Third International Symposium on Information Assurance and Security

Vulnerability Assessment by Learning Attack Specifications in Graphs

Virginia N. L. Franqueira*
University of Twente

Dept. of Computer Science, IS Group

Enschede, The Netherlands
franqueirav @ewi.utwente.nl

Abstract

This paper presents an evolutionary approach for learn-
ing attack specifications that describe attack scenarios. The
objective is to find vulnerabilities in computer networks
which minimise the cost of an attack with maximum im-
pact. Although we focus on Insider Threat, the proposed
approach applies to networks in general, including social
networks and computer grid.

Keywords: Network Security, DoS, Intrusion Prevention

1. Introduction

Assuring security in organisations involves both detect-
ing intrusions and preventing attacks. Attacks, which be-
come intrusions if their goals are reached, can be initiated
either by insiders, i.e. entities with legitimate access and
privileges over the organisational LAN and resources, or
outsiders, the opposite situation. Surveys (e.g. [11]) and
studies (e.g. [8]) have shown that Insider Threat, i.e. activ-
ities caused by abuse of access and privileges, is becoming
comparable in attack frequency to outsider threat. However,
insiders are particularly dangerous because they are aware
of security measures in place, organisation-specific vulner-
abilities and location of valuable information. We consider
these elements in our approach for network vulnerability
assessment. However, although our focus relies on Insider
Threat assessment, the approach is also applicable to out-
siders, social networks and computer grid.

Current approaches for vulnerability assessment, model
attacks without considering simultaneity and synchronisa-
tion aspects of attacks. However, in practice these aspects
are relevant. Let’s examine two motivating examples: one
with computer network and one with social network.

The 9/11 terrorist attack [12] in the US involved four dif-
ferent targets, i.e the World Trade Center Twin Towers, in

*Supported by the research program Sentinels (www.sentinels.nl).
Grateful for comments from dr. Pascal van Eck.

0-7695-2876-7/07 $25.00 © 2007 IEEE
DOI 10.1109/1AS.2007.42

161

Raul H. C. Lopes
Brunel University
School of Engineering and Design
London, England
raul.lopes @brunel.ac.uk

New York City, the Pentagon, near Washington, and a fourth
unknown target. The activities were organised in 6 core
groups, all 19 participants affiliated to al-Qaeda. The tar-
gets were hit in a coordinated fashion, approximately within
1 hour time-frame. Thus, the 9-11 attack involved synchro-
nisation, parallelism but no target sharing.

A Denial of Service (DoS) attack happens when re-
sources of a computer server are consumed by the arrival of
a big number of simultaneous requisitions, which involves
parallelism, synchronisation and target sharing.

1.1. Paper contribution and organisation

Our contribution is twofold. First, we present an algo-
rithm that learns attack specifications with minimum cost
and maximum value, from a LAN graph. Attack specifi-
cations represent attack scenarios which are composed of
attack steps, i.e. arcs of the graph. We assume: (i) attack-
ers share the goal of maximum return with less effort; (ii) a
network node has a value (representing the benefit obtained
by attacking it), and that several nodes may have a greater
value together (called added value) than the sum of their in-
dividual values; (iii) different communication channels pro-
vide different levels of protection, thus costs are assigned
to arcs. Awareness of attack specifications allows organisa-
tions to take preventive measures.

Second, the algorithm itself is a contribution since it is an
evolutionary algorithm that follows the typical paradigm of
local search but is different from traditional approaches. It
works with a system of three pools: one where attacks can
mature, another where attacks can improve in complexity,
and finally one where non-attacks die, if they have shown
hard to improve. It also uses a system of credits that avoids
search space explosion while maintaining a big number of
candidate attacks being matured.

Section 2, reviews related work. Section 3 describes our
approach. Section 4 presents design details and the algo-
rithm. Finally, Section 5 provides conclusions and pointers
to future work.

IEEE
computer
pSOC|ety

2. Related work

Vulnerability assessment and attack modelling has been
extensively researched using techniques such as trees and
graphs. However, to our knowledge, none of these ap-
proaches permit the modelling of synchronism between
attack steps, required for representing distributed attacks,
such as DoS.

Fault Tree, Attack Tree and Event Tree (e.g. [6]) refine a
tree root representing an attack goal or known vulnerability.
These trees cannot represent cycles, cannot represent order
between nodes and cannot model parallelism.

Attack graphs represent attack steps as nodes, and step
transitions as arcs. Phillips and Swiler [9] uses near-optimal
shortest path applied to attack graphs to assess the vulnera-
bility of targets. Although their approach permits the mod-
elling of attack step cycles, it does not permit the modelling
of simultaneous steps performed by an attacker, as the au-
thors pointed out themselves.

Sheyner et al. [10] generate attack graph using a sym-
bolic model checker. This process requires as input a model
of the network on a finite state machine representation and a
safety property to be satisfied by the model. Attack graphs
are generated from all possible counter-examples, if the
property is not satisfied by the model. The approach does
not consider any form of parallel attacks.

Dacier et al. [3] propose privilege graphs where nodes
are possible attack initiators and possible targets, and arcs
are vulnerabilities which allow the acquisition of privileges
for a node-initiator towards a node-target. They trans-
form a privilege graph to Petri-net and then derive a state
graph, which is used for vulnerability assessment in terms
of MTTF (Mean Time To Failure), i.e. mean time for an
attacker to reach a target. The assessment is performed in
terms of attack step and does not permit the composition of
attack scenarios.

Chinchani et al. [2, 1] present challenge graphs. Nodes
are entities which provide information or capabilities, rep-
resented by keys. Arcs are channels of interaction, which
have key-challenges and costs attached. The set of vertices
which reaches the set of target with minimum cost indicates
vulnerable attack scenarios. Their graph can model collud-
ing attackers, i.e. more than one attacker aiming the same
target. However, it cannot model synchronised attack steps.

Gorman et al. [4] uses a graph approach to represent in-
ternet autonomous systems, as nodes, and their connections,
as arcs. They analyse security in terms of statistical pa-
rameters and infection propagation, using different attack
and defence strategies. Their assessment of vulnerability is
based on investment with defence. Gregg et al [5] measure
attack effectiveness using Probability of DoS computed as
a function of timeout settings, number of connections al-
lowed, and rate of attack requests. Like Gorman et al., they

162

draw conclusions in a quantitative way only, without inter-
est on attack scenarios.

3. Our approach

Our approach aims to learn attack specifications from a
graph representing a computer network. Thus, the goal con-
sists of constructing attack specifications that minimise the
cost to perform an attack and maximise the values of the
targets. We assume that we have been given: (i) a graph
whose nodes are computers and arcs are communication
channels between a pair of computers; (ii) a cost function
that maps arcs to a number representing the level of protec-
tion provided by the communication channel; (iii) a value
function that maps sets of nodes to a number representing
its added value; (iv) a set of initial nodes the organisation
has under suspicion or simply wants to investigate.

Attack specifications are represented in a fragment of
Hoare’s [7] language, CSP (Communicating Sequential
Processes). The advantage of such language is its expres-
siveness. It permits to represent parallelism, concurrency
and synchronism in a more structured (and frequently com-
pacted) way than what can be achieved with Petri Nets, for
example.

An attack specification is represented by an algebraic
data type that we will call CSP. A CSP is defined in Haskell
notation next.

data CSP = Arc (a,b)
| Seq [CSP]

| Par [CSP]

Definition 1 A CSP is either: (i) an arc from the input
graph, or (ii) a sequential composition of a list of CSPs,
or (iii) a parallel composition of a list of CSPs.

A sequence composed of an arc a and a CSP ¢ represents
that a occurs and then c follows. It permits the representa-
tion of synchronism. The parallel composition of a set of
CSPs denotes their simultaneous, concurrent execution.

Definition 2 The head of an Arc(a,b) is a and its tail is b.
The head set of a CSP c is the subset of nodes h in ¢ such
that no node in h is tail of any arc in c. The tail set of a CSP
c is the subset of nodes t in c such that no node in t is head
of any arc in c.

Definition 3 An attack is a CSP c that starts on a node from
the given initial set and ends on a target, where a target is
a set of nodes from c’s tail set that has added value greater
than a given threshold.

Definition 4 The value of a CSP is the added value of its
tail set and its fitness is the difference between its value and
the sum of costs of its arcs.

Figure 1 shows an example of a potential attack with
node 0, as a start, and node 35, as target. It can be shown as
a sequence Seq[so, s1, S2), stating that so comes first, fol-
lowed by s, and then so. Sequences sq, s1, S2 are them-
selves CSPs: sp, s1 and s1, S2 share nodes and s; is a par-
allel CSP. The CSP is represented in Haskell notation next.
CSP = Seql

Arc(0,1),

Par[Seq[Arc(l,2),Arc(2,4),Arc(4,8)1,

Seq[Arc(1l,6),Arc(6,8)11,

Arc(8,5)]

Figure 1. Attack scenario with concurrency

Figure 2 is an example where synchronism is important.
Its corresponding CSP follows.

CSP = Seql
Arc(20,21),
Par[Seq[Arc(21,26),Arc(26,27)1,
Arc(21,22),
Seq[Arc(21,24) ,Arc(24,25)11,
Par[Arc (27,21),
Arc (22,21),
Arc(25,21)11]

This is an example where parallelism (concurrency with
more than one path leading to the same target) and synchro-
nism are required to express a typical DoS scenario.

4. Algorithm

We propose an evolutionary-based algorithm to learn at-
tack specifications, i.e. CSPs. The rationale behind the
algorithm differs from other evolutionary approaches, like
Simulated Annealing and Genetic Algorithm because indi-
viduals are allowed some time to mature (i.e. to improve
their fitness), instead of being eliminated when born unfit.

Edition operations to produce new CSPs from existing
ones are randomly chosen from the following set.

163

Figure 2. Attack scenario with synchronism

1. With low probability, addition of a new CSP with just
one arc.

2. Extension to tail by adding a least cost arc to it.
3. Parallel combination of two CSPs.

4. Appending CSP b to CSP « if a’s tail set is equal b’s
head set.

5. Synchronising two CSPs into a parallel one when they
share a head or a tail.

The main characteristics of the algorithm are described
next. We assume that the input graph has n nodes.

o A newly created CSP is immediately discarded if it has
more than n? arcs. Otherwise, the CSP is attributed a
fixed initial credit, representing its time for improve-
ment.

e When a CSP is edited its credit is reduced by an
amount proportional to the complexity of the edition
algorithm. For example, adding an arc to a tail may de-
mand reconstructing the whole CSP, consuming credit
equal to the number of arcs involved.

e A program iteration, called cycle, also has credit,
which is reduced by the amount of credit consumed
in each of its editions.

e The algorithm uses three CSP pools, named Specula-
tion Pool (SP), Attack Pool (AP) and Dying Pool (DP).

e The SP contains non-attack CSPs and attack CSPs with
positive credit; all edition operations apply to the CSPs
belonging to this pool.

e The AP contains attack CSPs removed from the SP;
editions to attacks in this pool are limited to parallel
compositions that involve at least one attack and tail
extensions that increase the csp’s value.

e The DP contains non-attack CSPs removed from the
SP; a final check to see if the csp tail is within a pre-
defined distance of a target is applied; in affirmative
case, the CSP is transfered back to the SP, otherwise it
is deleted.

Definition 5 A reproduction phase consists of ngp SP edi-
tions followed by naop AP editions followed by npp DP
editions (ngp, nop and npp are parameters).

Definition 6 A retirement phase consists in (i) moving any
CSPs with negative credit from SP to AP (attacks) or from
SP to DP (non-attacks); and (ii) attacks from AP to the out-
put; and (iii) CSPs from DP to actual death or back to SP.

The basic algorithm follows; cycle_credits sums credits
consumed in the reproduction phase.

SP = {}, AP = {}, DP = {}
for n cycles with MAX_credits each
reproduction_phase
if cycle credits > MAX credits
retirement_phase

Proposition 1 The complexity of the algorithm is O(n¢ *
n?), where n, is the number of nodes in the graph and n¢ is
the number of cycles.

Proof. Each cycle has a (ngp + nap + npp) editions
demanding time O(n?), given limit on the number of arcs
of a CSP, and the fact that ngp,nap,npp are small con-
stants compared to the size of the graph. The number of
cycles in the main loop is in general equal or greater than n,
which makes the algorithm run with a cubic upper bound.
However, it must be observed that in general CSPs have
size much smaller than n because their size is limited by
the credit they receive.

An initial prototype has been implemented in Haskell. It
identified examples characterising DoS and parallel attacks,
like the 9/11, in a random graph of 300 nodes.

5. Conclusions and Future Work

We presented in this paper an evolutionary algorithm for
learning attack specifications in a LAN graph. The ap-
proach permits the representation of sequence, parallelism
and atomic arc compositions in a way that allows the mod-
elling of concurrency, synchronism and simultaneity. The
idea of attack specifications comes from the specification of
parallel programming. Thus, by analogy, we use the term
attack CSP, as a reference to Hoare’s language.

We have a new development in Python, that adds algo-
rithms for cleaning attacks and a new concept of fitness
which constrains the number of non-attack CSPs preserved.

164

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

[91

[10]

[11]

[12]

R. Chinchani, A. Iyer, H. Q. Ngo, and S. Upad-
hyaya. Towards a Theory of Insider Threat Assess-
ment. In DSN 2005: Int. Conference on Dependable
Systems and Networks, pages 108-117. IEEE Publishing,
July 2005. http://ieeexplore.ieee.org/iel5/
9904/31476/01467785.pdf.

R. Chinchani, A. Iyer, H. N. Q., and S. Upadhyaya. A
Target-Centric Formal Model For Insider Threat and More.
Technical Report 2004-16, University of Buffalo, US, Octo-
ber 2004.

M. Dacier, Y. Deswarte, and M. Kaaniche. Models and
Tools for Quantitative Assessment of Operational Security.
In IFIP SEC’96, pages 177-186, May 1996.

S. P. Gorman, R. G. Kulkarni, L. A. Schintler, and R. R.
Stough. A Network Based Simulation Approach to Cy-
bersecurity Policy. http://policy.gmu.edu/imp/
research.html. George Mason University, School of
Public Policy.

D. M. Gregg, W.J. Blackert, D. V. Heinbuch, and D. Furnan-
age. Assessing and Quantifying Denial of Service Attacks.
MILCOM’01: Military Communications Conference, 1:76—
80, 2001.

G. Helmer, J. Wong, mark Slagell, V. Honavar, L. Miller,
and R. Lutz. A software fault approach to requirements
analysis of an intrusion detection system. Requirements
Engineering, 2002. http://dx.doi.org/10.1007/
s007660200016.

C. A.R. Hoare. Communicating sequential processes. Com-
mun. ACM, 21(8):666-677, 1978. http://doi.acm.
org/10.1145/359576.359585.

M. Keeney, E. Kowalski, D. Cappelli, A. Moore,
T. Shimeall, and S. Rogers. Insider Threat Study: Com-
puter System Sabotage in Critical Infrastructure Sectors,
May 2005. U.S. Secret Service and CERT Coordination
Center.

C. Phillips and L. P. Swiler. A Graph-Based System for
Network-Vulnerability Analysis. In NSPW ’98: Proc. 1998
workshop on New Security Paradigms, pages 71-79, New
York, NY, USA, 1998. ACM Press.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing.
Automated Generation and Analysis of Attack Graphs. In
SP’02: Proc. 2002 IEEE Symposium on Security and Pri-
vacy, pages 273-284, Washington, DC, USA, 2002. IEEE
Computer Society. http://ieeexplore.ieee.org/
xpl/freeabs_all. jsp?arnumber=1004377.
Survey. E-Crime Watch 2006, CSO Magazine and U.S.
Secret Service and CERT Coordination Center and Mi-
crosoft Corporation, 2006. http://www.cert.org/
archive/pdf/ecrimesurvey06.pdf.

Wikipedia. September 11, 2001 attacks. http:
//en.wikipedia.org/wiki/September 11 _
2001_attacks.

