others to
compute the activities before performing the bound updates. Additionally, having a group of threads cooperate
on computation of activities will lead to a faster algorithm. This is because the computation of activities allows
for some parallelism to be exploited; see Sections 3.1 through 3.4.

We now highlight how the throughput-based GPU programming model partly remedies the lack of early termi-
nation checks of Algorithm 1. Let us only consider the constraint marking feature; the conclusion drawn will be
analogous for other early termination checks.

Assume we have m constraints in the system, k of which are marked for propagation, where k ≤ m. Furthermore,
assume that the costs of propagating one constraint on the hardware where the sequential and parallel algorithms
are run are Cseq and Cpar, respectively, and that the parallel algorithm has p processing units for parallel
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computation at its disposal. The sequential algorithm would only propagate the k marked constraints and thus
finish the propagation with the cost of k · Cseq. The parallel algorithm, on the other hand, would propagate
the system with the cost of dmp e · Cpar. For the case of m ≤ p, it would not matter for the parallel algorithm
whether it propagates all the m constraints or only the k marked constraints. For m > p, we pay the price for
propagating one constraint, i.e., Cpar for each additional p constraints that are propagated.

In practice, it is hard to exactly quantify p for GPUs due to the complexity of their hardware and execution
model. However, we can get a rough idea of what orders of magnitude are involved in the computation. The 987
instances from our MIPLIB 2017 test bed from Section 4.1 show on average 118,514 constraints, 64,611 variables,
and 1,226,730 non-zeros, respectively. On the other hand, modern GPUs offer order of tens of thousands of
threads running in parallel. Thus, given the size of practically relevant problems and the amount of parallelism
modern GPUs offer, we can expect that the price for extra amounts of work in the parallel algorithm will be
mostly negligible.

Further properties of GPUs help in reducing the cost we pay for extra computations. For example, the GPU
hardware is optimized to combine multiple memory accesses into a single transaction (memory coalescing). As
will be discussed in Section 3, the GPU algorithm allows us to access large parts of necessary memory in a
fully coalesced manner. So the memory to be operated on by the extra threads will often be already loaded. In
low arithmetic intensity algorithms like domain propagation memory accesses are typically dominant parts of
GPU implementations in terms of runtime. Hence, we do not expect these extra arithmetic operations to have
a significant effect on the total runtime of the algorithm; our computational results confirm this.

3 Handling Irregular Structure of the Constraint Matrix

In practice, constraint matrices A coming from MIPs are very sparse. To store A, we adopt a ubiquitously
used Compressed Sparse Row (CSR) storage scheme [13]. Additionally, MIPs often contain so-called connecting
constraints which are very dense. Consequently, even though matrix A might be very sparse overall, it may
contain a few very dense rows. This poses a challenge for load balancing on GPUs. Consider two naive approaches
of assigning a single thread per constraint and assigning a warp or block of threads per constraint. In the former
case, threads assigned to dense rows would have much more work to do, leaving other threads idle. In the latter
case, warps or blocks assigned to rows with a small number of non-zeros would remain underutilized.

We already discussed how GPU hardware is optimized around coalescing memory accesses of threads in a warp
into one or as few as possible memory accesses. The approach of assigning one thread per constraint would
perform poorly in this regard as neighboring threads running in parallel would access memory locations which
are not adjacent in the row-major CSR format. Assigning a warp of threads per constraint, on the other hand,
results in fully coalesced memory accesses: each thread of a warp takes one non-zero element, which are stored
next to each other in the CSR format.

In this section, we address above-mentioned challenges and present an algorithm which combines good load
balancing with coalesced memory accesses. To introduce the main idea, we first focus on the computation of the
minimum and maximum activities α and α in Section 3.1, 3.2, 3.3, and 3.4. The second part of the algorithm,
which computes new bound candidates is discussed in Section 3.5.

3.1 Similarity Between SpMV and Computation of Activities

The first step of the parallel algorithm computes minimum and maximum activities α and α for all constraints
of the system via (3a) and (3b). Our main approach for implementing these formulas is the observation that
their efficient implementation for a matrix A on GPUs is conditioned by the same factors that condition im-
plementations of a sparse matrix-vector product (SpMV) of A and some right-hand side vector. SpMVs and
their efficient implementations on GPUs have been extensively studied over the years as they play a crucial
role in computational science. We will then be able to carry over ideas to overcome challenges described at the
beginning of this section for computing activities.

To support our observation, we rely on the fact that SpMV is bandwidth bound (i.e., its arithmetic intensity is
very low), so good memory access patterns greatly improve performance [13]. Notice that arithmetic intensity
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of matrix-vector products and computing α or α is the same. When it comes to memory needed to perform the
operations to compute the activities, notice that each li and ui is accessed exactly once: either for α or for α.
This means that we need to access each element of A, l, and u exactly once to implement (3a) and (3b). This is
exactly the same memory needed to compute the matrix-vector product of A with two right hand sides l and u.

Greathouse and Daga introduced an algorithm in [13] which addresses issues discussed at the beginning of this
section in the context of SpMVs. This algorithm is called CSR-adaptive. It handles well both structured and
unstructured matrices and explicitly addresses the case of having very long rows in an otherwise sparse matrix.
We now briefly introduce the main idea of this algorithm before discussing the changes made to facilitate
computation of activities. For a detailed discussion of CSR-adaptive see [13].

3.2 The CSR-Adaptive Algorithm

The main idea of the algorithm is to divide the matrix A into row blocks, and have one CUDA threads block
work on one row block. If the number of non-zeros in some rows is small, they will be grouped together in
one row block. A so-called CSR-stream algorithm will then be applied to this row block. If a given row block
consists of only one or few rows, a so-called CSR-vector variant will be applied.

The CSR-stream algorithm first assigns one thread to each non-zero in the row block and loads them into shared
memory. This results in fully coalesced memory accesses. Afterwards, a number of threads is assigned per each
row that is present in the row block. These threads then carry out the necessary computations and reductions.
The CSR-vector algorithm assigns one warp of threads to the row block which then perform the computations
and reductions.

3.3 Computing Minumum and Maximum Activities

On the implementation level, we make the following changes to the CSR-adaptive algorithm as presented in [13].
First, instead of working on one right-hand side array, we adapt the algorithm to work on two arrays: ` and u.
As part of the same change, the algorithm now outputs two arrays, the minimum and maximum activities.

Second, the arithmetic operations are adjusted to (3a) and (3b). Note that this leaves the reductions (i.e.,
summations) unchanged as it only differs from SpMV in computing the local summands aibi.

Third, we allow the CSR-vector algorithm to use all warps in a CUDA thread block if the rows are extremely
long. In this case, each warp computes partial sums of its elements, after which the partial sums are reduced in
shared memory. In our implementation, we use a (somewhat arbitrary) threshold value of 64 to switch between
the two variants of CSR-vector.

Both the CSR-stream and the CSR-vector variant store the computed activities in local shared memory, as they
will be utilized in forthcoming computations (see Section 3.5).

3.4 Numerical Considerations for Computing Activities

Apart from the standard issues that numerical algorithms based on floating-point arithmetic have to deal with,
one special case arises during domain propagation that warrants discussion. Equations 4a and 4b provide
formulas for computing bound candidates of a variable j in a given constraint. Notice that these formulas
always explicitly contain the value of `j or uj , even though they could be factored into the activity values:

αj =

n∑
i=0,i6=j

aibi = α− ajbj with bk =

{
`k if ak > 0

uk if ak ≤ 0
, (5a)

and

αj =

n∑
i=0,i6=j

aibi = α− ajbj with bk =

{
uk if ak > 0

`k if ak ≤ 0
. (5b)
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The values αj and αj are called residual activities. Literature on domain propagation which does not focus on
implementation usually defines the Equations 4a and 4b in terms of these values rather than the minimum and
maximum activities (see [4] for example).

The main reason for not using residual activities directly in practical implementations of domain propagation
is performance. Namely, residual activities need to be computed for each non-zero of the system. On the other
hand, minimum and maximum activities are defined per constraint of the system. The artificial step of coming
back to the residual activities costs almost nothing during the computation of new bound candidates (see Section
3.5), as the additional lower or upper bound value and the coefficient are readily available and already used at
this point.

However, the case when infinite bounds are involved must be handled with care. Consider a constraint i with a
number of variables whose bounds have finite values and one variable j whose bounds are infinite. The maximum
and minimum activities of such a constraint are infinite. The residual activities of all but variable j are also
infinite. However, the residual activities of varible j will be finite. A difficulty arises when computing the new
bound candidates for variable j, where an infinite value would first need to be added and then subtracted from
the result. (Notice that the case where constraint i contains more than one variable with infinite bounds is easier
to handle, because the minimum and maximum activity and all the residual activities are infinite.)

Existing domain propagation implementations, such as the implementation in the PaPILO presolver [11], handle
this case by keeping track of the number of infinite contributions to each of the minimum and maximum
activities separately from the finite part of the activity sums. Then, the special case of having exactly one
infinity contribution can be detected and the correct finite value computed. We take the same approach, but
unlike sequential algorithms where keeping track of and aggregating a counter is a trivial problem, we have GPU
threads accessing non-zeros of the constraint in parallel.

We observe that the problem of computing the number of infinity contributions in a constraint is a reduction
problem equivalent to the computation of the activity value itself. Moreover, the memory that needs to be
loaded from GPU global memory to compute these two reductions is exactly the same, we just need to use it
in a different way: for activities, we compute the summands aibi from Equations 3a and 3b, while to compute
the number of infinity contributions we check bi, and set the summand value to 1 if bi is infinite, and to 0
otherwise. These summands are then summed in an equal way. Hence we can compute the number of infinity
contributions by extending the reductions we already use. This comes at the expense of additional shared and
register memory and some computations, however, no additional expensive global memory loads are needed. As
already discussed, the activity computation kernel is highly memory-bound, so this approach works in our favor.

3.5 Computing New Bound Candidates

The new bound candidates for each variable of a constraint β ≤ aTx ≤ β are computed by (4a) and (4b). This
operation maps each non-zero element aij of A to its lower and upper bound candidates for variable j.

Our variant of the CSR-adaptive algorithm for computing activities from Section 3.3 works on a granularity
level of one thread per non-zero element of A, which is the same granularity we need to map non-zero elements
of A to new bound candidates. Moreover, each thread loads the values aj , lj and uj into shared memory, and
the computed α and α are also saved in shared memory. Thus, we extend the activities kernel to also compute
(4a) and (4b) after the computation of activities is complete. In most cases, this implementation benefits from
reusing the values that are kept in shared memory and avoids expensive GPU global memory loads.

Finally, once individual threads have computed the corresponding lower and upper bound candidate, they are
compared to the best current bounds and updated if necessary. Because a given variable can be present in
several constraints, it is possible for multiple threads to hold bound candidates for the same variable. This can
lead to race conditions if such threads attempt to update the same variable’s bounds in parallel. To deal with
these race conditions, we use CUDA’s atomic operations to update bounds.

Having all threads of the GPU perform atomic operations at the same time can incur a significant performance
cost. In order to limit the number of necessary atomic operations, we exploit the fact that the bounds are strictly
improving during the course of the algorithm. For a variable j with old bounds `j and uj and new bounds `newj

and unewj , the following holds: `newj ≥ `j and unewj ≤ uj . Each thread has its own new bound candidates `candi,j ,

ucandi,j for the constraint i and variable j it is processing, but all threads assigned to this variable have the same
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bound values `j and uj from the previous round. However, because `newj ≥ `j then the following holds: `candi,j ≥ `j ,
or the bound candidate cannot become the new bound. An equivalent argument can be made for the upper
bound. This means that we can check if the candidate improves on the bounds from previous round first, and
perform an atomic operation to update the actual bound only if it does. In other words, the algorithm discards
useless candidates directly and only uses atomics to choose the best of all improvements. The pseudocode in
Algorithm 3 summarizes the final algorithm performing one propagation round.

Algorithm 3 Kernel performing one propagation round in Algorithm 2. blockIdx is the index of the current
CUDA block the thread executing the code belongs to.

1: start row ← row blocks[blockIdx]

2: end row ← row blocks[blockIdx + 1]

3: nnz block ← row ptrs[end row] - row ptrs[start row]

4: if end row - start row > 1 then
5: compute αrow, αrow by CSR-stream
6: else
7: if nnz block < length threshold then
8: compute αrow, αrow by CSR-vector with one warp
9: else

10: compute αrow, αrow by CSR-vector with all warps
11: syncthreads()

12: // each thread knows the row idx i and column idx j of the non-zeros it is processing
13: compute `candi,j , ucandi,j via (4a) and (4b)

14: if `candi,j > `j then

15: `j ← atomicMax(`j , `
cand
i,j )

16: if ucandi,j < uj then

17: uj ← atomicMin(uj , u
cand
i,j )

3.6 Performance Effects as a Function of the Input

Let us now consider the effect of the shape and the sparsity pattern of the constraint matrix A on the performance
of the developed algorithm. We already discussed how separate constraints can be processed independently (fully
parallel) to compute the activities and the new bound candidates. While computing activities, the algorithm
also exploits parallelism inside each constraint. However, the amount of parallelism here is limited due to the
summation operation.

Suppose now the number of non-zeros of A is fixed. Then, from the point of view of parallel performance and
scalability, this step will favor matrices with (a) more rows and (b) fewer non-zeros per row. This is because
different rows can be processed fully in parallel, while the computations inside a row have an inherent sequential
part that increases with the non-zeros count.

By contrast, the discussed necessity to use atomic operations to update bounds from the same column means that
matrices with more non-zeros per column will have more threads competing for hardware resources, reducing
parallel performance and scalability. Different columns, on the other hand, can be processed independently and
fully in parallel with no possibility for hardware resources conflict. Therefore, this step will favor matrices with
(c) more columns and (d) fewer non-zeros per column. Observe that (a) and (b) are in opposition to (c) and
(d), and that the trade-off between them will define their final effect on performance.

Finally, observe that the above “static” analysis of constraint matrix shape and sparsity pattern does not take into
account the dynamic behavior of domain propagation, which will also affect performance. Two instances with
the same shape, the same number of non-zeros and sparsity pattern might still behave differently. For example,
one instance might only require a few bound changes to reach the limit point, while the other one might require
thousands in many propagation rounds, possibly changing the part of the algorithm with dominating effect on
performance; the bound changes in one instance might all happen to be from the same column, resulting in a
bottleneck due to many atomic operations, while the other might need no atomic operations at all because all
bound changes happen to be from different columns. Even if the two instances have the same bound changes,
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the timing of the changes will define the amount of hardware resources conflicts the atomic operations will have,
e.g., if they are evenly distributed throughout the propagation rounds this might reduce the amount of conflicts,
while if the majority is clustered in the first propagation round this might result in a high amount of conflicts.
To conclude, the true potential for parallelism can only be evaluated empirically over a sufficiently heterogeneous
test set.

3.7 The Final Algorithm

Algorithm 3 performs one propagation round. The execution of rounds is iterated as long as at least one bound
change is found. If no bound change is found, the limit point is reached and the algorithm terminates. We
provide three implementations of this behaviour.

The first approach launches a kernel with one thread block and one thread to iterate through propagation rounds.
This kernel then uses CUDA’s dynamic parallelism feature to spawn the kernel implementing Algorithm 3 for
each round, as many times as necessary. The kernels communicate through a boolean variable stored in GPU
global memory to check if at least one bound change was found during a particular propagation round. This
way, the CPU does not have to communicate with the GPU during the execution at all and can continue doing
other computations while the bounds propagation is running on the GPU. We denote this implementation as
gpu loop.

The second approach is to move the loop iterating through propagation rounds to the CPU. This means that
minimal communication between the GPU and the CPU is necessary between propagation rounds: a boolean
variable holding the information if at least one bound change was found during a given round. With this
algorithm, the CPU has to perform a minimal amount of work during the propagation, namely, check one
boolean variable in a loop and either invoke another kernel execution or otherwise terminate. However, this
is overall faster than the first variant for the following reason: GPUs are built to take advantage of massive
parallelism through concurrent threads, but any of those individual threads is typically orders of magnitude
slower than a CPU thread. Small as it is, the sequential point of iterating through the propagation rounds
and checking if any bound changes have been found has a noticable effect on performance. We denote this
implementation as cpu loop.

The third approach is to avoid the situation where a kernel with one thread and one block has to be launched
by launching only one kernel for the entire duration of the execution. This kernel is launched with a number of
blocks and threads that allows full GPU occupancy but still does not need to synchronize with the CPU. On
the implementation level, this is achieved by combining the grid-stride loop kernel design with the cooperative
groups feature to achieve grid-wide synchronization within the kernel. However, this still does not eliminate
the sequential point of the algorithm, as all threads but one remain idle during the synchronization phase.
Even though this implementation did outperform the first version with a single-threaded kernel and dynamic
parallelism by a measurable amount for some specific instances, it performed worse overall. We denote this
implementation as megakernel.

In Appendix C we present results quantifying the difference in performance of the three implementations. In
the main experiments of the paper presented in Section 4, we use the best-performing cpu loop variant.

4 Computational Experiments

In this section, we present our experimental setup for studying the behavior of the proposed algorithms and
discuss the results obtained.

4.1 Test Set

To benchmark the algorithms, we use the MIPLIB 2017 collection set with 1065 MIP instances, which is currently
the largest and most widely adopted general testbed for MIP algorithms [12]. The number of non-zeros in the
constraint matrix A of this test set ranges from 3 to 256,963,402. Due to the errors coming from the open-source
file reader and other issues, we were not able to obtain results for 78 instances, leaving the set at 987 instances.
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As explained in Section 1.1, domain propagation may not converge to its limit point in finite time. We have set
a limit on the maximum number of propagation rounds in our algorithm at 100. There are 30 instances that did
not converge within this limit, and we do not use them in performance comparisons. Additionally, some instances
may run into numerical difficulties due to floating-point arithmetic and other problems. This happened to 64
of the instances in this set. Out of 987 instances, this leaves us with 893 instances which terminate successfully
and converge to the same limit point (see Section 4.3 for the definition of convergence to the same limit point).

Because small instances do not provide enough workload to justify their parallelization on GPUs, we further
eliminate all 107 instances that have less than 1000 variables and 1000 constraints. Finally, this leaves us with
a set of 786 instances that are used for performance comparisons.

All the results presented in Section 4 preserve the original ordering of constraints and variables in the instances.
The study which shows to what extent the ordering of constraints and variables influences the performance of
our algorithms is presented in Appendix B.

To better capture the performance of the algorithms with respect to the size of the input problems, we partition
this set into eight subsets of increasing size. We denote by [s, t) the set of instances that contain less than t
variables and t constraints, but have at least s variables or s constraints. We consider the partitions [1k, 10k),
[10k, 20k), [20k, 40k), [40k, 80k), [80k, 160k), [160k, 320k), [320k, 640k), and [640k,∞), and refer to these sets
as Set-1 to Set-8. Number of instances in sets Set-1 through Set-8 are: 270, 129, 98, 91, 65, 57, 40, and 36,
respectively.

The numbers presented in this section differ slightly for the execution on the P400 GPU (see Section 4.2), which
has much less resources than other machines we used. This results in insufficient memory and similar problems
for a few instances. The differences in numbers are never larger than a single digit.

The numbers for all executions are compiled for runs with double-precision arithmetic. Differences for single-
precision executions are discussed separately in Section 4.5.

4.2 Algorithms and Hardware

We compare three algorithms1:

1. cpu seq is a sequential implementation of Algorithm 1. It is always executed on a single-core, following
closely the current state-of-the-art implementation [11].

2. cpu omp is a shared memory-parallel implementation of Algorithm 1. OpenMP is used to parallelize
the loop at Line 5. To improve load balancing, the set of constraint indices is pre-processed and only
those marked for propagation are assigned to available threads. OpenMP locks are used to prevent race
conditions while updating bounds.

3. gpu atomic is the implementation of Algorithm 3 on GPUs in the variant which iterates through the
propagation rounds on the CPU (see Section 3.7).

The algorithms are tested on the following architectures:

– V100 NVIDIA Tesla V100 PCIe 32GB GPU,

– TITAN NVIDIA Titan RTX 24GB GPU,

– RTXsuper NVIDIA GEFORCE RTX 2080 SUPER 8GB GPU,

– P400 NVIDIA Quadro P400 2GB GPU,

– amdtr 64-core AMD Ryzen Threadripper 3990X @ 3.30 GHz with 128 GB RAM CPU,

– xeon 24-core Intel Xeon Gold 6246 @ 3.30GHz with 384 GB RAM CPU,

– i7-9700K 8-core Intel i7-9700K @ 3.60GHz with 64 GB RAM

1Our implementations can be found at: https://github.com/Sofranac-Boro/gpu-domain-propagator
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The list includes high-end GPUs, such as the data center-grade V100 and TITAN , which is also suitable for
desktop computing. The P400, on the other hand, is a very low-grade GPU that can often be found in personal
use desktops. The amdtr and xeon are data center-grade CPU servers, while the i7-9700K machine is a desktop
computer.

The cpu seq and cpu omp algorithms are executed in double-precision arithmetic, while the gpu atomic algo-
rithm is executed in double-precision (discussed in Section 4.4) and single-precision (discussed in Section 4.5).
The cpu omp algorithm is run on the xeon machine with 24 threads, on the amdtr machine with 64 threads,
and on the i7-9700K machine with 8 threads.

4.3 Evaluation Methodology

The main metric we use to compare two executions is speedup defined over wall clock time. Average speedups
are computed as geometric means. We choose the cpu seq algorithm running on the xeon machine as a base
reference execution. All speedups are computed against this execution, unless stated otherwise.

Both the sequential and GPU versions have a certain amount of initialization work which only needs to be
performed once. In the sequential case, e.g., this is computing the column-major CSC storage of the matrix,
which is needed for the marking mechanism (see Algorithm 1). For the GPU algorithm, the blocking of the
matrix A is precomputed on the CPU (see Section 3.2), and the necessary memory is sent to the GPU. As in [13],
we do not include these one-time initialization tasks in our time measurement. Timing starts just before the
first propagation round and ends after the last propagation round is executed and the results are available (in
CPU memory in the CPU case, in GPU memory in the GPU case).

When comparing the results of two executions, each individual bound is checked, and the results are deemed
equal if all bounds are equal within tolerances as follows. Two values a and b are considered equal if |a − b| ≤
(tabs + trel|b|), where tabs = 10−8 and trel = 10−5. The a value is always assigned to the bound of the
reference cpu seq execution, while the b value is always assigned to the exeution being evaluated, e.g., cpu omp
or gpu atomic.
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Figure 1: The left graph (a) shows geometric means of speedups over the eight subsets of instances of increasing
size. The right graph (b) shows the distribution of speedups by plotting the individual speedup for each instance,
sorted in ascending order. Each curve belongs to one combination of algorithm and machine. All executions are
in double-precision floating-point arithmetic. The baseline is the cpu seq-xeon execution.
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Table 1: Geometric means of speedups across test sets and speedup percentiles for execution with double-precision
arithmetic.

V100 TITAN RTXsuper P400 amdtr xeon i7-9700K
gpu atomic gpu atomic gpu atomic gpu atomic cpu omp cpu omp cpu omp

geometric mean speedups

Set-1 2.35 1.47 1.83 0.45 0.01 0.04 0.48
Set-2 6.60 2.79 3.13 0.45 0.03 0.11 1.00
Set-3 9.08 3.00 3.40 0.43 0.05 0.19 1.53
Set-4 12.93 3.94 3.79 0.39 0.09 0.30 1.90
Set-5 19.03 5.71 5.08 0.53 0.17 0.43 2.24
Set-6 25.31 6.79 5.89 0.56 0.27 0.57 2.30
Set-7 33.00 8.11 6.79 0.56 0.50 0.63 2.00
Set-8 43.92 10.06 8.37 0.74 1.20 1.15 3.05

All 7.42 2.98 3.19 0.47 0.04 0.14 1.10

percentile speedups

5% 0.83 0.37 0.62 0.12 0.003 0.01 0.20
50% 7.50 3.35 3.38 0.52 0.04 0.16 1.28
95% 51.65 14.80 12.56 1.15 0.80 1.22 3.91

4.4 Double-Precision Results

The speedups that can be observed for the seven algorithm-machine combinations executed with double-precision
floating-point arithmetic are visualized in Figure 1. Figure 1a) on the left shows the geometric means of speedups
for the eight subsets Set-1 to Set-8 of instances with increasing size. Figure 1b) on the right additionally provides
the distributions of the speedups over all instances sorted in ascending order. Table 1 provides a summary and
reports the average speedup over all instances and over the subsets Set-1 to Set-8, plus the 5th percentile, the
median, and the 95th percentile speedup.

As can be seen immediately, the gpu atomic implementation running on the V100, TITAN , and RTXsuper
GPUs drastically outperforms both the sequential and the CPU-parallel executions. Let us first evaluate the
top-performing combination, gpu atomic on V100, in more detail. Its average speedup closely follows a linear
trend in the size of the instances from Set-1 to Set-8. It is always greater than 2.35, and for Set-8, which contains
all instances with at least 640,000 variables or constraints, a speedup factor of 43.92 is achieved. This shows
that, in general, the speedup of the GPU-parallel algorithms crucially depends on the size of the instances. Over
the whole test set, the average speedup is a factor of 7.42, which reflects that a significant portion of the test
set are small instances that have limited potential for parallelism. For 5% of the instances, however, gpu atomic
on V100 is at least 51.65 times faster than the sequential implementation.

By contrast, on the low-end consumer-grade GPU P400, the gpu atomic kernel performs worse than cpu seq
on all subsets, with an average speedup factor over the whole test set of 0.47. Compared to the other cards,
the P400 has less computational resources available to expoit the parallelism. Additionally, the Volta (V100)
and Turing (TITAN , RTXsuper) architectures introduce changes which significantly improve performance [14]
over the Pascal architecture (P400) cards. Nevertheless, keeping in mind that GPUs are currently a resource
completely unused by MIP solvers and that the CPU can do other tasks while the GPU is computing, this result
might prove to be interesting even in this very affordable setup, especially as the performance of consumer-grade
GPUs will improve over the next years.

Also the shared memory-parallel algorithm cpu omp cannot compete with the GPU algorithms on V100, TITAN ,
and RTXsuper, which outperform it by a large margin. The comparatively high cost of managing CPU threads
proves to not be justified by the low arithmetic intensity of the parallel units of work processed by the threads.
This is especially visible for the 24-thread xeon and the 64-thread amdtr executions, which are slower than the
cpu seq on all subsets but Set-8. The 8-thread i7-9700K execution, however, outperforms the cpu seq exeucution
on all subsets except for Set-1, but its average speedup over the subsets is never larger than 3.1.
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The gpu atomic executions on TITAN and RTXsuper GPUs, which both consistently outperform the cpu seq
execution by a large margin, perform quite similarly between themselves. Interestingly, their curves can be seen
to cross on both plots. Their similarity in performance is practically relevant given that RTXsuper is a cheaper
alternative to the high-end TITAN GPU, which still achieves comparable performance.

Figure 1b) allows two further observations. First, comparing the fastest GPU and CPU executions, the slope of
the V100 execution is noticeably steeper than the one of i7-9700K , showing that the GPU execution responds
better to the growth in parallelism. The same effect can also be seen between the four GPU executions. Second,
the break-even point from which on the cpu omp on i7-9700K becomes faster than the sequential implementation
lies around the 41st percentile. By contrast, gpu atomic on V100 breaks even at the 7th percentile. It wins
against the sequential implementation for about 93% of the instances. This highlights that the best GPU-parallel
versions are not only significantly faster than the shared memory-parallel versions, but that they are also much
more robust.

Additionally, for all GPU runs, we can observe a steep increase of the speedup distribution after the 95th
percentile. This indicates that for particularly favorable structures GPU parallelization can have an even stronger
impact beyond what our general observations over the heterogeneous MIPLIB 2017 test set suggest.

We also performed the roofline analysis [23] based on peak bandwidth and performance on the V100 machine.
The heterogeneous MIPLIB 2017 test set contains a number of smaller instances that have a low potential of
reaching throughput limits on V100, making the roofline analysis unsuitable. Hence, for the purpose of this
analysis, we remove all instances with less than 250,000 non-zeros from the test set. On the remaining 349
instances, the average recorded arithmetic intensity is 2.96, with the minimal and maximal recorded values 0.26
and 17.69, respectively. The machine balance on the V100 is 8.53, indicating that the code is, on average,
memory-bound. On average, we recorded 23.64% of attainable performance according to the roofline model,
with the minimal and maximal recorded values at 1.5% and 89.14%, respectively. These results highlight the
highly irregular and dynamic effects that the properties of the input have on the performance of the algorithm
(see Section 3.6) and reveal both challenges and potential for future improvements.

4.5 Single-Precision Results

For some algorithms running on GPUs, replacing double-precision by single-precision arithmetic may offer sig-
nificant speedups, if the reduced precision is acceptable from the point of view of correctness of results for the
application in question. Additionally, NVIDIA’s fast math library (enabled by passing the --use fast math flag
to the nvcc compiler) allows for usage of fast hardware implementations of specific operations at the expense of
accuracy of results. In this section, we analyze the execution of our gpu atomic algorithm using single-precision
arithmetic both with and without the fast math option. In both cases (as well as for double-precision executions
from Section 4.4), the fused-multiply-add instructions are enabled.

Figure 2 shows the results for the three GPU machines defined in Section 4.2: V100, TITAN , and P400. V100
and P400 machines both have 64 FP32 and 32 FP64 cores per streaming multiprocessor [1, 2]. TITAN , on the
other hand, has 32 FP32 cores per streaming multiprocessor, with only 2 FP64 cores for correctness purposses [3].
First, we look into the executions without the “fast math” option. Out of 987 instances, 842 converged to the
same limit point, 27 converged but not to the same limit point, while 118 instances hit the maximum number
of rounds limit. By contrast, the double-precision executions converge to the same limit point without reaching
the maximum number of rounds for 893 instances (see Section 4.1). This shows the effects of reduced precision
on the correctness of results. (As before, these numbers are taken from the V100 machine exeuciton and they
might differ by a single-digit number across different machines.)

On the V100, we observe that the performance difference between the double- and single-precision executions is
minimal: double-precision speedup over the whole test set was 7.42, while the single-precision speedup stands at
7.27. Executions on TITAN and P400 gave a modest speedup: on TITAN , the average speedup over the whole
set increased from 2.98 to 3.63, while on P400, it increased from 0.47 to 0.60.

The lack of a more significant speedup may be somewhat unexpected, but can be explained by the sparse input
data and data structures of the implementations. Observe that a large part of the memory for the domain
propagation kernels is not used for floating-point numbers. Without going into details, we note that the CSR
storage format used to represent the sparse constraint matrix contains more integers than floating-point numbers,
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Figure 2: The left graph (a) shows geometric means of speedups over the eight subsets of instances of increasing
size. The right graph (b) shows the distribution of speedups by plotting the individual speedup for each instance,
sorted in ascending order. Double-precision executions are shown in solid lines, standard single-precision exe-
cutions are shown in dashed lines, while the “fast math” mode single-precision executions are shown in dotted
lines. The baseline is cpu seq-xeon execution in double-precision arithmetic.

a memory that is accessed often to implement the indexing logic of the reductions. Due to the low arithmetic
intensity of domain propagation, there are usually not many floating-point operations following the indexing.
Additionally, apart from looking at global memory, internal parts of the computations also work on integers. For
example, the reductions to keep track of the number of infinity contributions to activities works exclusively on
integers, see Section 3.4. To summarize, we perform as many reductions on integers as we do on floating-point
numbers to compute the activities, plus all the indexing accesses are on integers.

We performed the roofline analysis on single-precision executions on the V100 machine over the same 349
instances used in Section 4.4. The results are similar to the double-precision executions. However, the average
recorded percent of peak performance according to the model drops to 14.86%, with the maximal value recorded
at 68.9%. Average arithmetic intensity was recorded at 2.74, with minimal and maximal values at 0.18 and
28.85, respectively. This makes the single-precision code even more memory-bound than the double-precision
code. The machine balance value roughly doubles.

Unlike the standard single-precision execution, the combination of “fast math” and single-precision execution
provided a speedup on the V100 GPU. Overall, the speedup increased from 7.42 to 8.54. On TITAN and
P400, the speedups increased from 2.98 to 4.38 and from 0.47 to 0.61, respectively. For this execution, out
of 987 instances, 736 converged to the same limit point, 28 converged but not to the same limit point, while
223 instances hit the maximum number of rounds limit. (As before, these numbers are taken from the V100
machine exeuciton and they might differ by a single-digit number across different machines.) We can see that
the numerics seems to be affected because significantly more instances hit the maximum number of rounds limit,
however, the number of instances with inconsistent results only increased by one.

4.6 Comparison with PaPILO

The cpu seq and cpu omp algorithms used as the baseline comparison were implemented by the authors for the
purposes of this paper. In this section, we evaluate their performance and accuracy against an independent MIP
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presolver PaPILO, which is distributed as part of the SCIP Optimization Suite 7.0 [11]. PaPILO provides domain
propagation implementation that can run either in single- or multi-thread setups. Our goal is not to provide a
detailed and exact computational comparison of the two codes; rather, we want to show that our implementations
are of “reasonable” performance compared to state-of-the-art domain propagation implementations.

Before interpreting results, we acknowledge that the comparison of the performance of our code against PaPILO
is not on equal grounds. First, PaPILO is a much more generic framework, allowing interfacing with different
MIP solvers and providing many additional presolving methods, apart from propagation of linear constraints
as described in this paper. Even though we disable all other presolving methods but the domain propagation,
PaPILO is tuned for the case of multiple methods being applied in combination. Second, PaPILO is meant to
be used in conjunction with MIP solvers and will perform reductions useful to them while it performs domain
propagation. Specifically, it will remove redundant constraints and variables that are no longer useful to MIP
solvers. These operations can not be turned off in PaPILO and will be included in the runtime. Our code, on
the other hand, does not try to perform these reductions but focuses solely on domain propagation.

From the point of view of correctness and comparison of results, the above-mentioned behavior of PaPILO also
presents difficulties. Because PaPILO will often reduce the problem formulation as described, we can not directly
compare the arrays of tightened bounds. Instead, we run our code and record the runtime, but afterwards, we
pass the already propagated instance to PaPILO and let it process it. PaPILO will perform the necessary
reductions such that the problem then (hopefully) matches the problem that is solved by PaPILO from scratch.
However, apart from checking that the resulting tightened bounds are the same as described in Section 4.3,
we now also check that PaPILO did not find any bound changes in the instance solved by our code first. We
acknowledge that this is not a rigorous way to check if the results are the same, but we believe it suffices
for our goal of establishing that our baseline implementations are valid benchmarks in terms of accuracy and
performance. Additionally, this approach re-reads and re-writes instances multiple times through two different
MIP instance file readers, which in few cases results in errors and wrongly read values. These and other issues
reduced the number of instances where PaPILO and our code produce the same results. Nevertheless, 701
instances did pass this check and they form the base for the results shown in Figure 3.
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Figure 3: Geometric means of speedups over the eight subsets of instances of increasing size for the two PaPILO
executions with 1 and 8 threads, and the cpu omp execution. All executions are in double-precision arithmetic.
Baseline is cpu seq running on the amdtr machine.

All executions are done on the amdtr machine (see Section 4.2) in double-precision arithmetic. The base
case is cpu seq running on the amdtr machine against which the speedups are computed for the two PaPILO
executions with 1 and 8 threads, and cpu omp execution with 8 threads. On average, the single-threaded
PaPILO run achieves a speedup of 0.08 compared to our single-threaded code. The PaPILO run with 8 threads
performs sightly worse with a speedup of 0.07, on average. As is the case with our code, the multi-threaded
PaPILO execution performs worse for subsets with smaller instances, while it eventually beats the single-threaded
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execution for the Set-8 with the largest instances. All in all, these results demonstrate that our implementations
cpu seq and cpu omp provide a competitive baseline for the performance comparisons presented in the previous
sections.

5 Conclusions and Outlook

In this paper, we show that domain propagation is — with the right algorithmic design — amenable to efficient
execution on GPUs. While this result is promising for the exploitation of GPUs in the MIP solving process,
challenges still remain in this respect. Two primary use cases for domain propagation in MIP solvers are in
presolving and after branching on variables during the main solving process. In the former case, the algorithm
starts in the same setting as used in this paper - with no prior knowledge of the state of the constraint system.
In the latter case, however, the system was usually already fully propagated before the branching took place.
This means that the algorithm starts at a situation that is equivalent to just after a propagation round with
a single bound change on the branching variable. Here, the cpu seq can in most cases avail of the constraint
marking mechanism to significantly reduce the amount of work it needs to perform (see Section 2.3), to the
point where there is not enough work to justify the cost of parallelization. On the other hand, the amount of
time spent in domain propagation during presolving is usually small relative to the main solving time, and thus
the motivation to speed it up “as is” is low.

In conclusion, while our new algorithm offers the ability to perform domain propagation on a much larger scale
than before, new parent methods are required which will use domain propagation in a way suited for GPUs and
to the benefit of MIP solvers. A particularly useful feature of our algorithm in this respect is that it is able to
run without the need for synchronization with the CPU, making it possible to embed it in parent GPU-based
algorithms as well as allowing the CPU to keep processing while the GPU propagation is taking place.

Execution of SpMVs on GPUs is an active research area and several improvements on the CSR-adaptive from [13]
as well as new SpMV algorithms have been published since. For example, see [10, 16, 21]. A future research
direction would be to analyze if the improvements of SpMV algorithms in the recent literature can be carried
over to the computation of activities as described in this paper (see Section 3).
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Appendices

A Variability of Baselines

The CPU architectures where we execute the cpu seq algorithm differ considerably among themselves (see Section
4.2). As explained, we chose the execution of cpu seq on the xeon machine as our baseline case and reported all
speedups relative to this execution. However, one should keep in mind that executions of the cpu seq algorithm
on other architectures will give different results due to architectural differences (e.g., amount of RAM or cache
memory). This effect is shown in Figure 4, which plots the speedups of the cpu seq execution on amdtr and
i7-9700K machines relative to the execution on the xeon machine on the instances from the test set defined
in Section 4.1. We can see that the amdtr execution is faster on average than the xeon run, but not by a
constant factor. In fact, there are instances where the amdtr is almost 4 times faster, and other instances where
xeon beats it by a factor of 1.2. This shows that as the features of the instances change (e.g., size, shape of
constraint matrix, etc.), the architecture of the machine affects performance by a different amount. Furthermore,
the slopes on the curves are not linear, indicating that for some instances, the architectural differences have a
disproportionately high effect.
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Figure 4: Distribution of speedups by plotting the individual speedup for each instance, sorted in ascending
order. All executions are in double-precision arithmetic. Baseline is cpu seq running on the xeon machine.

B Effect of Constraint and Variable Ordering on Performance

The possibility to perform a specific bound change can depend on other bound changes being applied first.
This means that depending on the order in which the constraints are processed, propagation algorithms can
in principle alter their performance. For example, consider the cascading propagation example introduced in
Section 2.2. If the sequential algorithm processes these constraints in order from the first towards the last, it
can propagate this system in one round. On the other hand, if the processing happens in the reverse order,
from the last towards the first constraint, it would need m rounds, with m being the number of constraints.
In this appendix, we evaluate to what extent the effect of ordering of constraints and variables influences the
results presented in Section 4. We run the experiments from Section 4.4 on the TITAN machine, but this time
on instances with randomly permuted ordering of constraints and variables, as well as on the instances with the
original ordering. The results are shown in Figure 5.

As we can see, the difference in speedups among the runs with randomly permuted input is negligible. Run seed0
with the original ordering performs better than the other runs, but not by a significant amount: averaged over
the whole test set, the difference in speedups between them does not exceed 4.3 percent. While this difference
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Figure 5: Geometric means of speedups over the eight subsets of instances of increasing size. Each line belongs
to the execution with a different ordering of variables and constraints in the test set. Ordering seed0 is the
default ordering of the original test set. All executions are in double-precision arithmetic. Baseline is cpu seq
running on the xeon machine with the default ordering.

in behavior of the run seed0 is interesting, it is not surprising, as the original ordering is not random but rather
made by hand, where similar constraints are often grouped together.

C GPU Versus CPU Synchronization

In Section 3.7 we presented three variants of kernel synchronization: cpu loop, gpu loop, and megakernel. We
now present results quantifying the difference in their performance. The test set as defined in Section 4.1 is run
on the i7-9700K CPU and the RTXsuper GPU (see Section 4.2). Results are shown in Figure 6.
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Figure 6: Geometric means of speedups over the eight subsets of instances of increasing size for the three
algorithm variants cpu loop, gpu loop, and megakernel. Baseline is cpu seq running on the xeon machine. All
executions are in double-precision arithmetic.

Over the whole test set, the cpu loop is 1.72 times faster than the gpu loop, on average. However, most of this
speedup comes from instances of smaller size, as we can see in Figure 6. The sequentialization point, which
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causes the slowdown on the GPU, remains constant as the sizes of instances increase, while the parallel part
exploited by the GPU increases. Hence, as the sizes of the instances increase, the sequentialization point has
less and less effect on the performance, an effect described in Amdahl’s law [6]. Indeed, we can see in Figure 6
that the two curves converge as the problem sizes increase.

On the other hand, the megakernel performs significantly worse than the other two variants over all subsets.
Finally, keep in mind that our implementations were developed for the purpose of this paper, and while they
contain all the described algorithmic steps, numerous performance optimizations are still possible. Due to the
higher code complexity of the megakernel compared to the cpu loop and gpu loop, it could perhaps benefit the
most from future optimization efforts.

D Differences to the Conference Version

A conference version of this paper was submitted and accepted for publication in the proceedings of IEEE/ACM
10th Workshop on Irregular Applications: Architectures and Algorithms (IA3) [20]. Since then, the code has
been significantly extended and improved, including bug fixes. Some of these additions are performance-neutral,
while others affected it negatively. Most notably, we acknowledge a missing compiler flag during our test
execution which negatively affected the performance of the cpu seq baseline used in [20]. On the other hand,
many new additions improve performance, e.g., the reduced number of atomic operations described in Section
3.5, the possibility to run the rounds loop on the CPU described in Section 3.7, technical code improvements to
reduce register usage and others. All these changes affect performance in a non-uniform way: in some cases, the
performance is now superior to the results reported in [20], while in other cases it is inferior.

Also, the correctness of results was affected in some cases due to a missing feature described in Section 3.4.
Moreover, numerical handling has been significantly improved, making the code more robust against round-off
errors and other numerical difficulties. However, note that also in [20], performance comparisons were only
reported over sets of instances for which competing implementations had converged to the same result.
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