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ANALYZING MYOPIC APPROACHES FOR MULTI-AGENT
COMMUNICATION
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Choosing when to communicate is a fundamental problem in multi-agent systems. This problem becomes
particularly challenging when communication is constrained and each agent has different partial information
about the overall situation. We take a decision-theoretic approach to this problem that balances the benefits of
communication against the costs. Although computing the exact value of communication is intractable, it can be
estimated using a standard myopic assumption—that communication is only possible at the present time. We examine
specific situations in which this assumption leads to poor performance and demonstrate an alternative approach
that relaxes the assumption and improves performance. The results provide an effective method for value-driven
communication policies in multi-agent systems.
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1. INTRODUCTION

Deciding when to communicate is a fundamental challenge in multi-agent systems.
Communication enables agents to base their decisions on more complete knowledge of
the overall situation. However, when communication incurs a cost, finding the optimal
communication policy is usually intractable. Depending on the specific characteristics of the
domain, the computational complexity of this problem ranges from NP-complete to NEXP-
complete (Pynadath and Tambe 2002; Goldman and Zilberstein 2004). The main objective
of this work is thus to develop cost-effective methods for deciding when to communicate in
decentralized settings.

Because communication provides information to other agents, it is natural to measure
the benefits of communication based on the value of the information. We take a decision-
theoretic approach to this problem and define the value of communication as the net gain from
communicating, which is the difference between the expected improvement in the agents’
performance and the costs associated with communication. The optimal communication
policy—which we define formally in the next section—involves the agents choosing the
communicative act at each step that maximizes the expected future utility, much like choosing
an optimal action in an MDP.

The approach we take builds on the formal notion of the value of information proposed
by Howard (1966). Intuitively, the value of information is the expected increase in the value
of the best plan as a result of obtaining the information. This framework has already been
extended to evaluate processes that produce information such as alternative computations
(Horvitz 1988; Russell and Wefald 1991). However, even in situations involving a single
decision maker where the value of information theory has been extensively used, finding
the exact value is very difficult. The typical approach to dealing with this complexity is to
approximate the value of information using two common myopic assumptions (sometimes
referred to as myopic-greedy assumptions): (1) each source of information is evaluated in
isolation, and (2) a 1-step horizon is used in sequential decision making (Pearl 1988; Russell
and Wefald 1991). In the context of centralized decision making, some useful nonmyopic
approximation methods have been developed (Heckerman, Horvitz, and Midleton 1993).
However, they have not yet been generalized to multi-agent settings.
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A myopic approach has already been developed to derive communication policies in
multi-agent systems (Tambe 1997; Gmytrasiewicz and Durfee 2001; Goldman and Zilber-
stein 2003). Frequently, however, the exact assumptions being made and their implications
are not clearly stated. Additionally, a careful analysis of the impact of these assumptions on
the quality of the resulting communication policies has not been made. While the myopic
assumptions may be an appropriate way to approximate the value of information in the
single-agent case, it is not obvious that they remain as effective in multi-agent settings.

This work is aimed at improving the understanding of communication in multi-agent
systems by examining the implications of the myopic assumptions and proposing ways to
overcome their deficiencies. First, we clearly state the basic myopic assumptions and formally
show how to compute optimal communication policies given these assumptions. We then
identify and describe two facets of the assumptions that introduce error, and provide an
improved way to compute communication policies that compensates for this bias.

The analysis of communication is performed using the Decentralized MDP model with
Communication (Dec-MDP-Com), which is simply a Dec-POMDP-Com (Goldman and
Zilberstein 2003) with joint full observability. The Dec-POMDP-Com model, in turn, is
equivalent to the COM-MTDP model (Pynadath and Tambe 2002) under the perfect recall
assumption. These relationships among the models have been established by Seuken and
Zilberstein (2008). The analysis in this work will furthermore assume transition independence
(Becker et al. 2004) as well as observation independence. Observations of each agent will
therefore correspond to that agent’s local state.

We decided to study the control of communication in the context of decentralized MDPs
for several reasons. First, decision-theoretic models provide a natural formal way to describe
the problem in terms of maximizing expected utility. Decentralized MDPs in particular
have been used widely in recent years within the multi-agent community (Xuan, Lesser,
and Zilberstein 2001; Bernstein et al. 2002; Pynadath and Tambe 2002; Emery-Montemerlo
et al. 2004; Goldman and Zilberstein 2004; Rabinovich, Goldman, and Rosenschein 2003;
Roth, Simmons, and Veloso 2006; Seuken and Zilberstein 2008). Second, in this framework
each agent has a separate local view of the world. The agents choose actions based on their
own local views, without necessarily knowing the actions taken by the other agents (even
if all the action selection policies are fixed and known). Centralized models, such as the
MMDP (Boutilier 1999), do not distinguish between the private information available to
each agent and the overall belief state. Finally, we have previously developed algorithms for
finding optimal joint policies assuming no communication (Becker et al. 2004; Petrik 2007).
These algorithms provide the foundations for this work and a baseline for the analysis of the
benefits of communication.

The analysis we perform is separable into two components. The first component is an
exact algorithm such as (Becker et al. 2004), which takes a Dec-MDP (with no communica-
tion) as input and returns an optimal joint policy for the Dec-MDP, along with the value of
the joint policy. Then, this algorithm is used as a subroutine of the second component, which
decides when to communicate.

An important aspect of the model we use is that it isolates the effect of communication
on the expected value of a plan by distinguishing between domain-level actions and com-
municative acts. Other decision-theoretic multi-agent models allow domain-level actions to
include implicit forms of communication (Bernstein et al. 2002; Pynadath and Tambe 2002;
Goldman and Zilberstein 2003), which complicates the analysis of communication policies.
Implicit communication occurs when one agent gains information about another agent’s state
through a noncommunicative act. This communication is often a byproduct of the agent’s
observations or the transition function, and is thus difficult to quantify. For example, when a
robot attempts to move forward and fails, the failure could be caused by the wheels spinning
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in place or by another robot sitting in front of it. Therefore, its failure to move forward
changes its belief about the location of the other robot.

Several different aspects of communication in multi-agent systems have been studied in
recent years (Stone and Veloso 1999; Shen, Lesser, and Carver 2003). Some researchers have
managed to avoid the myopic assumptions, for example using reinforcement learning (RL)
(Ghavamzadeh and Mahadevan 2004; Szer and Charpillet 2004). One advantage of using RL
is that a complete model of the domain is not required. But using on-line learning in multi-
agent settings could lead to poor performance, particularly in the early stages of learning.
Convergence on local maxima presents another problem. Other researchers have addressed
different questions, such as what the agents should communicate (Shen et al. 2003) instead
of when to communicate. Xuan and Lesser (2002) have studied the use of communication as
a way to reduce uncertainty. This work complements and builds on their approach by using
the value of information to measure the benefits of reducing uncertainty.

2. PROBLEM DESCRIPTION

We examine the myopic approach for communications using transition-independent Dec-
MDPs (Becker et al. 2004) enhanced with explicit communication. The model is composed
of n cooperative agents. Each agent i works on its own local subproblem that is described by
an MDP, 〈Si , Ai , Pi , Ri 〉. The local subproblem for agent i is completely independent of the
local subproblems for the other agents, and is completely observable only by agent i. This
means that at each step agent i takes action ai ∈ Ai , transitions from state si ∈ Si to s ′

i ∈ Si

with probability Pi (s ′
i | si , ai ), and receives reward Ri (s ′

i ). The global state of the domain is
composed of the local states of all the agents.

At each time step, each agent first performs a domain-level action (one that affects
its local MDP) and then a communication action. The communication actions are simply
communicate or not communicate. If at least one agent chooses to communicate, then
every agent broadcasts its local state to every other agent. This corresponds to the sync
model of communication in Xuan et al. (2001), as it synchronizes the world view of the
agents, providing each agent complete information about the current world state. The cost
of communication is C if at least one agent initiates it, and it is treated as a negative reward.
An optimal joint policy for this problem is composed of a local policy for each agent. Each
local policy is a mapping from the current local state si ∈ Si , the last synchronized world
state 〈s1 . . . sn〉 ∈ 〈S1 . . .Sn〉, and the time T since the last synchronization to a domain-level
action and a communication action, π i : Si × 〈S1 . . .Sn〉 × T → Ai × {yes , no}. We will
occasionally refer to domain-level policies and communication policies as separate entities,
which are the mappings to Ai and {yes , no}, respectively.

In addition to the individual agents accruing rewards from their local subproblems, the
system also receives reward based on the joint states of the agents. This is captured in the
global reward function R : S1 × · · ·Sn → �. To the extent that the global reward function
depends on past history, the relevant information must be included in the local states of
the agents just as with the local rewards. The goal is to find a joint policy 〈π 1 . . . π n〉 that
maximizes the global value function V , which is the sum of the expected rewards from
the local subproblems and the expected reward the system receives from the global reward
function.

Definition 1. The global value function is

V (s1 . . . sn) =
∑
s ′

1...s
′
n

P(s ′
1. . s ′

n | s1 . . . sn, a1. . an)

[
n∑

i=1

Ri (s
′
i ) + R(s ′

1 . . . s ′
n) + V (s ′

1 . . . s ′
n)

]
.

(1)
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To summarize, the class of problems we study can be defined by n MDPs, a global
reward function R, and synchronizing communication acts with a fixed cost C. Transitions
on the MDPs are independent of each other; we will therefore assume P(s ′

1, . . . s ′
n | s1 . . sn ,

a1 . . an ) = ∏n
i=1 Pi (s ′

i | si , ai ).
The complexity of of finding optimal policies for this class of problems has been shown to

be NP-complete (Goldman and Zilberstein 2004), which is lower than the doubly exponential
complexity (NEXP-hard) of general decentralized decision making. A key structure in the
model that keeps the complexity in NP is the synchronizing communication protocol. When
any information is transferred between the agents it is complete information so only the last
communication must be memorized. Without this, the agents might have to remember the
entire history of communication to make optimal decisions, which results in an exponential
increase in the size of the policies and a double-exponential increase in solution time.

2.1. Sample Application

We illustrate this class of problems with the following multi-agent data collection exam-
ple. This example can be viewed as an abstraction of many different types of data collection
problems, though we consider autonomous rover coordination. Consider n rovers exploring
a landscape and collecting data. Each rover has its own partially ordered list of sites it can
visit, see Figure 1 (left-hand side). Each site is numbered as shown in the figure, and is of a
particular class, A ,B, or C. The class is not known a priori. Instead, the rover has a distribu-
tion over the classes for each site. Figure 1 (right-hand side) represents the possible class of
Site 1. For example, the site could be an interesting rock formation. With 70% probability it
could be (A) a sedimentary rock, 25% (B) an igneous rock, and 5% (C) a fossil. The value
of discovering and collecting data from a fossil may be significantly higher than collecting
data from yet another sedimentary rock.

When a rover arrives at a site it has two choices. First, it can gather the information
through a Detailed Analysis (DA) without knowing what class of information it is collecting.
In this case, the rover proceeds directly to state A, B, or C (whichever is the true identity of
the site), as shown in the figure, and also receives the appropriate reward. Alternatively, the
rover can perform a Quick Analysis (QA) to determine the class of information available at

start

1

2 3

4 5

start 

A A

B B

C C

DA

DA

DA

DA

QA

FIGURE 1. Graphical depiction of a sample decision problem. (Left-hand side): A partially ordered list of
five sites. (Right-hand side): A decision problem for one site with three potential classes.
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the site before choosing whether to collect the information. It will only receive the reward if
it performs a DA next. The rover may not be able to collect information at all the sites due
to limited resources, such as time and battery power.

The value of a DA comes from the information collected. The value of a QA is that it
consumes fewer resources than a DA and allows the rover to make a more informed decision.
The system receives reward based on the total information collected by all of the rovers. Each
class of information has a base value. If the information in a particular class is redundant
then the total value for collecting that class more than once may be only slightly higher than
the base value. Alternatively, a class could be complementary, in which case the value for
two pieces of information may be significantly greater than twice the base value. The values
of the information are provided by the global reward function.

3. BASIC MYOPIC APPROACH

Using a myopic algorithm is a common way of dealing with the complexity inherent
in finding an optimal solution. We start with a simple algorithm for determining when the
agents should communicate. This algorithm is optimal assuming that communication must
be initiated by the current agent (agent i in the following description) and that the current
step is the only time step in which communication is possible. For clarity, the equations are
presented for two agents i and j, but the approach easily extends to n agents. The complexity
results still include all n agents.

While the problems we solve are distributed in nature (each agent chooses an action
based on its own local view) the planning algorithm itself computes offline the policies
for each agent in a centralized manner using a fully specified model of the problem.
Then, the individual policies are given to the agents during execution time. This does
not trivialize the problem, nor does it reduce it to a single MDP because the solution
found is still executed in a decentralized manner. We chose this approach for two reasons.
First, individual agents often lack the computational resources necessary to generate high-
quality solutions. Second, individual agents often lack a global view of the problem. While
the resulting communication policies are only conditioned on the local information avail-
able at run-time, there is no need to impose the same restriction on the off-line planning
process.

The algorithm works as follows. As long as no communication is initiated, each agent
follows the optimal policy assuming no future communication, which was obtained at plan-
ning time using a subroutine such as the Coverage Set Algorithm (CSA) (Becker et al. 2004)
or a bilinear program (Petrik 2007). The subroutine takes a Dec-MDP with no communi-
cation as input, and provides joint-policies as well as their values as its output. At each
state during execution time, agents choose whether to communicate or not by computing
the net value of communication (VoC). If the VoC > 0, then the agent initiates communi-
cation causing all of the agents to broadcast their local states. This synchronizes the local
views of all of the agents to the world state. The agents then compute a new optimal policy
assuming no future communication, using their synchronized world state as the starting
state. The domain-level actions the agents take always come from this zero-communication
policy.

In the case where there are two agents i and j, the VoC from agent i’s perspective depends
on i’s current local state si , the previous synchronized world state (or original starting state)
〈s0

i , s0
j 〉, and the time since the last synchronization t. It also implicitly depends on the

optimal joint policy assuming zero communication that the agents have been following since
the previous synchronization, 〈π0

i , π0
j 〉.
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Definition 2. The Value of Communication (VoC) is the difference between the expected
value when communicating and the expected value for remaining silent.

VoC
(
si ,

〈
s0

i , s0
j

〉
, t

) =
∑

s j

P
(
s j | s0

j , t, π0
j

)[
V ∗(si , s j ) − C − V (si , s j )

]
, (2)

where P(sj | s0
j , t , π0

j ) is agent i’s belief about agent j’s current local state, V (si , sj ) is the
expected value for following the current local policy, and V ∗(si , s j ) − C is the expected
value if the agents communicate now and follow a new zero communication policy after
synchronizing.

The complexity of computing the VoC depends on the size of the local state space in this
two agent case.

Theorem 1. Computing the Value of Communication can be done in time polynomial in the
number of local states and exponential in the number of agents.

Proof. See Appendix A.

A final point about the complexity is the number of times VoC must be calculated to
generate the joint communication policy. While the worst case appears to be quite large,
O(n |S|n+2), in practice it is not nearly that bad. The reason is that many of the combinations
of variables are not reachable. For example, if communication is frequent, then the time
since the last communication, t, will remain low. If communication is infrequent then the
number of reachable synchronized world states 〈s0

i , s0
j 〉 remains low because the world state

is only synchronized through communicating. Additionally, there will be substantial overlap
in computation between calls to VoC and caching can greatly reduce the running time in
practice.

4. IMPLICATIONS OF THE MYOPIC ASSUMPTION

The myopic assumption allows a simple, straightforward computation of the value of
communication. While this may be a reasonable assumption for the single agent case, there
are additional implications that may not be readily apparent in a multi-agent setting. We
examine these implications by identifying and analyzing two sources of error in the basic
myopic approach, illustrating each with a simple example.

4.1. Modeling the Other Agents

Consider the situation of Alice and Bob, who are at home and want to cook a meal but
lack ingredients. They form a plan for Alice to go to the store and purchase the ingredients,
while Bob starts cooking the rest of the meal. In the improbable event that the store is
out of ingredients, they will need to cook a different meal. Both are equipped with cell
phones with inexpensive (but not free) calling plans. From Bob’s Basic perspective, he
should continuously call Alice after she leaves the house, to find out if her car has broken
down, if the store is out of ingredients, if there is traffic on the road. But in real life, this is
not necessary, because Bob knows that if Alice had encountered a problem, she would have
called. It is this type of reasoning, neglected by the Basic approach, that we explore in this
section.

The Basic myopic approach (Definition 2) assumes the simplest of models for the other
agents—they never initiate communication. However, because every agent is following a
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FIGURE 2. A simple example that illustrates how a simple model for the other agent introduces error.

communication policy based on computing the value of communication, this is an inaccurate
model. One implication of a more accurate model of the other agents is that not communi-
cating is in itself a form of communication. The distribution of states agent j can be in after
t steps, P(sj | s0

j , t , π0
j ), changes because j is known to not have passed through states in

which it would have communicated.
Another implication is that at the current step, agent i may not need to initiate com-

munication to acquire valuable information from agent j if j can be relied on to initiate
communication when it has the information. Figure 2 illustrates this with a simple example
where agent 1 collects information valuable to agent 2. At site 1, the figure shows that agent
1 has an equal chance of collecting an A or a B. If both agents collect A’s or B’s, suppose
that the system receives a reward of 10 (not shown in the figure). Suppose that the system
also receives a reward of 1 every time class C is collected. α1 is the communication point of
interest.

The initial zero-communication policy is for agent 2 to collect data from site 2. The
only reason to communicate is if agent 1 collects a B at site 1, agent 2 needs to change
its policy to go to site 3 rather than site 2. Based on the initial policy, 50% of the time
the agents will receive the maximum reward of 12 and 50% of the time the minimum
reward of 2. When agent 1 collects a B, it knows that the system will receive a reward
of 12 with a probability of 1.0 if it communicates, and 2 with a probability of 1.0 if it
does not. Therefore its VoC = −C + 1.0[12 − 2] = −C + 10. As long as the cost C < 10,
agent 1 will initiate communication. Agent 2 does not know what agent 1 has collected, so
its VoC = −C + 0.5[12 − 12] + 0.5[12 − 2] = −C + 5. When the cost of communication
C < 5 agent 2 will communicate because its VoC > 0. Half of the time this communication
is unnecessary because agent 1 had collected an A. When C ≥ 5 it is no longer valuable for
agent 2 to initiate the communication and their communication policies are optimal.

The Basic line in Figure 3 shows the performance of the basic myopic strategy. As the
cost of communication increases from 4.5 to 5, it exhibits a jump in value. This undesirable
behavior is caused by error introduced into the VoC by not accounting for the other agent’s
communication policy. This error can be removed from the approximation by computing
the best joint communication policy for each step (still assuming no future communication)
instead of a local communication policy.

To compute the optimal joint communication policy for the current step, the agents must
maximize the expected value over all possible world states they could be in. They do this
by creating a table M with rows representing the possible states of agent 1 and columns
representing states of agent 2 for the current step (see Figure 4).1 The elements in the table
are the value of communicating in that world state weighted by the probability that it is the
current world state,

1This table does not correspond to the problem in Figures 2 and 3.
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FIGURE 3. Performance comparison of the Basic and Model approaches.

FIGURE 4. A Table M showing the expected gain in value for communicating for each world state.

Mxy = P
(
sx

1

∣∣ s0
1 , t, π0

1

)
P

(
s y

2

∣∣ s0
2 , t, π0

2

)[
V ∗(sx

1 , s y
2

) − C − V
(
sx

1 , s y
2

)]
. (3)

That is, each entry in the table corresponds to the VoC for a single joint state. As
discussed in Section 3, this is the value of continuing along the current policy if the agents
are in that joint state, subtracted from the value of the policy which the agent would follow
after communication, and adjusted by the cost of communication. It should be clear that
if agent 1 follows the Basic approach at a state s, it communicates if the sum of row s is
positive, and likewise agent 2 communicates if its column is positive. We seek to evaluate
whole communications policies across all states, not just the policy of one row or column. In
Figure 4, Agent 1 has decided that it should communicate from s2

1, because its VoC of 2 (the
sum of its row) is positive, and Agent 2 has decided that it should communicate from state s1

2,
because its VoC of 1 is positive. VoC decisions are shown in the figure as π 1c and π 2c. In the
figure, all joint-states that result in communication are bolded. This strategy double counts
certain elements in the table and can result in choosing a communication policy worse than
not communicating at all! The expected value of a joint communication policy for one step
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is the sum of all entries in the table where communication happens (an entry is only counted
once, even if both agents initiate communication). This corresponds to all joint-states where
communication happens, weighted by their probability. In the example, the Basic policy
given has a value of −1, computed by summing the bold entries. The reason for this negative
value is because M 2,1 was counted twice for determining the policies (once for each policy),
but only once for determining the value of the table. If agent 2 did not communicate in s1
then the value would be 2. Never communicating (π ic = {no, no, no}) will always have a
value of 0.

The best joint communication policy is the joint policy that maximizes the bolded value
of this table. This leads to a policy where agent 1 communicates in s2

1 and agent 2 does not
communicate. Finding the best joint policy is exponential in the size of the table, but a simple
hill-climbing algorithm can find a Nash equilibrium in polynomial time. The line labeled
Model in Figure 3 optimizes this table to eliminate the error, resulting in the best policy for
this the example in Figure 2. Creating the table costs no more than the original approach
because each entry represents a reachable world state.

The Model approach described in this section is not to be confused with Q-POMDP
(Roth et al. 2005), which is a technique designed to account for uncertainty of belief state
in a multi-agent POMDP. In Q-POMDP, each agent’s environment is partially observable,
and an agent will communicate when it deduces that communicating its state will change
the action of the other agent, much like the Basic approach. It is enhanced to consider the
true joint belief state in partially observable problems, but not the communication policy
of the other agent. In the Model approach described above, each agent accounts for the state
of the other agent as well as its communication policy.

4.2. Myopic View of the Future

The second facet of the myopic assumption is that no agent will communicate in the
future. This approximates the true value of communication by introducing error in two ways.
The first is due to the greedy nature of the algorithm. When communicating immediately has
a positive value, VoC > 0, the agent communicates without considering whether the expected
value would be even higher if it waited to communicate until a future step. To compensate,
the agents can compute the value of (possibly) communicating after a 1-step delay:

VoCdelay

(
si ,

〈
s0

i , s0
j

〉
, t

) =
∑

s ′
i

P
(
s ′

i | si , π
0
i

) × max
(
0, VoC

(
s ′

i ,
〈
s0

i , s0
j

〉
, t + 1

))
.

The agent will initiate communication when its VoC > VoCdelay and VoC > 0. This does
not imply that the agent really will initiate communication in the next step because the same
condition will be reevaluated at that time with respect to later steps. As long as the expected
value for delaying one step is greater than the value of communicating immediately, the
agent will delay communication.

Figure 5 illustrates this with a simple example. If agent 1 collects A at site 1 then agent
2 should go to site 3, otherwise agent 2 should go to site 4. Similarly, with agent 2 collecting
B at site 2. As with the previous example, two A’s or two B’s have a reward of 10, and each
C adds a reward of 1. α1 and α2 are the two communication points. The Basic approach will
always communicate at both α1 and α2 when the communication cost is low (see Figure 6).
When the cost increases to 0.5, the agents will only communicate when they have valuable
information. Agent 1 will initiate communication 50% of the time at α1 and agent 2 will
initiate 50% of the time at α2, for a total expected communication of 0.5 + 0.5 = 1.0. The
Delay policy, however, recognizes that waiting a step is beneficial and will only communicate
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FIGURE 5. A simple example that illustrates how delaying communication can improve the expected value.
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FIGURE 6. The expected value and expected amount of communication as a function of cost.

at α2, which reduces the communication cost to .5 without decreasing the expected reward,
yielding a higher expected value.

When the cost goes above 1, the Model approach realizes that it is more efficient to have
only one agent initiate communication when it has valuable information. Specifically, the
agents will initially plan to try for the joint reward, a change in plan will notify the other agent
to collect C, which is worth 1.0. If communication cost is between 1.0 and 1.5, it can not be
worth it for either agent to communicate at site 1, and at site 2, one agent will communicate
50% of the time while the other will always stay silent, resulting in communication 50% of
the time. By contrast, under Basic or Delay, each agent will communicate if it has collected
a C, resulting in communication 75% of the time.

This illustrates that the Model and Delay approaches address different sources of error
and neither dominates the other.

A second source of error in the assumption of no future communication is built into
the policies generated by the CSA. These policies may avoid situations which are valuable
only when close coordination is possible. The optimal solution can exploit the possibility
of future communication, while the domain-level policies generated here always assume
no future communication. This source of error can also be partially compensated for by
extending the 1-step delay to consider h-steps into the future.



ANALYZING MYOPIC APPROACHES FOR MULTI-AGENT COMMUNICATION 41

5. MODEL-LOOKAHEAD APPROACH

This section demonstrates how the Model approach of 4.1 and the Delay approach of 4.2
can be merged together and extended to consider further steps into the future. The basic idea
is an algorithm that makes optimal communication decisions within a lookahead horizon h
given fixed domain-level policies based on zero communication. We call the merged approach
Model-Lookahead.

To start, we introduce two new value functions. V h (si , sj ) is the expected value of not
communicating in the current step, following an optimal communication policy for the next
h steps, and then not communicating again after h steps. V ∗h(si , s j ) − C is similar but starts
with an immediate communication. When the lookahead horizon is 0 these value functions
are equivalent to the single-step value functions from Definition 2, V 0(·) = V (·), V ∗0(·) =
V ∗(·).

V h(si , s j ) =
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s ′
i ,s

′
j ∈Comm

P
(
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0
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j

)[
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]
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)[
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j ) + V h−1(s ′

i , s ′
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]
, (4)

where R is the sum of the reward functions, R(s ′
i , s ′

j ) = Ri (s ′
i ) + R j (s ′

j ) + R(s ′
i , s ′

j ). Comm
is the set of states in which communication will take place. How it is computed becomes
clear when we transform the equation as follows. The details of the derivation of Equations 4
and 5 can be found in Appendix A.

V h(si , s j ) = V (si , s j )

+
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j ∈Comm
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)[
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i , s ′
j )
]
. (5)

The agents must find the set of communication states for the next step that maximizes
V h (si , sj ). The next step communication policy only affects the second line of Equation (5),
which bears a remarkable similarity to Equation (3), except that this is a recursive function.
Thus the same table algorithm can be applied to generate optimal communication policies
over the lookahead horizon.

6. EXPERIMENTS

Figure 7 illustrates the performance of this approach on a larger problem with six time
steps. The agents represent Mars rovers traversing sites and collecting data. State reflects
the current site of the agent and data at that site, and battery life (from 0 to 8) remaining
to the agent. The first agent’s state and transition matrices correspond to Figure 1. Actions
available are Move Left, Move Right, Wait, Quick Analysis, Detailed Analysis. The effects of
Move Left and Move Right for the first agent can be seen on the left-hand side of the figure.
The second agent simply moves from site 0 to sites 1,2, and 3 in a straight line. The right-hand
side of the figure corresponds to the classes of data available at a specific site. There are five
classes of possible data in all, A–E. Each site has a probability distribution over the classes
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FIGURE 7. Performance of the Model-Lookahead Approach with lookahead horizon 2.

available. A Quick Analysis determines the class at a site, and a Detailed Analysis actually
obtains the reward. Each agent starts with eight energy units on its battery. Movement costs
one energy unit, as does a Quick Analysis. A Detailed Analysis costs two energy units. A
reward of 10 is obtained for jointly obtaining classes A–D, while a reward of 1 is received
for obtaining class E.

The Model-Lookahead approach performs significantly better than the original Basic
approach and demonstrates a smooth and monotonic reduction of the expected value as the
cost for communication increases.

Figure 8 shows the running time of Model-Lookahead compared to Basic. The Basic
approach took about 11 seconds to generate the entire policy while Model-Lookahead took
50% longer with a lookahead horizon of 0 due to the added cost of finding the optimal
communication policies of the tables. The worst case complexity of Model-Lookahead is
exponential in the size of the lookahead horizon, but due to caching and the structure of the
problem, in practice this is not always the case. In this example, the running time started out
with an exponential curve but that changed as the lookahead horizon approached the number
of steps in the problem.

To further test the generality of the approach, we ran experiments on a second domain,
using a different methodology for constructing policies. Our goal was to prove robustness
by demonstrating the use of VoC in conjunction with a second algorithm, besides CSA. We
also changed some of the characteristics of the domain, allowing actions to vary in duration
as well as in their effects.

The selection of the domain was motivated by mapping scenarios from NASA and the
U.S. Geological Survey (Morris et al. 2008), whereby data from different imagers can be
assimilated. Suppose our agents are sensors on separate satellites, which scan geographical
locations on different bands. Data is most worthwhile if it gets scanned by both satellites at
the same time. Actions available to the satellites are to Scan the current location or to Wait.
Rewards can be both local and joint, for performing a scan. A joint reward is only received if
the scan is initiated at the same time by both satellites. After a satellite is done scanning one
location, it moves on to the next location. The time taken to perform a scan is a distribution.
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FIGURE 8. Comparison of the time to compute the policy for the Basic approach versus the Model-Lookahead
approach of various depths.

In contrast to the previous examples, the uncertainty in this domain is with respect to time,
rather than with respect to the type of data collected. Furthermore, instead of using CSA
to solve the Dec-MDPs, we used a more recent and faster algorithm, which converts the
Dec-MDP into a bilinear program and solves it (Petrik 2007). Through the use of bilinear
programing, we could solve larger problems.

We first converted the state space in this example into a state space appropriate to the
Value of Communication methodology. There are two types of states, the first type is when
the satellite is at a location and can choose to scan or not to scan. This defines lh states
where l is the number of locations, and h is the total time horizon of the problem. To make
the domain appropriate for Value of Communication analysis, it is necessary that each agent
have a defined state for each time step. To assure this, one can simply include additional
states for the case when a satellite has initiated an scan and is waiting for it to finish. This is
a tuple (s, f , l), where s is the current time, f is the time at which the action will be finished,
and l is the location of the agent when the scan is finished. Combinations of these tuples
introduce sfl new states. Thus, the total number of states is lh + h2l.

In particular, we chose an example with h = 8 and l = 4. This defined 289 states for
each agent, and 578 state/action pairs. We chose local rewards for the four sites to be .5, 5,
5, and 10, respectively. There was a shared joint reward of 20 if and only if the second site
was explored by both rovers at the fifth time step. The duration of the scan of the first site
would always be one step for the first agent, and a uniform distribution centered at four steps
for the second agent. Successive scans by both agents would take a mean duration of 3 with
a standard deviation of 1.6.

Results are shown in Figure 9. The figure shows that—as we observed in the Rovers
domain—following the Basic communication strategy results in overcommunication. The
key to this problem is that there is a large reward for completing all the scans, and an
even larger reward for performing the valuable joint scan of the second site at step 5. The
first satellite needs to choose between completing all the scans it can, versus waiting and
attempting the joint scan.



44 COMPUTATIONAL INTELLIGENCE

FIGURE 9. Results on satellite domain, showing the fixed value of no communication, compared with the
values of the Basic strategy, Model with horizon 0, and Model with horizon 1.

Under the Basic strategy, the first satellite will overcommunicate after completing its
first scan. The decision on whether communication is beneficial is mostly dependent on the
second agent. If the second agent’s scan terminates quickly, there will be time to synchronize
for a second joint scan, and the agents should communicate to perform it. If it does not, then
there is no need to communicate and synchronize. When the Basic policy is followed, the
first satellite merely computes expected value of communication from its own perspective,
without considering the policy of the other agent, and as a result overcommunication occurs,
as described in the previous sections. The problem is corrected when the Model Lookahead
policy with a delay is followed, which accounts for both the communication policy of the other
agent as well as the ability to defer communication to future time steps. Model Lookahead
consistently outperforms the Basic communication strategy, except when communication is
either ubiquitous (at Cost = 0), or never useful.

To summarize, the Model Lookahead approach offers a simple but effective way to
overcome the limitations of a naive myopic approach to communication. In two different
domains it produced smooth and monotonous degradation of value as communication cost
increases. This approach, however, does have its limitations. Even when the lookahead
horizon is equal to the number of steps in the decision problem, the policy generated is
not guaranteed to be an optimal joint policy. This is because the domain-level actions taken
by the agents are generated assuming no future communication. Future work will focus on
extending this algorithm to allow a larger domain-level action lookahead horizon.

7. CONCLUSION

We analyze the problem of choosing when to communicate in a multi-agent system.
The conditions for communication are formulated based on the value of information. We
show how a standard myopic approach leads to an efficient way to generate communication
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policies, based on the assumption that communication is only possible at the present time.
This extends previous work on myopic approximation of the value of information and the
value of computation in single-agent settings.

We then examine the implications of the myopic assumption and show that it can lead
to poor agent behavior. We identify two sources of error and provide modifications to the
original algorithm to address these problems. Together, these modifications result in an
improved algorithm for generating a decentralized joint policy. Moreover, the computational
overhead of our modifications is small for a small horizon. Controlling the horizon presents
a useful trade-off between solution quality and computation time.

While the sources of error that we identify and the general approach to addressing them
are common to many multi-agent systems, the equations and specific algorithms we present
do rely on certain structure being present in the problem. The key structure in the model is
the synchronizing communication protocol. Without this, the agents might need to memorize
the entire history of communication to operate optimally, which results in an exponential
increase in the size of the policies and a double-exponential increase in solution time.

There are two components that together allow the use of synchronizing communication
as an exact model. First is the fixed cost of communication. If the agents can send partial
state information at a reduced cost then the optimal solution may include communication that
does not synchronize the agents’ view of the world. Second is the transition and observation
independence between the domain-level actions. If the agents are able to take domain-level
actions that affect the observations or transitions of another agent, then the agents have a
form of implicit communication, which must be taken into account when considering state
probabilities as well as belief states of the other agent. This generalization is beyond the
scope of this paper.

Despite these assumptions, the overall paradigm of introducing and controlling commu-
nication based on the value of information is quite general. Identifying the sources of error
common to many myopic approaches and showing how relatively simple modification could
improve the performance of myopic approximations, will help design better communication
algorithms for multi-agent systems.
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APPENDIX A

This appendix provides the proof of Theorem 1.

Theorem 1. Computing the Value of Communication can be done in time polynomial in the
number of local states and exponential in the number of agents.

Proof . There are four components to computing the VoC that add to the complexity:

• P(sj | s0
j , t , π0

j ) is the t-step transition function for agent j. Given the assumption that j
will never initiate communication,

P
(
s j

∣∣ s0
j , t, π0

j

) =
∑

s ′
j

P
(
s ′

j

∣∣ s0
j , t − 1, π0

j

)
P

(
s j
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j , π

0
j

)
. (A.1)

This takes O(|Sj |) if the values from t − 1 were cached from a previous call to
VoC and O(|Sj |2) to compute from scratch.

• V (si , sj ) and V
∗
(si , sj ) are both expected values (see Definition 1). The only difference

is that they assume different domain-level policies. With dynamic programming they can
be solved in time polynomial in the number of world states, which is exponential in the
number of agents, O(|Si |n).

• The difficult part of computing the VoC is finding the new optimal joint policy with no
communication for the different possible world states. Note that the CSA does not need
to be run in its entirety each time. Instead, most of the computation can be cached and
only the final step of the algorithm must be rerun for each world state. That step involves
searching through a small set of policies for each agent for the optimal joint policy. This
step takes time exponential in the number of agents.

• When there are n > 2 agents, the summation in the VoC is over all possible local states of
the other agents. The loop, therefore, must be repeated O(|Sj |n−1) times. However, it is
useful to note that V

∗
(si , sj ) − V (si , sj ) ≥ 0 and therefore the summation can terminate

as soon as it becomes greater than C instead of looping through all possible next states.

The net result is a complexity polynomial in the number of local states for the agents
and exponential in the number of agents. �

APPENDIX B

This appendix shows how Equation (5) was derived. This is shown for two agents, i and
j. The current local states for the agents are si and sj . We always use s ′

i and s ′
j for successor
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states. The previous synchronized world state is 〈s0
i , s0

j 〉, which happened t steps earlier.
When the agents communicate in si , sj , the new synchronized world state becomes 〈si , sj 〉,
and t = 0. The agents take domain-level actions based on an optimal policy assuming no

future communication, 〈π 〈s0
i ,s0

j 〉
i , π

〈s0
i ,s0

j 〉
j 〉. C is the cost for communicating. Comm′ is the set

of world states in which the agents will communicate. We explain how this is computed at
the end.

The global value function assuming no communication is:

V
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〉
, t + 1

)]
.

Note: The derivation is the same if you include a discount factor.
A superscript next to V represents the horizon in which communication is considered:

• V 0(si , sj , 〈s0
i , s0

j 〉, t) is the expected value of never communicating.
• V 0(si , sj , 〈si , sj 〉, 0) − C is the expected value of communicating immediately and never

again.
• V 1(si , sj , 〈s0

i , s0
j 〉, t) is the expected value of not communicating in the current step,

allowing communication if appropriate in the next step, and never communicating after
the next step.

• V 1(si , sj , 〈si , sj 〉, 0) − C is the expected value of communicating immediately, allowing
communication if appropriate in the next step, and never communicating after the next
step.

• V h (si , sj , 〈s0
i , s0

j 〉, t) is the expected value of not communicating in the current step, al-
lowing communication where appropriate for the next h steps, and never communicating
after that.

• V h (si , sj , 〈si , sj 〉, 0) − C is the expected value of communicating immediately, allowing
communication where appropriate for the next h steps, and never communicating after
that.

Now, we give an inductive definition of the value allowing communication over a horizon.
First is the base case, h = 0. V 0(si , sj , 〈s0

i , s0
j 〉, t) = V (si , sj , 〈s0

i , s0
j 〉, t). This is just the

global value function defined above.
Assume that V h−1(si , sj , 〈s0

i , s0
j 〉, t) is the expected value of not communicating in the

current step, allowing communication for the next h − 1 steps, and never communicating after
that. Also assume that V h−1(si , sj , 〈si , sj 〉, 0) − C is the expected value of communicating
immediately, allowing communication for the next h − 1 steps, and never communicating
after that.

To compute V h (·) we divide the next possible world states into two categories, those in
which the agents would choose to communicate, Comm′, and those in which they would not,
¬Comm′. For both cases, it is the sum of the probability that the agents transition to that world
state times the immediate rewards plus the expected value allowing future communication
up to the original horizon.
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We now transform the equation as follows. First, we separate the rewards from the
expected values:
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Then, we combine the rewards and add/subtract two new components, (B.4)/(B.5) and
(B.6)/(B.7):
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j ) + R(s ′

i , s ′
j )] (B.1)

+
∑

s ′
i ,s

′
j ∈Comm′

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)[
V h−1(s ′

i , s ′
j , 〈s ′

i , s ′
j 〉, 0) − C

]
(B.2)

+
∑

s ′
i ,s

′
j ∈¬Comm′

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)[
V h−1

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)]
(B.3)

+
∑
s ′

i ,s
′
j

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)[
V

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)]
(B.4)

−
∑
s ′

i ,s
′
j

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)[
V

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)]
(B.5)

+
∑

s ′
i ,s

′
j ∈Comm′

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)[
V h−1

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)]
(B.6)

−
∑

s ′
i ,s

′
j ∈Comm′

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)[
V h−1

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)]
. (B.7)
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Next, we combine (B.1) with (B.4), (B.2) with (B.7), and (B.3) with (B.6) and then with
(B.5):

=
∑
s ′

i ,s
′
j

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)

× [
Ri (s

′
i ) + R j (s

′
j ) + R(s ′

i , s ′
j ) + V

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)]
+

∑
s ′

i ,s
′
j ∈Comm′

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)

× [
V h−1(s ′

i , s ′
j , 〈s ′

i , s ′
j 〉, 0) − C − V h−1

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)]
+

∑
s ′

i ,s
′
j

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)

× [
V h−1

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

) − V
(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)]
(B.8)

Line (B.8) is simply the expected value with zero communication.

= V
(
si , s j ,

〈
s0

i , s0
j

〉
, t

)
(B.9)

+
∑

s ′
i ,s

′
j ∈Comm′

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)

× [
V h−1(s ′

i , s ′
j , 〈s ′

i , s ′
j 〉, 0) − C − V h−1

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)] (B.10)

+
∑
s ′

i ,s
′
j

P
(

s ′
i

∣∣ si , π
〈s0

i ,s0
j 〉

i

)
P

(
s ′

j

∣∣ s j , π
〈s0

i ,s0
j 〉

j

)

× [
V h−1

(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

) − V
(
s ′

i , s ′
j ,

〈
s0

i , s0
j

〉
, t + 1

)] (B.11)

This is Equation (5). We represent the equation in this way because it is much easier
to use. This transformed equation also demonstrates how to compute the communication
policy for the next step. We want to find a joint communication policy for the next step that
maximizes this value function. Lines (B.9) and (B.11) do not depend on the communication
policy for the next step, so we just need to maximize line (B.10). This is what the Model
approach does.


