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Abstract

We present an approach 10 the tree representation gf a
tubular objects nenwork. The full-3D tracking (tlgqrzthrn
for a single wbular structure is detailed. Detection of
bifurcations by a connectivity approach is then exposed:

We show subvoxel accuracy and reliable orientation
estimation for the tracking process on synthetic image;.
Bifurcations are also well detected on a complex synthetic
image. Finally, applications of this method on real 3D
medical images are shown. The method is particularly
suited for processing Magnetic Resonance Angiography

of the brain and neck.

1.Introduction

Spatial resolution of Magnetic Resonance Angiography
(MRA) makes it a powerful tool for diagnosis and
surgical planning. However, image interpretation and
visualization tools are missing, and three-dimensional
measurements arce not usually accessible. Flexible
visualization of the whole vascular tree and precise
quantification of phenomenons like carotid stenosis are
applications of an automated processing of MRA‘[Z].
Building an accurate representation of a tubular objects
network such as bronchi or blood vessels can provide a
substantial help tor 3D visualization and quantification.

We present an approach to the tree representation of a
tubular objects network. The main originality of this work
is the 3D centerline tracking process which provides
subvoxel accuracy and deals with bifurcations. This
approach has been succesfully applied to femoral arteries

and cerebral vasculature.

2.Method

The tubular objects network detection is presented in
two steps : the tracking process of a single structure and
the detection of biturcations which occurs at each step of

the tracking prNess.

2.1.Tubular objects tracking

Tracking is an iterative process with subvoxel
accuracy. It detects the centerline of tubular objects using
a segmented image. From an original image I, we
compute an image S(I). S(I) contains unstructured sets of
connected voxels belonging to the objects to be identified.

To insure subvoxel accuracy, tracking has to be
processed in a continuous 3D space obtained by
interpolation.

From a given point P; and a given direction D;, a local
computation is done in a search area to find the point P,
and direction Dy,;. The search area is a mobile
parallelepiped built (Fig. 1) at each step according to P;
and D; values. The dimensions of the parallelepiped, L, /;
and H; are computed dynamically and evolve with
estimated object diameter and local curvature.

2.1.1. Detection of point P;,;. Let P; be the current point
and D, the current tracking direction, let L;, [; and H, be
the dimensions of the box.

P;is located at the center of the ‘lower’ face F of the
parallelepiped (fig. 3).
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Figure 1 : principle of the mobile parallelepiped. A




Let V be the whole set of binary voxels included in the
parallelepiped and B; the gravity center of those voxels

(table 2).
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The point Py, and direction D;,, are given by the
following equations (table3):
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Table 3 : Computation of P,y and Di.1

Parameters k; and kq are weights between previous and
actual values in a prediction-verification paradigm, such
as PID controler or a Kalmann filter ; k. ke €0, 1].
These parameters have a fixed value corresponding to the
maximal curvature of tubular structures that can be
tracked by this technique. For a given set {k,, kq}, the
maximum curvature that can be estimated by the tracking
algorithm is limited by the dimensions of the paralleliped
which are computed at each step of the tracking.

2.1.2. Computation of adaptative dimensions. The
dimensions L;, I; and H; are calculated at each step of the
tracking algorithm to suit the local data with maximal
accuracy and speed (evaluated as a discrete derivative
between two successive positions). The change of
direction between two steps i and i+1 is evaluated by the
following value :

Di (Pi+l—Bi+l)>
AZE = arccos|
o

(Pi+]“5i+l}

Large values of AZ irldicate a significant change of
direction between steps i and i+1. In this case, direction
change between D; and Dy, must be suited to those abrupt
changes and the position update must be as small as
possible in order to stay in the correct area. A large
number of points must be computed in sinuous areas for a
good accuracy.

Furthermore, we must insure that only one tubular
structure is tracked at a time by the parallelepiped :
dimensions L; and [; are computed at each step so that
only one connected component is visible through the
‘lower’ face F. Non circular sections for tubular structures
imply that L; and /; are computed separately. Dimensions
are first reduced, possibly several times, if all the border
voxels of the face F have a value of 0. They are then
augmented once if any border pixel of the face F belongs
to the main connected component in this face.

Hi is the horizon of the parallelepiped. Straight sections
don’t require as much sampling points than sinuous ones.
H; evolves inversely proportionnal to the local curvature,
estimated by the direction change A=:

H, =k, e

This dynamic handling of the dimensions insures that
the tracking process remains as close as possible to the
structure. It also overcomes small disconnections.

2.2.Detection of bifurcations

In order to detect bifurcations and end of structures,
connnectivity informations are used. Two quantities are
computed : NV, the number of volumic connected
components inside the parallelepiped, and NS, the number
of surfacic connected components at the boundaries of the
parallelepiped. Relative values of these quantities indicate
whether to check for a bifurcation (Fig. 2b) or not (Fig.
2a). NV and NS are computed at each step of the tracking
algorithm.

A single structure with no bifurcation gives values of 1
for NV and 2 for NS. A single structure with a bifurcation
will give values of 1 for NV and 3 for NS. Problems arise
for values of NV and NS of respectively 2 and 4 : there
are at least two possible configurations giving those
values, with significant differences in the resulting tree
interpretation. In order to avoid misinterpretation of those
values, each surfacic component is also labelled with the
label of the volumic component it is attached to. We are
then able to detect bifurcations with no ambiguity.




a)NV=1;NS =2 b) NV =2; NS = 5

Figure 2 : Possible voxel configurations inside the
parallelepiped with NV and NS values.

End of structures are detected when NS and NV are
both equal to 1. This surface vs. volume connectivity
approach theorically allows to detect more than one
separation from the structure in a single step (NV = 1, NS
>4).

2.3.Tree representation of the network

Each instance of the tracking step creates a node in the
tree. If a bifurcation is detected, a child node is created for
each new branch of the bifurcation. A node contains the
description of the tubular object by a generalized cylinder.
We use two sets of descriptors for the generalized
cylinder : a set {C, i€[1..n]} of center points and a set
{S;, ie[1.n]} of data on cross-sections. A section S
corresponds to the point Cy.

The C; points are computed along the second order B-
sphine interpolating the set {P;} of detected points. This
analyuc  representation  allows  resampling  and
computation of a continuous first derivative A {Far92].
Samples of A at the C; points (A) give the tangent
direction to the B-spline curve. The S; cross-sections are
built by interpolation in the plane orthogonal to A; and are
designed for quantification and virtual endoscopy. C; and
A; are 3D veclorial values.

Object 1 name
set {Ciy} of center points

y v

Object 3 name
(Cis) ; i,

Object 2 name
(Cir) ; i5;

v

Table 4 : Tree representation of a complex network

3.Results

Two quantities have to be measured to evaluate the
accuracy of the tracking process : the distance between
the real and the detected centerline and the orientation
difference between those 3D lines.

Images of real 3D structures from various domains
don’t provide any information about the real centerline
position and orientation. We build synthetic images of 3D
tubular structures where those values are easily computed.
Several structures can be present in a single synthetic
image.

Each tubular structure is described by a list of points
{Pq, i€[1.m]}. The centerline of the structure is the
bicubic B-spline curve interpolating the {Ps} set. We
compute a set of centerline points {L; ie[l..p]} by
resampling the curve, and the set {A;, ie[1..p]} giving the
derivative of the curve for each L; point.

The distance between the centerlines and the
orientation difference are measured between the {(C;, A),

ie[1..n]} sets and {(L;, Ay), je[1..p]} sets by the following
CiLj

formulas :
(] Aj)

AOi = arccos HAIHT/\J“

AP, = min (
jell.p}

3.1. Tracking process

Three different synthetic image sets have been used to
test the precision of the tracking algorithm : a helix shape
with constant radii, a helix shape with decreasing main
radius (spiral shape) and a Y-fork shape with constant
radius (fig. 3). The intensity profile of the generated
section is a gaussian.

Figure 3 : 3D rendering of the synthetic images used for
evaluating the precision of the tracking algorithm

Difference in position between the nearest points (AP)
and difference in orientation between those points (A®)
are measured between the synthetic object centerline and
the detected B-spline curve. Significant results for further
quantitative measurements are obtained.




Position error | orientation error
AP (mm) AO (degree)
min 0.19 0.05
max 0.51 11.05
mean 0.38 2.46
a) Y-fork shape
position error | orientation error
AP (mm) AB (degree)
min 0.01 0.10
max 0.60 11.19
mean 0.21 5.50
b) helix shape
position error | orientation error
AP (mm) AO (degree)
min 0.01 0.01
max 0.35 11.25
mean 0.19 4.57

¢) spiral shape

Table 5 : Measurements of AP and A® on synthetic
images

We estimate the expected error on cross-sectional area
measurement as err = 1-cos*(A©). erris always inferior to
1 %. Those measurements show a subvoxel accuracy of
0.2 voxel on a single tubular object centerline tracking,
and of 0.4 voxel when a bifurcation is present. This
accuracy allows reliable second-order measurements such
as diameter and cross-sectionnal area.

3.2.Detection of bifurcations

A synthetic image with several connected tubular
structures is used to validate the connectivity approach.
The angles between the structures vary from 20° to 70°.
All the structures are correctly separated.

a) left projection b) front projection
Fig 4 : Complete tracking of a tree structure from the
bottom on a synthetic image with the detected bifurcations.

The image displayed in fig. 4 is composed of five
connected cylindrical structures : a main trunk with a first
lone branch (bifurcation B,) and an intersection of three
other branches at the top (bifurcations B, and B,). There
are seven objects and three bifurcations detected. The top
three structures overlap each other, and the original
intersection structure of the centerlines becomes a set of
two bifurcations. Actually, detection of more than one
separation in a single step never occured.

The tubular objects are shrinked in the middle to
validate the diameter and cross-sectionnal area
measurements currently under progress.

4.Application

The cerebral vasculature can be modelled by a network
of 3D tubular structures corresponding to the vessels. The
tree structure is suited to describe the arterial system. Our
work is focused on the internal carotid arteries (left and
right). Those vessels are up to 5 voxels large on high-
resolution images, and their course through the brain is
relatively stable. Detecting the carotidian siphon is an
important issue for clinicians, as well as providing reliable
measures for the cross-sectionnal area.

Furthermore, left and right carotid artery and the
vertebral artery interconnect themselves through little
vessels in the polygon of Willis. This connection ensures
that the arterial blood supply of a particular territory does
not depend solely on one artery.

4.1.Image Acquisition

Among the numerous imaging techniques available for
MRA, we choose a 3D-Time Of Flight, also called
inflow-based enhancement, imaging sequence. The main
advantages of this imaging technique are a good depiction
of the arterial system, the high signal-to-noise ratio and
the high resolution achievable [1]. We achieve an
isotropic voxel of 1mm? along the whole head volume
(256 x 256 x 152 mm) in 23 minutes. We use the
multislab option in order to maximize the inflow
enhancement effect.

4.2. Global the vascular

structures

segmentation of

The purpose of this segmentation is to isolate
connected sets of voxels belonging to the blood vessels.

Global segmentation implies three processing steps :
the first one is the correction of intensity gaps between
slices. Image intensity is not homogeneous through the
whole volume . This effect is due to the multislab overlay
option [3] that generates clearer strips regularly disposed
along the acquisition direction.




Blood vessels appear as homogeneous regions of high
intensity. To enhance those regions, we use diffusion
adaptative filtering [5][4] in the second step. Resulting
filtering applicable for each voxel depends on two values,
rather than on the sole grey-level gradient : the grey level
of the processed voxel and the value of the local grey
level gradient.

The last step is region gathering of voxels likely to
belong to a vessel. We use two criterions for this
selection : the intensity of a voxel and its neighbourhood
configuration. All voxels of intensity greater than a
threshold I, are selected, then candidate voxels are chosen
depending on the number of neighbours marked during
the first phase. Among those candidate voxels, only those
with intensity greater than a threshold I, are kept. I; and L,
intensity thresholds are computed on the whole filtered
image histogram.

4.3.Results on MR angiographic images

No reference centerline is available to evaluate the
quality of our tracking algorithm. Results have been
visually examined. Vascular tree is well detected.
Centerlines are well located for carotid arteries, middle
cerebral arteries and the vertebral artery.

Left Carotid Artery

Y
Vertebral Artery Left Middle Cerebral

J Artery

Left Posterior Right Posterior
Cerebral Artery| [Cerebral Artery

Right Carotid Artery

Figure 5 and Table 6 : A part of the tracking process on
a MRA image of the head and the associated tree
representation. Right and left are swapped in the medical
nomenclature.

4.4.Results on Digital Substracted Angiographic
(DSA) images

DSA is another imaging modality for blood vessels.
The substraction between two acquisition steps provides
an improved contrast on the resulting image.

The image we process is the original image simply
thresholded. The image is located at the top of the inferior
members (femoral artery).

Figure 6 : A part of the tracking process on a DSA image
of the inferior members.

5.Conclusion

In this paper, tracking of tubular objects network from
3D images has been presented and tested on synthetic
images and applied to MRA healthy volunteers images. A
3D representation of the vascular network is obtained by
the detection and the tracking of the vessels centerline.
The proposed method is a full 3D one and handles
bifurcations. Its accuracy is better than 0.4 mm in position
and 6° in orientation on synthetic images.

The tracking algorithm has also been succesfully tested
on Digital Substracted Angiograms (DSA) of inferior
members area. Current works focus on 2D and 3D
quantification of vessel diameter and cross-sectionnal area
Lo help stenosis detection.
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