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Abstract—Code-Switching (CS) is a common linguistic
phenomenon in multilingual communities that consists of
switching between languages while speaking. This paper
presents our investigations on end-to-end speech recognition
for Mandarin-English CS speech. We analyze different CS
specific issues such as the properties mismatches between
languages in a CS language pair, the unpredictable nature
of switching points, and the data scarcity problem. We
exploit and improve the state-of-the-art end-to-end system
by merging nonlinguistic symbols, by integrating language
identification using hierarchical softmax, by modeling sub-
word units, by artificially lowering the speaking rate, and by
augmenting data using speed perturbed technique and sev-
eral monolingual datasets to improve the final performance
not only on CS speech but also on monolingual benchmarks
in order to make the system more applicable on real life
settings. Finally, we explore the effect of different language
model integration methods on the performance of the pro-
posed model. Our experimental results reveal that all the
proposed techniques improve the recognition performance.
The best combined system improves the baseline system by
up to 35% relatively in terms of mixed error rate and delivers
acceptable performance on monolingual benchmarks.

Keywords-end-to-end speech recognition, Mandarin-
English Code-Switching speech, language model integration

I. INTRODUCTION

Code-switching (CS) speech is a common phenomenon

in multilingual countries and defined as speech which

contains more than one language [1]. From a grammatical

point of view, Poplack [2] proposed three types of CS:

extra-sentential, inter-sentential and intra-sentential. Extra-

sentential switching is inserting tag elements from one

language into an otherwise monolingual language. Inter-

sentential switching is characterized by a switch from one

language to another outside the sentence or the clause

level, whereas intra-sentential switching is switching from

one language variety to another at the clause, phrase, or

word level within a single utterance. This paper aims at

improving end-to-end (E2E) automatic speech recognition

(ASR) system on the SEAME corpus (South East Asia

Mandarin-English) [3] which is intra-sentential dominant

[4].

A first ASR system for Mandarin-English CS conversa-

tional speech was proposed in [5] investigating different

merged acoustic units for acoustic modeling, artificial CS

data for language modeling, and the use of language

identification in the decoding process. Recent studies show

that deep learning has boosted the performance of ASR

[6], [7] and the state-of-the-art ASR architecture - hybrid

TDNN-HMM - has shown incredible performance on

many LVCSR tasks [8]. Despite hybrid ASR having state-

of-the-art performance, building this system remains a

complicated and expertise-intensive task. First, it requires

various resources such as pronunciation dictionaries and

phonetic questions for acoustic modeling. Second, it relies

on GMMs for frame-level alignments. In the context of

CS, creation of a pronunciation dictionary for two lan-

guages might require expertise knowledge, e.g., generating

pronunciation variants, and this process is error prone.

Recently, some studies proposed a single neural network

architecture to perform speech recognition in an end-to-

end manner to resolve the issues in hybrid ASR. There are

two types of E2E frameworks: CTC based [9], [10] and

attention based [11], [12]. Although the attention model

has been shown to improve the performance over CTC

based, it is difficult to learn in the initial training stage with

long input sequences and has poor performance in noisy

conditions. Joint CTC-attention based E2E framework

was proposed to improve noise robustness, achieving fast

convergence and mitigating the alignment issue [13]. The

experimental results on many benchmarks (WSJ, CHiME-

4, etc.) demonstrate its advantages over both the CTC

and attention based frameworks and comparable results

to hybrid ASR systems.

Mandarin and English have many significant differences

[14], [15]. First, Mandarin uses a logographic system,

in which symbols represent the words’ meaning and not

their pronunciation. Second, Mandarin is a tone language

that uses the pitch to distinguish word meaning, whereas

English uses the pitch to express emotion or emphasize

words. Third, the syntactic structure. e.g. in English, things

are usually modified by the words that come after them,

while in Mandarin, things are usually modified by the

words that precede them. Furthermore, it is difficult to

predict the CS points which is entirely up to the individual

speakers [2]. Take the below sentences S1 and S2 as

examples, the English word ’GO’ has similar pronun-

ciation as the Mandarin character ’够’, but both have

totally different meanings. Both sentences can possibly

occurr in CS environment. If the ASR system is mainly

trained with monolingual Mandarin data, then it is more

likely to predict the next character to be ’够’ given the
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history ’我’. Some might argue that the ASR systems

can learn the conditional probability P (GO| 我) from the

CS data. However, collecting CS data is time-consuming

and financially expensive. Besides, the CS points highly

depend on the speakers [2], and it is not easy to cover all

possible CS points.

• S1: 我 GO 了(Translation: I go.)

• S2: 我 够 了(Translation: It is enough for me.)

In this paper, we analyze several issues of Mandarin-

English CS speech which might cause recognition errors

and inject knowledge derived from the analysis into the

development process of the E2E ASR system. We merge

discourse particles and nonlinguistic signals, integrate

language identification into the prediction process, utilize

English subword modeling, artifically lower speaking rate,

and use data augmentation to solve these issues. Further-

more, we investigate the effect of these techniques and

their combinations on the ASR performance in terms of

Mixed Error Rate (MER). Finally, we explore different

language model integration methods in order to interpo-

late the knowledge of the language model into our best

combined systems.

II. SEAME DATASET

SEAME is a 99 hours of spontaneous Mandarin-

English CS speech corpus recorded from Singaporean

and Malaysian speakers. All recordings are performed

by close-talk microphone in quiet room. The speakers

are aged between 19 and 33, almost balanced in gender

(49.7% of female and 50.3 % of male). The total number

of distinct speakers is 157 (36.8% are Malaysian while

the rest are Singaporean) [16]. 16.96% of utterances are

English (ENG), 15.54% are Mandarin (MAN) and the rest

(67%) are CS utterances. In each transcript, they use the

following categories for labeling: target language (English

word and Mandarin character), discourse particle or hesi-

tation (’lah’, ’hmm’, etc.) and nonlinguistic signal (people

laughing, coughing, etc.), other languages (Japanese or

Korean words).

III. IDENTIFICATION OF SUBPROBLEMS

A. Discourse particle and nonlinguistic signal

There are 430 unique discourse particles, hesitations and

nonlinguistic signals (people laughing, coughing). These

signals might be informative for sentiment analysis or

emotion detection not for speech recognition.

B. Code-Switching points prediction

There are two language switching directions: one is

from English to Mandarin and another is from Mandarin to

English. SEAME has 12.24% switching points (6.04% are

from English to Mandarin and 6.2% are from Mandarin

to English). Previous studies state that the code-switching

points are indeterminate because the code-switching de-

cision is entirely up to the individual speakers [17] and

there are some code-switching patterns across speakers

[2]. Moreover, in over 80% of cases, speakers directly

switch language without any short pause and discourse

particle between two adjacent different languages [3]. It

is a challenge for conventional ASR system to predict the

switching points due to insufficient acoustic information.

C. Out-of-Vocabulary (OOV)

OOV is a common problem in the context of speech

recognition and would be accumulated due to the recog-

nition of two languages. For example, there are around

370,000 Mandarin Chinese words and 172,000 English

words. If we just combine two dictionaries to a lexicon

for the ASR systems, the tedious lexicon would make

ASR hard to be trained due to huge memory and time

consumption. Not to mention it does not contain the new

words being created in daily life or social media.

D. High speaking rate

A rate of clear speech ranges between 140-160 words

per minute (wpm) and a rate higher than 160 wpm can

make it difficult for the listener to absorb the material.

Reference [3] reports that Singaporean speakers have an

average speaking rate of 181 wpm and Malaysian speakers

151 wpm. Note that there are 72 hours of speech from

Singapore, and 27 hours from Malaysia. Therefore, around

70% of the utterances have high speaking rates.

E. Data scarcity

Although there are many multilingual countries, only

few countries do CS between Mandarin and English.

Besides, CS speech normally occurs in casual conversation

and it is not possible to record it for free due to the

privacy concern. Especially in the context of E2E ASR,

data scarcity might be a large problem to build a good

system.

IV. PROPOSED METHODS

A. End-to-End speech recognition

It has been shown that the joint CTC-attention model

within the multi-task learning framework [13] is able

to outperform CTC-based or attention-based E2E ASR

systems due to its robustness, fast convergence, and mit-

igation of the alignment issues. Furthermore, it allows

building ASR systems without the use of a pronunciation

dictionary, which is convenient for CS ASR because com-

bining two languages’ pronunciation dictionaries requires

expertise knowledge. The overall architecture contains

the shared encoder which is trained with both CTC and

attention model objectives simultaneously and transforms

the input sequence x into high level features h, and the

location-based attention decoder generates the character

sequence y [18]. The multi-task learning (MTL) objective,

is represented in Eq.1, follows by using both CTC and

attention model.

LMTL = λLCTC + (1− λ)LAttention (1)

where LCTC is the loss function of the CTC model,

LAttention is the loss function of the attention model, and

a tunable parameter 0 ≤ λ ≤ 1.



B. Merging discourse particles and nonlinguistic signals

In III-A, we mention the huge amount of labels for

discourse particles, hesitations, and nonlinguistic signals.

The system should put effort on learning language instead

of nonlinguistic symbols. Therefore, we group all the dis-

course particles and hesitation pauses into the same class,

e.g., ”lah” and ”hmm” are labeled as ”<dispar>”, and all

the nonlinguistic signals are labeled as ”<nlsyms>”. The

goal is to let neural network focus on learning language

(English and Mandarin) characters because they will be

the main factors to the loss function.

C. Language identification using hierarchical softmax

To predict the CS points mentioned in III-B, we exploit

language identification to predict if the current word (char-

acter) is English or Mandarin given the history in terms

of the high level features h (or the output of Encoder).

The language identification is integrated into E2E attention

model with the output layer factorized by class layer

(hierarchical softmax), proposed in [19]. The probability

of character at the i-th time step y(i) given history is

defined as

P (y(i)|history) = P (s(i)|history)P (y(i)|s(i)) (2)

where s(i) denotes the type of language (English or

Mandarin) at the i-th time step.

Furthermore, the overall E2E system is trained using

multi-task learning objective represented in Eq.3 using

CTC, attention, and language identification models.

LMTL = λLCTC + (1− λ)(LAttention + Lld) (3)

D. English subword modeling

III-C identifies the OOV problems for both languages.

For Mandarin, we could use characters as unit to mitigate

the OOV problem because our E2E system only needs to

recognize 50,000 characters instead of 370,000 words. For

English, the subword model can solve the OOV problem

and offer a capability in modeling longer context than

using characters [20], [21].

E. Lower speaking rate

In III-D, we mentioned the problem of high speaking

rate causing the difficulty for recognition. In a daily

conversation, when people do not understand what others

say, normally they ask others to say it again, and they will

repeat it with a lower speaking rate. Motivated by this

observation, we propose to artificially lower the speed of

the entire dataset.

F. Data augmentation

We use ‘3 way speed-perturbed’ method proposed in

[22] to generate more CS data. In particular, two additional

copies of the original training data are generated by

modifying the speed to 0.9 and 1.1 of the original rate and

added to the original data. Furthermore, we add several

monolingual datasets for the training process allowing our

system to learn more pronunciation variants.

G. Language model integration methods

There are several ways to integrate E2E ASR systems

with an external language model. In a conventional decod-

ing paradigm with an external language model, shallow

fusion (SF) computes the score by linearly interpolating

the score from a Sequence-to-Sequence (S2S) model and

an external language model to maximize the following

criterion:

y∗ = argmax
y∈Ω∗

{lnPS2S(y|x) + βPLM (y)} (4)

where x is acoustic features and y is the sequence made

of English words and Mandarin characters. Where β is a

tuneable parameter to define the importance of the external

LM. Unlike SF uses the language model in the decoding

state, cold fusion (flat-start fusion) (CF) uses the pre-

trained language during the training of the S2S model to

provide effective linguistic context [23]. The fine-grained

element-wise gating function is equipped to flexibly rely

on the language model depending on the uncertainty of

predictions:

sLM
t = DNN(dLM

t ) (5)

where dLM
t is the hidden states of RNNLM, sLM

t is a

feature from the external LM. The S2S models’ hidden

states sED
t is defined as:

sED
t = σ(WED [dt; ct] + bED) (6)

CF uses a fine gating mechanism, and the gating function

gt takes features from the S2S model and the external LM.

gt = σ(W g [sED
t ; sLM

t ] + bg) (7)

sCF
t = [sED

t ; gt ◦ sLM
t ] (8)

where ◦ is element-wise multiplication.

rCF
t = DNN(sCF

t ) (9)

P (yt|h, y < t) = softmax(WCF rCF
t + bCF ) (10)

V. EXPERIMENTAL SETUP

The corpus is split into train, development, and eval-

uation sets. The statistics of the three sets are shown in

Table I. CS, MAN, and ENG represent Code-switching,

Mandarin, and English utterances, respectively. Based on

the ratio of CS, MAN, and ENG utterances in the three

sets, the evaluation set is Mandarin dominant and the

development set is relatively bilingual balanced.

Table I
THE STATISTICS OF THE TRAIN, DEV AND EVAL SETS

Ratio(%)

Sets # spk # utt #hrs CS MAN ENG

train 141 93782 96 67.19 15.45 17.36

dev 8 6549 1.8 66.63 17.03 16.34

eval 8 5037 1.4 74.08 15.53 10.38



A. Baseline system

The baseline system is trained with the most current

recipe from Espnet [18]. The encoder network is repre-

sented by bidirectional long short-term memory (BLSTM)

with subsampling and has 5 layers with 1024 units. The

decoder is represented by 1 layer of BLSTM with 1024

units. The hybrid CTC/attention parameter (λ) (Eq.1) is

0.5. The beam size is 20 and the CTC weight is 0.5 for

decoding. The dictionary is character based.

B. Additional monolingual data

For Mandarin Chinese dataset, we utilize Aishell-

1 which contains 170 hours of speech contributed by

400 people from different accent areas in China [24],

THCHS30 containing 30 hours of Mandarin Chinese

speech database [25], and Free ST Chinese Mandarin

Corpus (ST-CMDS) having 110 hours (855 speakers) of

speech recorded in a silent indoor environment using a

cellphone [26]. The English datasets in the experiment are

1000 hours of Librispeech [27] and 425 hours of Common

Voice [28], and 5 hours of Ted talks extracted from the

TEDxSingapore website[29].

VI. RESULTS & ANALYSIS

This section presents a performance comparison

in terms of MER (%) between the baseline (joint

CTC/attention E2E) and all proposed solutions that are

denoted as E2ELD (baseline with language identification),

E2ESW (baseline with subword modeling), SL (slowing

down the speed of utterance), 3W (3-way speed perturba-

tion), and F (adding monolingual data). Label 1 denotes

the dataset using the original labels and label 2 denotes

the dataset using our proposed labels (merging discourse

particles and nonlinguistic signals). Moreover, we examine

the systems on the test sets with and without nonlinguistic

symbols (discourse particles and nonlinguistic signals).

The test set without nonlinguistic symbols will show how

well the system recognizes actual language.

A. Merging discourse particles and nonlinguistic signals,

and language identification

Table II shows that the baseline system trained with

label 2 does not outperform the one trained with label 1.

However when integrating language identification infor-

mation in the output layer using hierarchical softmax, the

system trained with label 2 data improves the performance

especially on the test sets without nonlinguistic symbols

(No nlsyms). The hypothesis of baseline E2E and E2ELD

for one utterance in eval set are shown in Table III.

The output of baseline has mistakenly recognize English

word ’initiative’ as the sequence of English characters and

Mandarin characters in blue ink while E2ELD model has

better identification between languages.

B. English subword modeling

We use two different texts (SEAME and Librispeech)

to train the English subword model and add different

amounts (100∼5000) of subwords to the dictionary. The

result shows that E2ESW with 500 subwords trained from

Table II
THE MER(%) ON SEAME TEST SET OF BASELINE AND ALL PROPOSED

MODELS

Label No nlsyms

Systems type dev eval dev eval

E2E 1 39.8 31.7 39.8 31.0

E2ELD 1 39.1 31.4 38.7 30.6

E2ESW(SEAME500) 1 34.6 27.9 34.1 27.1

E2E+SL(0.7) 1 36.5 29.2 36.1 28.4

E2E+3W 1 34.8 27.7 34.4 26.8

E2E 2 40.3 31.6 41.1 31.4

E2ELD 2 38.1 29.3 38.7 28.9

E2ESW(SEAME500) 2 33.6 26.4 33.9 25.7

E2E+SL(0.8) 2 37.3 29.0 38.0 28.6

E2E+3W 2 34.4 26.7 34.3 26.2

Table III
THE HYPOTHESIS OF BASELINE AND E2ELD AND E2E-SL MODELS FOR ONE

UTTERANCE IN EVAL SET

Systems Hypothesis

Ground-truth then 你 不 可 以 take initiative 去 讲 么

E2E then 你 不 可 以 that in 你 学 tive 就 讲 嘛

E2ELD then 你 不 可 以 tat initiative 就 讲

Ground-truth why you want to be the head of your of your group of friends

E2E why want to be the head of your group of friends

E2E-SL (0.7) why you want to be the head of your of your group of friends

SEAME text has better performance than the one with

500 subwords trained from Librispeech. The reason is

that the frequent subwords in Librispeech and SEAME

are not similar. To be more specific, SEAME has many

conversation style English words and proper names related

to South Asia while Lbrispeech mainly contains literary

words. Therefore, the words in Librispeech are not likely

to be used in a casual conversation in South Asia.

C. Lower speaking rate

We examine different factors (0.6∼0.9) to lower the

audio speed. Table II shows that lowering the speaking

rate to 0.7 has the best performance for label 1 while

the speaking rate of 0.8 works the best for label 2. Table

III shows one example which has high speaking rate (14

words in 3 seconds), it revels that baseline E2E model fail

to recognize some words when the speaking rate is high.

D. Data augmentation: 3 way speed-perturbed (3W) and

monolingual data (F)

Table II shows that 3 way speed-perturbed (E) improves

the performance significantly on both label 1 and label 2

data. Again, E2E+3W performs better with label 2 than

label 1. In order to observe the effect of adding different

amount of monolingual data to the ASR performance,

we create four different mixed datasets Table IV shows

the performance on SEAME test sets (without non

language symbols) of systems trained with each of the

four datasets, separately. It also presents the performance

on ENG, MAN, and CS utterances. The system trained

with F1 (adding 100 hours of Mandarin data) mostly

improves the performance on the MAN speech. The

one trained with F2 (adding 100 hours of English data)

improves the performance on the ENG speech and

interestingly also MAN and CS speech. When trained



Table IV
THE MER(%) ON SEAME TEST SET OF BASELINE AND E2E+F APPROACH

WITH LABEL 1

No nlsyms dev eval

dev eval ENG MAN CS ENG MAN CS

E2E 39.8 31.0 58.5 31.0 38.8 45.9 28.6 30.2

E2E+F1 39.5 30.1 61.1 29.5 38.4 46.0 27.3 29.2

E2E+F2 37.7 29.9 56.0 30.1 36.6 43.3 28.3 29.0

E2E+F3 37.5 28.8 56.5 28.6 36.5 43.2 26.5 28.0

E2E+F4 39.2 30.7 62.8 31.6 38.2 46.9 29.4 29.5

with F4 (adding 1000 hours of Mandarin and English

data), they get worse MER than F3 (adding 200 hours

of Mandarin and English data) because monolingual data

becomes dominant in the train set. However, F4 has better

performance on monolingual benchmarks (the system

trained with F4 has 12.6% WER on WSJ test and 10.1%

CER on AISHELL-1 test set, whereas the system trained

with F3 has 26% WER and 35% CER on them). Note

that the baseline system which trained only with SEAME

data has over 100% WER and CER on both monolingual

benchmarks. The results indicate that optimizing the

performance on both CS and monolingual test sets is an

important trade-off which needs future investigations.

E. To combine all the approaches?

Note that all the combined systems are trained with

label 1 data because we want to firstly find the best

combined system, then apply it with label 2 data. Table V

shows that all the combinations except E2ELD+SW im-

prove the MER and especially the combinations involving

E2ESW, SL and 3W improve the most. The reasons why

E2ELD+SW performs worst could lie in the fact that by

introducing English subword containing 3 to 4 phones, it

is much harder for the system to estimate the language

identification. Overall, adding monolingual data improves

the performance of all the combinations. E2ESW+3W+F3

achieves the best performance with 25.0% MER on the

SEAME evaluation set. As mentioned before, we apply

this best combination with label 2 data and achieve 23.7%

MER on the SEAME evaluation set.

F. Language model fusion methods

Results in Table VI show the comparison between the

baseline models and the best improved models without

an external language model. For label 1 and label 2, the

Table V
THE MER(%) ON SEAME TEST SET OF BASELINE AND POSSIBLE

COMBINATIONS WITH LABEL 1.

No nlsyms

Systems dev eval dev eval

E2ELD+SW 37.0 29.9 36.7 29.1

E2ELD+SL 36.2 29.7 35.8 28.9

E2ELD+3W 34.3 27.4 33.9 26.5

E2ESW+SL 34.4 27.8 34.0 27.0

E2ESW+3W 32.5 25.9 32.0 25.1

E2E+SL+3W 32.8 26.1 32.3 25.2

E2ESW+SL+3W 31.9 26.0 31.5 25.1

E2ELD+3W+F3 34.0 26.8 33.5 25.9

E2ESW+SL+F3 32.8 26.4 32.3 25.5

E2ESW+3W+F3 31.4 25.0 30.8 24.2

Table VI
THE MER(%) ON SEAME TEST SET OF BASELINE, IMPROVED COMBINED

MODEL W/O OR W/ LM AND CONVENTIONAL TDNN-HMM HYBRID SYSTEM

LM label No nlsyms

Systems fusion type dev eval dev eval

E2E 1 39.8 31.7 39.8 31.0

E2ESW+3W+F3 1 31.4 25.0 30.8 24.2

E2E 2 40.3 31.6 41.1 31.4

E2ESW+3W+F3 2 30.8 23.7 30.7 23.0

TDNN-HMM SF 2 35.9 30.7 35.3 29.7

E2ESW+3W+F3 SF 2 29.8 22.8 29.7 22.0

E2ESW+3W+F3 CF 2 29.9 23.0 29.7 22.2

improved models achieve up to 35% relative performance

to the baseline models. Again, the model trained with

label 2 data has the lowest MER. The second row in the

Table shows the comparisons between the state-of-the-art

TDNN-HMM [8] which applies i-vector and 3-way data

perturbation techniques followed by a Kaldi chain recipe

[30]. Kaldi exploits a bilingual pronunciation dictionary,

which does not contain the pronunciation of discourse

particles, hesitations’ nor nonlinguistic signals, to train

the TDNN-HMM chain model and integrates the language

model using SF. The best improved model with SF and

CF outperforms TDNN-HMM chain model with SF.

Table VII shows how our external language models

can improve the best E2E model. As mentioned before,

E2ESW+3W+F3 is not trained with the language identifi-

cation loss function since subword modeling will harm the

performance of the language identification. Therefore, it

sometimes misrecognizes the English signal as a Mandarin

signal. For example, it recognizes ’take’ as ’带’. The

external language model can help to increase the score of

’take initiative’ in order to output the correct sentence. In

this case, the models using shallow fusion or cold fusion

to inject language model knowledge (E2ESW+3W+F3+SF

and E2ESW+3W+F3+CF) do not make a mistake of

recognizing languages.

Note that ’so’ and ’所以’ have similar pronunciation and

meaning. The interesting example in Table VII leads to the

question of whether Mixed Error Rate is always reliable

metrics in the context of CS speech recognition. From the

perspective of automatic evaluation, E2ESW+3W+F3+CF

performs worse than E2ESW+3W+F3+SF in this case

since E2ESW+3W+F3+CF has longer Levenshtein dis-

tance (one substitution plus one insertion) to the ground

truth sentence than E2ESW+3W+F3+SF’s distance (one

substitution). However from the perspective of human

evaluation, E2ESW+3W+F3+CF performs better than

E2ESW+3W+F3+SF with regard to the completion and

meaning of entire sentence.

VII. CONCLUSIONS

We analyze several subproblems of Mandarin-English

CS speech based on SEAME dataset, and provide solu-

tions to each subproblem within the E2E ASR framework.

We explore different combinations of the proposed solu-

tions in order to reach the optimal ASR performance. The

experimental results reveal that each solution improves

the MER little by little, and the appropriate combination



Table VII
THE HYPOTHESIS OF THE BEST IMPROVED MODEL W/ OR W/O LM FOR

UTTERANCES IN EVAL SET

Systems Hypothesis

Ground-truth then 你 不 可 以 take initiative 去 讲 么

E2ESW+3W+F3 then 你 不 可 以 带 initiative 就 讲

E2ESW+3W+F3+SF then 你 不 可 以 take initiative 去 讲 么

E2ESW+3W+F3+CF then 你 不 可 以 take initiative 去 讲

Ground-truth 所 以 我 就 去 apply job

E2ESW+3W+F3 所 以 我 就 去 apply job

E2ESW+3W+F3+SF 所 以 我 就 去 ply job

E2ESW+3W+F3+CF so 我 就 去 apply job

achieves great improvement (up to 35% relatively). Our

best combined system with an external language outper-

forms the baseline and the state-of-the-art hybrid system

(TDNN-HMM).
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