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Abstract 
 

Multiagent Bayesian networks (MABNs) are a 
powerful new framework for uncertainty management in 
a distributed environment. In a MABN, a collective joint 
probability distribution is defined by the conditional 
probability tables (CPTs) supplied by the individual 
agents. It is assumed, however, that CPTs supplied by 
individual agents agree on the variable domains, an 
assumption that does not necessarily hold in practice. 

In this paper, we suggest modelling MABNs with 
inclusion dependencies. Our approach is more flexible, 
and perhaps realistic, by allowing CPTs supplied by 
different agents to disagree on variable domains. Our 
main result is that the input CPTs define a joint 
probability distribution if and only if certain inclusion 
dependencies are satisfied. Other advantages, both 
practical and theoretical, of modelling MABNs with 
inclusion dependencies are discussed. 

 
 

1. Introduction 
 
    Over the past twenty years, Bayesian networks [3] have 
established themselves as an elegant practical framework 
for uncertainty management in a centralized and single 
agent setting. A Bayesian network consists of a directed 
acyclic graph (DAG) and a corresponding set of 
conditional probability tables (CPTs). The probabilistic 
conditional independencies encoded in the DAG indicate 
that the product of the CPTs is a joint probability 
distribution [3]. 
    Xiang [7, 9] extended Bayesian networks to the 
distributed and multiagent setting, which we will call 
multiagent Bayesian networks (MABNs). In a MABN, 
the CPTs are supplied by individual agents, who are 
willing to cooperate to reach a common goal. There are at 
least two potential problems in designing a MABN: (i) the 

dependency structure is not a DAG, and (ii) the product of 
the CPTs is not a joint probability distribution. 
    Xiang [8], and Wong and Butz [6], developed methods 
to ensure the dependency structure is a DAG. Problem (ii) 
can be sidestepped by assuming that variables common to 
multiple agents have the same domain. We believe, 
however, that problem (ii) has not been properly 
addressed, since the assumption made in the solution is 
not necessarily satisfied in practice. 
    In this paper, we consider the ramifications of allowing 
agents to disagree on the domain of variables. It is 
explicitly demonstrated that the product of the supplied 
CPTs is not a joint probability distribution, even if the 
input CPTs are well-defined with respect to the local 
domains of the individual agents. To ensure consistency, 
we introduce the notion of inclusion independency. Our 
main result is that the product of the input CPTs is a joint 
probability distribution if and only if certain inclusion 
dependencies are satisfied. Our approach possesses other 
salient features. Whether or not an agent needs to update 
the other agents with respect to some collected evidence 
depends on the satisfaction of certain inclusion 
dependencies. While the uncertainty community is 
interested in more general forms of probabilistic 
conditional independence [4], our proposed inclusion 
dependency is the first constraint proposed involving 
multiple distributions. Finally, unlike the work in [4, 5, 6] 
that utilized the relationship between single agent 
Bayesian networks and conventional relational databases, 
this manuscript establishes a useful relationship between 
current research in multiagent Bayesian networks with 
recent work on semantic data models in databases. 

This paper is organized as follows. Inclusion 
dependencies, and their role in MABNs, are presented in 
Section 2. In Section 3, the advantages of modelling 
MABNs with inclusion dependencies are provided. The 
conclusion is presented in Section 4. 

 
 



2. Inclusion Dependencies in MABNs 
 
    A multiagent Bayesian network (MABN) is a Bayesian 
network in which the CPTs are supplied by multiple 
agents. In this manuscript, we assume that the agents are 
willing to cooperate and share their knowledge to reach a 
common goal. Here we allow the agents in a MABN to 
disagree on the domains of the variables. Nevertheless, 
each agent can only supply CPTs that are well-defined 
with respect to the local domain. 
 
Example 1. Consider a multiagent system consisting of 
two agents, say Agent 1 and Agent 2. Agent 1 is an expert 
on domain {a, b, c}, while Agent 2’s expertise involves 
domain {b, c, d}. A MABN on U = {a, b, c, d} can be 
defined by Agent 1 specifying the CPTs p1(a), p1(b | a) 
and p1(c | a), while Agent 2 inputs the CPT p2(d | b, c). 
This MABN is illustrated in Figure 1. Suppose Agent 1 
and Agent 2 disagree on the domains of variables b and c. 
For instance, Agent 1 believes dom(b) = dom(c) = {0, 1, 
2}, while Agent 2 believes dom(b) = dom(c) = {0, 1}. 
The supplied CPTs in Table 1 are well-defined with 
respect to the local domains. However, their product 
� (a, b, c, d) is a potential [3]. 
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Figure 1. A multiagent Bayesian network (MABN) 
 
Table 1. CPTs p1(a), p1(b|a), p1(c|a), and p2(d|b, c) 

 

 
 
 

    The important point in Example 1 is that the product of 
the supplied CPTs is not a joint probability distribution, 
even though the CPTs are well-defined with respect to the 
local domains of the individual agents. 
    Our objective now is to ensure that the product of the 
supplied CPTs is a joint probability distribution, while at 
the same time allowing the agents to disagree on the 

domain of the variables. We introduce the notion of 
inclusion dependency to assist us in meeting our goal. 
 
Definition 1. Consider two distributions �1(X) and 
�2(XY). We say �1(X) and �2(XY) satisfy the inclusion 
dependency, if �X ( �1(X) ) ⊆ �X ( �2(XY) ), where �  is 
the projection operator in relational databases [1]. That is, 
the configurations of variable X in the distribution �1(X) 
must also appear as values of X in the distribution �2(XY). 
 
Example 2. Recall the MABN in Figure 1. Consider 
another set of supplied CPTs in Table 2. Here p1(b, c) and 
p2(d | b, c) satisfy the inclusion dependency, since 

b, c� ( p1(b, c) ) ⊆ b, c� ( p2(d | b, c) ), as shown in Table 3, 

and where p1(b, c) = �a   p1(a) ⋅ p1(b | a) ⋅ p1(c | a). 
 
Table 2. A second set of CPTs, where Agent 1 
specifies p1(a), p1(b    |    a) and p1(c    |    a), while Agent 
2 supplies CPT p2(d    |    b, c) 

 
 
 
 
 
Table 3. The inclusion dependency holds since 
the configurations of variables b and c in the 
p1(b, c) are contained in p2(d    |    b, c) 
 
 
 
 
 
 
 
   Here, a numbering of the variables in a DAG is called 
ancestral, if the number corresponding to any variable is 
lower than the numbers corresponding to all of its 
children. Such as, a = 1, b = 2, c = 3, d = 4 is one ancestral 
numbering of the variables in the DAG of Figure 1. 
 
Definition 2. Consider a MABN with CPTs p(A1 | P1), 
p(A2 | P2), …, p(An | Pn), where A1, A2, …, An is an 
ancestral numbering. We say the MABN satisfies the 
inclusion principle, if  

P� i
( p(A1|P1) ⋅p(A2|P2) ⋅…⋅p(Ai-1|Pi-1)  ) ⊆ P� i

( p(Ai|Pi) ), 

for i = 2, …, n. 
 
    Modelling MABNs as a Bayesian network satisfying 
the inclusion principle is very useful, as we explicitly 
demonstrate in the next section. 
 

a p1 (a) 
1 0.8 
0 0.2 

a b p1 (b | a) 
1 2 0.1 
1 1 0.2 
1 0 0.7 
0 2 0.5 
0 1 0.2 
0 0 0.3 

a c p1 (c | a) 
1 2 0.2 
1 1 0.2 
1 0 0.6 
0 2 0.3 
0 1 0.3 
0 0 0.4 

b c d p2 (d | b, c) 
1 1 1 1.0 
1 0 1 0.6 
1 0 0 0.4 
0 1 1 0.7 
0 1 0 0.3 
0 0 1 0.8 
0 0 0 0.2 

a p1 (a) 
1 0.8 

a b p1 (b | a) 
1 1 0.7 
0 1 0.6 

a c p1 (c | a) 
1 1 0.1 
0 1 0.8 

b c d p2 (d | b, c) 
1 1 1 1.0 
1 0 1 0.6 
0 1 1 0.7 
0 0 1 0.8 
2 2 1 0.5 

b c 
1 1 
1 0 
0 1 
0 0 

b c 
1 1 
1 0 
0 1 
0 0 
2 2 

Agent 1 

Agent 2 

p1 (a) 

p1 (b|a) p1 (c|a)

p2 (d|b, c) b, c� ( p1(b, c) ) = ⊆ = b, c� ( p2(d | b, c) ) 



3. Advantages of modelling MABNs with 
inclusion dependencies 

 
    The practical and theoretical advantages of modelling 
MABNs with inclusion dependencies are following. 
 
3.1 Practical Advantages 
 
    Inclusion dependencies possess at least two desirable 
characteristics in practical applications. First, they remove 
the questionable assumption traditionally made when 
modelling MABNs. Second, inclusion dependencies can 
dramatically alleviate some computation when updating 
the MABN with collected evidence in some situations. 
    Our main result (Theorem 1) is that the CPTs for a 
Bayesian network define a joint probability distribution if 
and only if the MABN satisfies the inclusion principle. 
 
Theorem 1. Let p(A1 | P1), p(A2 | P2), …, p(An | Pn) be a 
MABN, where A1, A2, …, An is an ancestral numbering. 
The product of these CPTs is a joint probability 
distribution if and only if the MABN satisfies the 
inclusion principle. 

Proof: (=>) Given p(A1, A2, …, An) = p(A1 | P1) ⋅ 
p(A2 | P2) ⋅ … ⋅ p(An | Pn). By contradiction, suppose the 
MABN does not satisfy inclusion principle. Then 

P� j
( p(A1|P1) ⋅p(A2|P2) ⋅…⋅p(Aj-1|Pj-1) ) � P� j

( p(Aj|Pj) ), 

for at least one j ∈ [2, n]. Since configurations with zero 
probability are not stored, there is a configuration <A1:a1, 
A2:a2, …, Aj-1:aj-1> of A1 A2 � Aj-1 appearing in 

             p(A1 | P1) ⋅ p(A2 | P2) ⋅ … ⋅ p(Aj-1 | Pj-1),             (1) 
but not appearing in the CPT p(Aj-1 | Pj-1). Hence, <A1:a1, 
A2:a2, …, Aj-1:aj-1> cannot appear in the joint probability 
distribution p(U), nor in the marginal distribution 
p(A1, A2, …, Aj-1) obtained by marginalization of p(U). 
This is a contradiction, since Equation (1) is also the 
definition of the marginal distribution p(A1, A2, …, Aj-1). 

(<=) Suppose the MABN p(A1 | P1), p(A2 | P2), …, 
p(An | Pn) satisfies the inclusion principle. By definition, 
the CPT p(Ai | Pi) must contain every configuration of Pi 
in p(Pi). In other words, the joinable configurations are 
exactly those in p(Pi). Hence, p(Ai, Pi)  =  p(Pi) ⋅ p(Ai | Pi), 
for i = 2, …, n. Thus, when i = n, the product defines a 
joint probability distribution. 

    Theorem 1 is important, since it indicates that previous 
work on MABNs [6, 7, 9] enforce a superfluous 
restriction, namely, the domains of common variables 
must be the same. The next example clearly shows that 
this restriction is unnecessary. 
 

Example 3. Recall the MABN in Example 2. Even 
though the domains of variables b and c are different with 
respect to Agent 1 and Agent 2, the product, nevertheless, 
is still a joint probability distribution. That is, 

p(a, b, c, d)   =   p1(a) ⋅ p1(b | a) ⋅ p1(c | a) ⋅ p2(d | b, c). 

    While Example 3 explicitly demonstrates that common 
variables do not necessarily have to have the same 
domain, the next example emphasizes the importance of 
the MABN satisfying the inclusion principle. 
 
Example 4. The MABN, defined by the CPTs in Table 1, 
does not satisfy the inclusion principle. That is, 

bc� ( p1(b, c) ) � bc� ( p2(d | b, c) ), with <b:2, c:2> appears 

in p1(b, c) but not p2(d | b, c). By Theorem 1, � (a, b, c, d) 
= p1(a) ⋅ p1(b | a) ⋅ p1(c | a) ⋅ p2(d | b, c) is potential. 
 
    The second practical advantage of modelling MABNs 
with inclusion dependencies involves the processing of 
evidence. Traditionally, when an agent collects hard and 
soft evidence E [2], two tasks are carried out: (i) the agent 
updates its knowledge base with E, and (ii) all other 
agents are then updated with E. On the contrary, if the 
MABN satisfies the inclusion principle, then step (ii) is 
not necessarily required. 
 
Example 5. The MABN, defined by the CPTs in Table 5, 
satisfies the inclusion principle. Suppose Agent 2 collects 
the soft evidence b ≠ 2 and c ≠ 2. It performs task (i) by 
updating its knowledge base p2 (d | b, c) using the selection 
operator σ [2], as illustrated in Table 4. However, 
performing task (ii) is unnecessary, since the updated 
MABN in Table 5 still satisfies the inclusion principle. By 
Theorem 1, we obtain the joint distribution 
p(a, b≠2, c≠2, d)  =  p1(a)⋅ p1(b|a)⋅ p1(c|a)⋅ p2(d|b≠2, c≠2). 
 
Table 4. Agent 2 updates p2    (d    |    b,    c) with soft 
evidence b ≠≠≠≠ 2 and c ≠≠≠≠ 2 as σσσσ    b≠≠≠≠2    ∧∧∧∧    b≠≠≠≠2    (    p2    (d    |    b,    c)    ) 

 
 
 
 
 
 
 

Table 5. The MABN still satisfies the inclusion 
principle after Agent 2 updates itself. By 
Theorem 1, the product is a joint distribution  

 
 

b c d p2 (d | b≠2, c≠2) 
1 1 1 1.0 
1 0 1 0.6 
0 1 1 0.7 
0 0 1 0.8 

b c d p2 (d | b, c) 
1 1 1 1.0 
1 0 1 0.6 
0 1 1 0.7 
0 0 1 0.8 
2 2 1 0.5 

a p1 (a) 

1 0.8 
a b p1 (b | a) 
1 1 0.7 
0 1 0.6 

a c p1 (c | a) 
1 1 0.1 
0 1 0.8 

b c d p2 (d | b≠2, c≠2) 
1 1 1 1.0 
1 0 1 0.6 
0 1 1 0.7 
0 0 1 0.8 



    Example 5 reveals that the other agents need only be 
updated when the collected evidence violates the 
inclusion dependencies in a MABN. In these cases, it can 
be verified that after updating the MABN, the appropriate 
inclusion dependencies are again satisfied since common 
variables have the same domain. 
 
3.2 Theoretical Advantages 
 
    Here we discuss two favourable features of utilizing 
inclusion dependencies in MABNs. One involves general 
forms of independencies within the Bayesian network 
community, while another involves the relationship 
between the Bayesian network and database communities. 
    The Bayesian network community is interested in 
general forms of probabilistic conditional independence 
[4]. The important point is that their notions all are 
defined with respect to a single distribution. On the 
contrary, our notion of inclusion dependency is the first 
independency proposed for single agent and multiagent 
Bayesian networks that involves multiple distributions. 
Hence, inclusion dependencies may lead to other forms of 
independencies holding between multiple distributions. 
    Finally, the work in this paper also establishes an 
intrinsic relationship between current research in 
Bayesian networks with that in databases. Our past 
research, which has been well-received by the 
international community [4, 5, 6], took full advantage of 
the inherent relationship between single agent Bayesian 
networks and conventional relational databases. 
Nowadays, however, research focuses on MABNs [7, 9] 
and semantic data models in databases [1]. Semantic data 
models usually encode functional dependencies and 
inclusion dependencies [1]. In this paper, we adopt the 
notion of inclusion dependency for modelling MABNs. 
Thus, this work is yet another example of how the 
uncertainty management and data management 
communities can benefit each other. Modelling MABNs 
with inclusion dependencies is also meritorious, since the 
use of inclusion dependencies is arguably closer to ways 
that humans organize information [1]. 
 
4. Conclusion 
 
    Based on the striking successes of applying single 
agent Bayesian networks for uncertainty management, 
MABNs are emerging as a basis for uncertainty 
management in a distributed setting [6, 7, 9]. These 
works, however, assume that variables common to 
multiple agents have the same domain. This assumption is 
not necessarily satisfied in practice. 
    In this paper, we have suggested modelling MABNs 
with inclusion dependencies. Our main result is that the 

collection of CPTs supplied by the individual agents is a 
joint probability distribution if and only if the MABN 
satisfies the inclusion principle. We have also explicitly 
shown that inclusion dependencies may facilitate 
probabilistic inference during the processing of collected 
evidence in practice. On the theoretical side, unlike the 
general forms of independence [4], inclusion 
dependencies are the first constraint involving multiple 
distributions. Finally, in contrast to [4, 5, 6] this study 
establishes a relationship between the current work on 
MABNs in the uncertainty management community with 
the current research on semantic data models in the 
database community [1]. 
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