
Separating Domain and Coordination in Multi-Agent Organizational Design and
Instantiation

Mark Sims, Daniel Corkill, and Victor Lesser
University of Massachusetts

Multi-Agent Systems Laboratory
{msims,corkill,lesser}@cs.umass.edu

Abstract

Organizational design and instantiation is the process
that accepts a set of organizational goals, performance re-
quirements, agents, and resources and assigns responsibili-
ties and roles to each agent. We present a prescriptive orga-
nizational design and instantiation process for multi-agent
systems. An important aspect of our approach is the separa-
tion of application-specific organizational issues from more
generic organizational coordination mechanisms. We de-
scribe our model of organizational design and our search
process. We also present example organizations generated
by our automated system for the distributed sensor network
domain under different environmental characteristics and
performance requirements.

1. Introduction

The ability to create and maintain effective multi-agent
organizations is key to the development of larger, more di-
verse multi-agent systems. Through organizational con-
trol, long-term organizational goals, roles, and responsi-
bilities are developed and maintained to serve as guide-
lines for making detailed operational control decisions by
individual agents. These organizational guidelines reduce
the complexity of each agent’s operational decision mak-
ing, lower the cost of distributed resource allocation and
agent coordination, help limit inappropriate agent behav-
ior, and reduce communication requirements [2]. Designed
organizations are created by applying both generic and
application-specific organization-design knowledge, orga-
nizational goals and performance requirements, and task-
environment information to generate explicit organizational
responsibilities that are then elaborated by the individual
agents into appropriate operational behaviors.

To date, multi-agent organizational structures used for
control have been hand-crafted, sometimes assisted by au-

tomated template expansion [12] or computed adjustments
made to a pre-determined structure [11]. In this paper, we
describe work on developing an automated organizational
design and instantiation system that is able to create ap-
propriate, yet substantially different, organizational forms
based on different requirements and task-environment ex-
pectations. One important aspect of our approach is the
separation of application-specific organizational knowl-
edge from more generic organizational coordination
mechanisms. This separation will allow the reuse of or-
ganizational coordination mechanisms across a wide range
of problem domains and environmental situations.

The multi-agent organizational design and instantia-
tion problem can be summarized as follows. Given a
problem-domain description of the organizational goals,
environmental conditions, performance requirements, pos-
sible roles, agents, and resources, assign both problem-
domain and coordination roles and responsibilities to each
agent such that the organizational performance require-
ments are satisfied and the organization operates effectively
over anticipated environmental conditions. This assign-
ment constitutes the organizational structure. To solve this
problem in an automated fashion, we have developed the
prescriptive, knowledge-based design process illustrated in
Figure 1, which we describe in detail in Section 2.

Before continuing, it is important to clarify the distinc-
tion between organizational and operational control and
the focus of our work. Organizational roles and responsi-
bilities represent general, long-term guidelines while op-
erational control involves specific short-term agreements
among agents to perform specific activities for specific time
periods. Our process does not pertain to operational activ-
ities. Rather than describe how particular control decisions
are made, it ensures that sufficient resources and coordina-
tion mechanisms exist to enable agents to make efficient op-
erational decisions throughout the life of the organization.

As mentioned above, our approach makes use of a sepa-
ration we have observed between the problem-domain and
organizational coordination. The former, shown on the left



Figure 1. Organizational Design Process

side of Figure 1, involves decomposing high-level organi-
zational goals and matching them to problem-domain roles.
The latter, shown on the right, pertains to the coordination
mechanisms used by the agents in jointly performing those
roles. The result is a set of bindings for each agent to both
problem-domain specific and coordination-specific roles as
illustrated in Figure 4(c).

As an example, consider a simple distributed sensor net-
work (DSN) application. A problem-domain organizational
goal might be to track all vehicles moving within a moni-
tored area with a positional accuracy within 10 feet and a
detection delay of at most 3 seconds. The environmental
model indicates the expected traffic volume, spatial density,
arrival rate, and movement characteristics. The available
roles might be radar-based scanning and data processing
which are clearly appropriate for a variety of scenarios. The
best way to coordinate the agents playing the roles, how-
ever, is dependent on a number of factors. If the area to
be scanned is small enough that only a few agents are nec-
essary, a peer-to-peer mechanism may be the right choice.
If many agents are required, new vehicles arrive frequently,
and the scanning resources are scarce, a multi-level hierar-
chical structure may be more appropriate.

It is our intuition that organizational coordination knowl-
edge transcends the problem domain. Therefore, an au-
tomated system can include generic coordination knowl-
edge, requiring the developer to supply information about
the problem domain only. The system itself can then use
both sets of knowledge in determining an appropriate orga-
nizational structure for the agents. Separating problem do-
main knowledge from coordination knowledge contributes
to the field of organizational design in that it allows us to
take a prescriptive, knowledge based approach to organi-
zational design and instantiation that does not pre-specify
coordination mechanisms.

Past work in multi-agent organizational design has been
purely descriptive, such as the organizational ontology of
Fox, et. al. [4], or has used predetermined organizational

forms as in Pattison, et. al. [12]. In our work only the
problem domain features need to be specified; organiza-
tional structures are found based on domain-independent
coordination knowledge. So and Durfee’s work [11, 10]
is the closest to ours in that they have a model based on
the task environment, organizational structure, and perfor-
mance metrics and explore the question of how to choose
the best organizational structure for a given problem. How-
ever, they assume a hierarchical structure and are primarily
concerned with making span of control decisions within it.

Still other multi-agent work deals with coordinating
agent activity but emphasizes operational issues rather than
organizational ones. STEAM [15], for instance, provides a
hierarchical role-based framework for the quick formation
of agent teams and coordination between them. Within our
context, STEAM is an example of the type of coordination
mechanism that could exist within the automated system’s
store of knowledge. Similarly, GPGP [9, 3] provides a fam-
ily of coordination mechanisms each of which fits within
the scope of the automated designer’s knowledge.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our model and the design and search pro-
cesses. Section 3 provides examples of organizational de-
signs generated by a prototype designer for a DSN under
various environmental conditions and performance require-
ments. We conclude and describe future work in Section 4.

2 Model and Design Process

2.1 Problem-Domain Inputs

Refer once more to the left side of Figure 1. The envi-
ronmental model M gives the general expectations of the
environment over a period of time and is represented as a
set of attribute-values pairs:

M = {〈fi, vfi
〉} (1)

where fi is a user specified, domain specific environmental
feature and vfi

∈ R.
The set of performance requirements Q specify the re-

quirements that must be met by the organization in order
for it to satisfy the organizational goals. We represent Q

as a set of attribute-value pairs similar to the environmental
model:

Q = {〈qi, vqi
〉} (2)

where qi is a feature and vqi
∈ R is its value.

Figure 2 shows an example environmental model and set
of performance requirements for the DSN example that we
will refer to throughout the paper. The example is a sim-
plified version of the EW Challenge Problem domain [7] in



which agents that control radar-based scanners must coop-
erate to track vehicles moving through a rectangular region.
The environmental model indicates the expected traffic vol-
ume, spatial density, arrival rate, etc. The performance re-
quirements are to track all vehicles with 10 feet of accuracy
and a detection delay of at most 3 seconds.

Environmental Model
maxNewArrivals 10

maxTracks 10
maxVelocity 20mph

vehicleWidth 3
′

(x,y) (0,0)
length 90

′

width 90
′

Performance Requirements
Detect Delay 3sec

Track Resolution 10
′

Figure 2. Example environmental model

Returning to Figure 1, an organizational goal g is a high-
level, long-term objective of an organization. We represent
the decomposition of organizational goals in a tree T with
root r. The nodes of T are goals and the edges represent
subgoal relations. Figure 3 illustrates a goal tree for our
example DSN. It shows that the high-level root goal MON-
ITOR can be decomposed into a subgoal for detecting new
vehicles and one for tracking detected vehicles. Similarly,
DETECT and TRACK can be further decomposed.

Monitor

Detect Track

Scan

Verify

Handle Fuse Update

Figure 3. Example DSN goal tree and associated com-
munication graph (dotted edges)

The root is parameterized by the environmental model
and the performance requirements. Each other goal inherits
the parameters of its parent unless otherwise specified by
the developer.

In addition to its parameters and features, each goal g

has a to-be-assigned list TAL of responsibilities that need
to be assigned to an agent or agents in order for g to be
satisfied. We define a goal g ∈ L where L is the set of
leaf goals to be satisfied if agents bound to it perform each
of the responsibilities in its to-be-assigned list within the
performance requirements on it. For all g 6∈ L, g is satisfied
if all of its children are satisfied.

Figure 4(a) shows an example of the parameters and to-
be-assigned list of the goal SCAN from Figure 3. It inherits

all parameters except for maxTracks and Track Resolution.
Although SCAN and the other goals in our example have
single responsibilities in their to-be-assigned lists, in gen-
eral a goal will have multiple responsibilities to be fulfilled.

As in a traditional planning system, where goal decom-
position continues until the subgoals can be achieved by
primitive actions, organizational goal decomposition con-
tinues until the to-be-assigned lists of subgoals can be ful-
filled by the assignment of roles. Unlike actions in a
planning system, however, roles are atemporal responsibili-
ties to be performed throughout the organization’s lifetime.
Roles are “atomic” job descriptions used to satisfy organi-
zational goals. Each role ri has an assignable-list ALi of
responsibilities that it can perform, a quality function fi in-
dicating how well it achieves a goal, a set of requirement
functions, Fi, dependent on the parameters of the goals the
role may be bound to, and a function Di specifying how the
role when bound to a goal can be distributed among a group
of agents. Thus, we define the set of available problem-
domain roles R as

R = {ri} = {〈ALi, fi, Fi, Di〉} . (3)

Figure 4(b) shows the roles and their assignable lists avail-
able in the DSN example. As with the goals, although each
has only a single responsibility in its AL, in general roles
can have multiple responsibilities. For each role, the func-
tions fi and Fi are dependent on goal parameters (repre-
sented by PX where X indicates one of the goals in Fig-
ure 3) and Di is a function of the parameters of the goal the
role is bound to and the set of available agents A (discussed
below). Fi for RADARSCANNER, for instance, given the
parameters of SCAN determines how often the region must
be scanned in order to guarantee that vehicles are detected
within the acceptable track delay requirement.

Certain goals require information from other goals. We
represent such communication relationships as a directed
communication graph G = (L, E) where L is the set of
leaf goals in T and E is a set of edges between the leaves
such that there exists an edge (u, v) if information must flow
from goal u to goal v. The dotted edges between goals in
Figure 3 represent the communication graph for our DSN
example. Suppose there is an edge in the communication
graph from g1 to g2 and that agent sets A1 and A2 are bound
to each respectively. If the goals are spatial in character,
it is not necessarily the case that every agent in A2 needs
all of the information from every agent in A1. We repre-
sent this notion within the parameterization of each goal by
specifying for each spatially defined goal the area the goal
is responsible for. Thus, a goal requires information from
another only if the information pertains to the goal’s area.
As we will see below, after the responsibility of handling a
spatial goal is distributed among a set of agents, each agent
becomes responsible for a subregion of the whole and sends



information to the relevant agents bound to connected goals.
To complete the problem-domain input, let A = {ai} be

the set of agents available to the organization. For ai we
specify a set φi of features such as its location, plus a set
ρi = 〈rk, dk, mk〉 of each role rk that the agent is able to
play, the percent drain dk on the agent’s resources caused
by rk, and the number of messages per time mk the agent
sends during its operational performance of rk (mk may be
a function). In addition we specify a set Ci = {〈cj , vcj

〉}
of capabilities, where cj is a capability and vcj

∈ R is its
value. Thus, ai = 〈φi, ρi, Ci〉.

2.2 Problem-Domain Matching

With the above input, the design process first attempts to
match problem-domain roles to organizational goals to form
role-goal bindings, assignments of specific roles to each leaf
goal in T . Any role whose assignable-list contains a goal’s
to-be-assigned list may be bound to that goal. In the DSN
example the RADARSCANNER role can be bound to the
SCAN goal forming the RADARSCANNER→SCAN role-
goal binding. When a role is bound to a goal, it produces re-
quirements as specified by the role’s requirement functions.
We define the set of role-goal bindings within an organiza-
tion as a set of triples:

RGB = {〈ri, gj , µk〉} (4)

where ri ∈ R and gj is a leaf goal of T such that
TALj ⊆ ALi, and µk = {〈µh, vµh

〉} is a set of re-
quirement attribute-value pairs determined by ri’s require-
ment function parameterized by gj and its parameters. For
RADARSCANNER→SCAN, µh and µv specify the scan
frequency that must be maintained.

The next step in the process is to bind agents
to each role-goal binding. Continuing with the
RADARSCANNER→SCAN example, the design process
identifies agents that can meet the requirements of the
role-goal binding according to the agents’ capabilities and
RADARSCANNER’s distribution function to form a set of
role-goal-agent bindings. The particular binding specifies
the role the agent is bound to, the decomposed sub-goal it
is responsible for, and the sets of agents it receives informa-
tion from and sends information to. Thus, we define the set
of role-goal-agent bindings of agent ai ∈ A as

RGABai
= {〈rk, gj , g

′

j , fg′

j
, tg′

j
, team〉} (5)

where rk ∈ R, gj is a leaf goal of T , g′

j is a subgoal of
gj as determined by rk’s decomposition method, fg′

j
is the

set of agents ai receives information from pertaining to this
binding, tg′

j
is the set of agents ai sends information to,

and team is a boolean flag indicating that this binding is a
teaming role assignment (described below).

2.3 Coordination-Domain Matching

Up to this point, the design process involves problem-
domain specific knowledge of goals, roles, performance re-
quirements, agent capabilities, etc., and is shown in the
left half of Figure 1. What is advantageous to our ap-
proach is that the remainder of the organizational-design
process can be addressed using more domain-independent
organizational coordination knowledge. In general, a role
will require multiple agents to fulfill the performance re-
quirements of an organizational subgoal. In our example,
sensor agents have limited range and synchronized scan-
ning by at least three agents is required throughout the
coverage area. Not only must role-goal-agent bindings
be found as above, but those agents must also be coor-
dinated in performing their roles. The agents bound to
RADARSCANNER→SCAN have the necessary capabili-
ties to satisfy the requirements, but unless their scanning is
synchronized correctly, holes may exist in the coverage.

The need to coordinate these agents causes the sys-
tem to generate a new coordination goal that was not part
of the original goal decomposition. This organizational-
coordination goal must be fulfilled by more problem-
domain-independent coordination roles, as shown on the
right side of Figure 2. Possible roles for coordinating our
set of sensing agents include: peer-to-peer negotiation of
scan schedules and a simple, one-level hierarchy where a
manager agent (potentially, but not necessarily, one of the
sensing agents) develops the scan schedule for the group.
A coordination role-goal-binding can, itself, require a set of
agents to satisfy it, causing the creation of another higher-
level coordination goal. For example, if the span of con-
trol of potential manager agents requires the use of multiple
managers, the activities of these managers would also need
to be coordinated again, potentially using a peer-to-peer or
hierarchical approach. If the latter is chosen, management
of our sensing agents would involve a multi-level hierarchy
of sensing, middle-manager, and overall manager roles.

The sets of role-goal-agent bindings and their parameters
specify the long-term structure, role assignments, authority
relationships, and communication paths of the designed or-
ganization. Although these long-term bindings are appro-
priate for many organizational goals, they are insufficient to
satisfy organizational goals which may be better satisfied by
establishing teams [4, 15, 13, 14, 8, 1]. Teams, coalitions,
and congregations are temporary structures that are formed
as needed to satisfy particular tasks when they enter the en-
vironment and are disbanded when the tasks leave the envi-
ronment or are completed. In our simple example, tracking
a newly detected vehicle might be done by creating a team
whose membership changes as the vehicle moves through
the monitored area. Teams are not strictly part of the orga-
nizational structure since the assignment of agents to roles



associated with the team will not be as long lived as the as-
signment of agents to roles to satisfy organizational goals.
However, a team is not a purely operational construct either,
since sufficient resources must be set aside organizationally
to allow for generating and participating in teams. Further-
more, when an agent within an organization is participating
in a team, its team activities will have an effect on how it
satisfies its other roles. Therefore, the organizational struc-
ture must account for and be prepared for team activity by
its members.

We do not generate transient teams in our organization-
design process, but we must ensure that the organizational
structures and resources exist to generate effective teams
operationally as needed. Thus, in our design process we
reserve resources within agents capable of participating in
teams. For the DSN example, this means finding role-goal-
agent bindings for the leaf goals of TRACK, but setting the
team flag to true to indicate that the agent participates in the
team only as needed. A team role is similar to an organiza-
tional role in that the agent with a team-role responsibility
will have an expected number and frequency of messages
to send and amount of work to do. The difference is that
the agents bound to these roles will only be expected to per-
form those activities if and when they are called upon to
join a team. Furthermore, we must also specify appropriate
coordination roles in order to enable teams to form. In this
work, we define a TEAMINITIATOR role that is responsi-
ble for generating teams operationally.

Figure 4(c) shows an example set of bindings for a single
agent participating in the DSN. For each binding, it specifies
which organizational subgoal it is bound to, and the role
and agents in that role to which it sends information. If the
role is a teaming assignment such as FUSER→FUSE, it is
signified with a superscript T .

2.4 Search and Suitability

In general, multiple roles can satisfy the same organiza-
tional subgoal, many agents can be bound to the same role-
goal binding, and a single agent can play multiple roles si-
multaneously, making it computationally infeasible to gen-
erate all possible bindings. Therefore, we have developed
a prototype system that uses organization-design knowl-
edge and heuristics to generate a reasonable set of bindings.
For the domain-specific portions of the design process, the
heuristics rely on information provided by the developer in
the quality, requirements, and decomposition specifications
of the roles plus the capabilities of the agents. The heuris-
tics consider which roles should be bound to the organiza-
tional goals, which agents can be bound to particular role-
goal bindings, and the computational and communication
loading on agents that would result under different assign-
ments. In addition the search may require some amount of

SCAN((x,y), length, width, maxNewArrivals,
maxVelocity, vehicleWidth, detectDelay)

TAL: Scanning

(a) Parameters and to-be-assigned list of SCAN goal

Role AL fi Fi Di

RADARSCANNER Scanning PS PS PS , A

VERIFIER Verifying PV PV PV , A

HANDLER Handling PH PH PH , A

FOCUSSEDRADAR Updating PU PU PU , A

FUSE Fusing PF PF PF , A

(b) Problem-Domain Roles for the DSN example showing
each role’s assignable list and the parameters to each of the
functions in Equation 3. PX represents the parameters of a
goal where X represents one of the goals in Figure 3. A is
the set of agents.

Agent S24 (82.5, 52.5)
RADARSCANNER→SCAN((62.5,32.5),40,40)

TO: VERIFIER S22
FUSER→FUSE((45,60),45, 30)T

TO: FOCUSSEDRADAR S22 S24 S23 S18 . . .
TO: VERIFIER S22
FROM: FOCUSSEDRADAR S22 S24 S23 . . .
FROM: HANDLER S22

SUBORDINATE→COORDGOAL(SCAN)
TO: MANAGER S22
FROM: MANAGER S22

. . .

(c) Set of problem-domain and coordination role-goal-agent bind-
ings for a single agent

Figure 4. Representation of goals, roles, and
role-goal-agent bindings

backtracking since initial binding choices may lead to states
in which no agent given its current set of roles and capabil-
ities can satisfy the remaining responsibilities.

For coordination goals, the design system goes through
a similar process of finding role-goal-agent bindings for
the coordination goals. The main difference is that
the roles available for satisfying the coordination goals
and the search heuristics exist within the organizational-
coordination library as domain-independent knowledge. In
the current prototype the parameters on coordination roles
and goals are not fully generalized; some parameterization
values still refer to problem-domain parameters. In fu-
ture research, we plan to develop generic abstractions of



problem-domain parameters (that would be included as part
of the problem-specific knowledge) that would provide a
completely clean separation of problem-domain and coor-
dination parameters.

Although the heuristics above should lead to an orga-
nization that meets the performance requirements, they do
not give enough information to rank a set of feasible can-
didate organizations all of which satisfy the requirements.
We must consider other factors in how we evaluate them.
For that it is important to have an organizational evalua-
tion function that is based on user specified criteria to deter-
mine the utility of a particular candidate. In future work, we
plan to develop a detailed evaluation capability both to eval-
uate fully specified organizations and to prune the search
through partially complete bindings. For now, we rely on
simple utility criteria stemming from the relative costs of
agent load and communication.

3 Example Organization Designs

We present below four example organizational designs
generated by our automated system on the goal tree and
communication graph in Figure 3, the parameters in Fig-
ure 2, and the roles in Figure 4(b). We varied the input
along several dimensions: size of the area to be scanned
and number of agents available, the value of the acceptable
track delay performance requirement, and the relative costs
of communication and agent load. In all cases the agents we
used were evenly spaced throughout the region, each with
identical features, roles they can be bound to, and capabili-
ties. Figure 5 summarizes the results.

In the first design scenario, we used 36 agents in a
90′ × 90′ rectangular area with an acceptable track delay
performance requirement of 3 seconds, and the cost of com-
munication greater than that of agent loading. The result-
ing organization was a single-level hierarchy with 6 man-
agers each managing 6 agents. The managers coordinated
among themselves using a peer-to-peer mechanism. Fur-
thermore, in order to minimize communication, there were
6 verifying and handling roles each multiplexed within the
same agents as the managing roles. This organization corre-
sponds closely to the hand-crafted organizational structure
used for the EW Challenge Problem [7] where communi-
cation cost was a major concern. The performance of this
organizational form relative to others was recently tested
experimentally [5, 6]. Also, in this scenario and the oth-
ers, the FUSER and FOCUSSEDRADAR roles were set
as team roles with the TEAMINITIATOR role distributed
among the HANDLER agents.

When we switched the relative costs of communication
and load, the resulting organizational design was still a
single-level hierarchy, but the verifying and handling roles
were no longer multiplexed within the same agents as the

Agents Area Delay Com. Cost Load Cost
36 90

′
× 90

′
3s 0.6 0.4

Single-level hierarchy: 6 Managers. Verifier and Handler
roles multiplexed within same agent as Manager. Managers
coordinate peer-to-peer.

Agents Area Delay Com. Cost Load Cost
36 90

′
× 90

′
3s 0.4 0.6

Single-level hierarchy: 6 Managers. Verifier and Handler
roles not multiplexed with Manager. Managers
coordinate peer-to-peer.

Agents Area Delay Com. Cost Load Cost
36 90

′
× 90

′
2s 0.6 0.4

Two-level hierarchy: 6 mid-level Managers. Verifier and
handler roles multiplexed within mid-level Managers.
One upper-level Manager to coordinate mid-level Managers.

Agents Area Delay Com. Cost Load Cost
100 150

′
× 150

′
3s 0.6 0.4

Two-level hierarchy: 9 mid-level Managers. Verifier and
handler roles multiplexed within mid-level Managers.
Two upper-level Managers to coordinate mid-level Managers.
Upper-level Managers coordinate peer-to-peer.

Figure 5. Example Organizational Designs

manager roles. Instead they were distributed to separate
agents in order to minimize load. In effect because com-
munication was inexpensive, the organization could afford
to use more communication in order to balance the compu-
tational load among the agents.

For the third scenario, we used the same costs as in the
first, but reduced the acceptable track delay to 2 seconds.
This time the generated organization was a two-level hier-
archy with 6 mid-level managers and 1 upper-level man-
ager to coordinate them. At first this may seem counter-
intuitive since increasing the level of hierarchy can often
introduce delays. However, in this problem with a small
acceptable delay on new detections, it is critical that the
scanning agents have tightly synchronized scan-schedules.
Because producing a shared scan-schedule can be done in
advance of detection activities, the design system added a
second level of hierarchy in order to resolve scan-schedule
conflicts among the managers in a centralized fashion.

In the last scenario, the parameters were also the same
as in the first run except that we increased the number of
agents to 100 and the size of the region to 150′×150′. In this
case the system generated another two-level hierarchy this
time with 9 managers and 2 upper-level managers which
coordinate using a peer-to-peer mechanism.

Overall, we were quite pleased that our design sys-
tem produced such different organizational forms given the
changes to the environmental characteristics and perfor-
mance requirements we presented it with. These results



confirm for us the usefulness of our approach in gener-
ating organizational forms without pre-specified organiza-
tional information.

4 Conclusions and Future Work

We believe that the prescriptive, knowledge-based or-
ganizational design process we have presented has great
promise for the field of multi-agent organizational design.
It relies on a separation between the problem-domain and
the organizational coordination-domain to generalize coor-
dination mechanisms across domains, requiring a developer
only to supply problem-specific information. The results
from our prototype system show that through this process
we are able to design organizations of different forms by
varying performance requirements and environmental char-
acteristics. We believe this is the first work to do so.

We have identified several areas of future work stem-
ming from the initial research presented here. First, we will
develop further the evaluation capability of our system be-
yond the current simple weighted sum of agent load and
communication utility criteria. The new evaluation mech-
anism must rank candidate organizations given the set of
agent bindings, performance requirements, and more de-
tailed evaluation criteria specified by the developer. We also
hope to apply the evaluation capability to partial bindings
in order to prune the search for a suitable organization. An-
other long-term goal is that in addition to evaluating gen-
erated organizations, we would like the system to suggest
what additional resources and capabilities, if they were pro-
vided, would have supported a better organization.

In addition, we must improve the search and backtrack-
ing process to explore the space of organizations more ef-
fectively and clarify the knowledge engineering process
for domains to simplify the developer’s job of specifying
domain-specific organizational information. Finally, we
must continue to refine our understanding of coordination-
domain knowledge so as to parameterize the coordination
roles more appropriately. Part of this will involve under-
standing the distinguishing features of goals and how those
features relate to the mechanisms available to coordinate
the agents bound to those goals. In part this will involve a
greater understanding of aspects such as how resource con-
tention, the number of agents bound to a goal, and the inter-
dependency among agents and goals interrelate.

References

[1] C. H. Brooks and E. H. Durfee. Congregation formation
in multiagent systems. Journal of Autonomous Agents and
Multiagent Systems, 7:145–170, 2003.

[2] D. D. Corkill. A Framework for Organizational Self-Design
in Distributed Problem-Solving Networks. PhD thesis, Uni-

versity of Massachusetts, Amherst, Massachusetts 01003,
Feb. 1983. (Also published as Technical Report 82-33, De-
partment of Computer and Information Science, University
of Massachusetts, Amherst, Massachusetts 01003, Decem-
ber 1982.).

[3] K. Decker and V. Lesser. Generalizing the partial global
planning algorithm. International Journal on Intelligent Co-
operative Information Systems, 1(2):319–346, June 1992.

[4] M. S. Fox, M. Barbuceanu, M. Gruninger, and J. Lin. An
organization ontology for enterprise modelling. In M. Pri-
etula, K. Carley, and L. Gasser, editors, Simulating Organi-
zations: Computational Models of Institutions and Groups,
pages 131–152. AAAI/MIT Press, 1998.

[5] B. Horling, R. Mailler, and V. Lesser. A Case Study of Or-
ganizational Effects in a Distributed Sensor Network. Com-
puter Science Technical Report 04-03, University of Mas-
sachusetts, January 2004.

[6] B. Horling, R. Mailler, M. Sims, and V. Lesser. Using and
Maintaining Organization in a Large-Scale Distributed Sen-
sor Network. Proceedings of the Workshop on Autonomy,
Delegation, and Control (AAMAS03), July 2003.

[7] B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker,
K. Rawlins, and V. Lesser. Distributed sensor network for
real time tracking. In Proceedings of the 5th International
Conference on Autonomous Agents, pages 417–424, Mon-
treal, June 2001. ACM Press.

[8] M. Klusch and A. Gerber. Dynamic coalition formation
among rational agents. IEEE Intelligent Systems, 17(3):42–
47, May/June 2002.

[9] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey,
B. Horling, D. Neiman, R. Podorozhny, M. NagendraPrasad,
A. Raja, R. Vincent, P. Xuan, and X. Zhang. Evolution
of the GPGP/TAEMS Domain-Independent Coordination
Framework. Autonomous Agents and Multi-Agent Systems,
9(1):87–143, July 2004.

[10] Y. pa So and E. H. Durfee. Designing tree-structured or-
ganizations for computational agents. Computational and
Mathematical Organization Theory, 2(3):219–246, 1996.

[11] Y. pa So and E. H. Durfee. Designing organizations for
computational agents. In Simulating Organizations: Com-
putational Models of Institutions and Groups, pages 47–64.
AAAI Press/MIT Press, 1998.

[12] H. E. Pattison, D. D. Corkill, and V. R. Lesser. Instanti-
ating descriptions of organizational structures. In M. N.
Huhns, editor, Distributed Artificial Intelligence, Research
Notes in Artificial Intelligence, chapter 3, pages 59–96. Pit-
man, 1987.

[13] T. Sandholm and V. Lesser. Coalitions among computation-
ally bounded agents. Artificial Intelligence, Special Issue on
Economic Principles of Multi-Agent Systems, 94(1):99–137,
Jan. 1997.

[14] O. Shehory and S. Kraus. Methods for task allocation via
agent coalition formation. Artificial Intelligence, 101(1–
2):165–200, 1998.

[15] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G. Kaminka,
S. Marsella, and I. Muslea. Building agent teams using
an explicit teamwork model and learning. Artificial Intel-
ligence, 110:215–240, 1999.


