
Deakin Research Online
Deakin University’s institutional research repository

DDeakin Research Online
Research Online
This is the published version (version of record) of:

Tao, Li and Zhang, Zili 2006, Dynamic reconfiguration of multi-agent
systems based on autonomy oriented computing, in 2006 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology : proceedings :
18-22 December, 2006, Hong Kong, China, IEEE Xplore, Piscataway, N.J.,
pp. 125-128.

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30009754

©2006 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Copyright : 2006, IEEE

Dynamic Reconfiguration of Multi-Agent Systems
Based on Autonomy Oriented Computing

Li Tao 1 and Zili Zhang 1,2

1Laboratory of Intelligent Software and Software Engineering,
Southwest University, Chongqing, 400715, China

{tli, zhangzl}@swu.edu.cn
2School of Engineering and Information Technology, Deakin University,

Geelong, VIC 3217, Australia
zzhang@deakin.edu.au

Abstract

Dynamic reconfiguration has been listed as one of the
key challenges in support of agent adaptation to environ-
ments, which has attracted much attention of researchers
world wide. To tackle this tough problem, an Agent-Based
Dynamic Reconfiguration Model (ADRM) is proposed from
the autonomy-oriented computing (AOC) point of view. The
ERA (Environment–Reactive rules–Agents) algorithm used
in AOC is improved to support the organization formation
behavior, which is essential in dynamic reconfiguration. To
test the efficiency of this model and the effectiveness of dif-
ferent reactive behaviors, the performance of this model
was investigated under different selection probabilities.

1. Introduction

Multi-agent systems and agent-based hybrid intelligent
systems are well suited to engineering complex software
systems [1]. But how to dynamically reconfigure an agent
system based on different tasks and changing environment
is a key issue which remains unsolved.

Actually, dynamic reconfiguration is listed as one of the
key challenges in support of agent adaptation to environ-
ments [2], which is called ‘run-time reconfiguration and re-
design’. To solve this problem, researchers proposed a few
techniques from different aspects, which include employ-
ing different kinds of middle agents[3], reconfiguring indi-
vidual agents at micro-level[4], modifying the geographical
distribution of an application[5], and so on. Dynamic re-
configuration of multi-agent systems is similar to dynamic
coalition formation in some parts. It is the process of coali-
tion management, and which also involves coalition forma-
tion. The researches on dynamic coalition formation can be

found in [7][8][9], etc.

The emphasis of this paper is on the dynamic reconfigu-
ration with different tasks and environment changes. There
is no efficient solution reported to date.

In this paper, an emerging computational paradigm
called Autonomy Oriented Computing (AOC) [10] has been
used for modeling dynamic reconfiguration of agent-based
systems. AOC has been effectively used in a variety of do-
mains covering constraint satisfaction problem solving [11],
optimization [12], etc.

Using AOC framework to model dynamic reconfigura-
tion of agent-based systems, we need to clearly describe
what are the environment, primitive behaviors and behav-
ioral rules of autonomous entities (here are agents), and
the interactions between agents and their environment. The
dynamic reconfiguration of agent-based systems is then re-
duced to the self-organization of AOC systems.

Moreover, dynamic reconfiguration can be generalized
to Constraint Satisfaction Problem (CSP) [6]: (1) The
agents who would like to provide services can be regarded
as variables X in CSP; (2) The web environment in which
agents exist is the domain D of variables; (3) The require-
ments of tasks can be naturally described as constraints C.

From the analysis above, it is evident that the solutions
for CSP can be used for dynamic reconfiguration of agent-
based systems. ERA (Environment–Reactive rules–Agents)
is a multi-agent oriented approach to solving constraint sat-
isfaction problems [11]. It has been successfully used for
solving typical CSPs, such as n–queen problems and color-
ing problems. In this paper, the algorithm IERA (Improved
ERA) which is improved upon ERA will be used for sup-
porting the organization formation behavior, which is es-
sential in dynamic reconfiguration.

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

2. Agent-Based Dynamic Reconfiguration
Model ADRM

Reconfiguration behavior of agent systems performs dur-
ing the period of task implementation. For better illustrat-
ing the problem we are going to solve, the International
Trading Agents Competition for Supply Chain Manage-
ment (http://www.sics.se/tac) (TAC SCM) was selected as
an example, and some minor changes are made for our case.
The changes are: (1) The suppliers with own quoted price
dynamic change . (2) The component supply of each sup-
plier is instable. (2) Customer requirements are allowed to
change before production.

In such scenarios, neither typical static supply chain
management models nor the strategies of good players in
TAC SCM game are appropriate. Because they ignored the
dynamic changing situation showed above.

Generally speaking, the capabilities required to support
reconfiguration include: (1) information service mecha-
nisms able to locate appropriate suppliers, and determine
their abilities; (2) description methods used for describing
the capability of suppliers so that manufacturer can com-
pare two suppliers easily; (3) searching algorithms for find-
ing appropriate suppliers in a given time; (4) control mech-
anisms for maintaining and reconfiguring agent systems.

In essence, the ADRM architecture is composed of sev-
eral different agents, including Member Agent (MAgent),
Construct Agent (CAgent), Employee Agent (EAgent), Yel-
low Page Agent (YP) [3], and Reconfiguration Controller
Agent (RC), as shown in Figure 1. MAgent is the services
provider (components suppliers in the scenario). CAgent
undertakes the task for searching appropriate MAgents. In
the example, on behalf of the manufacturer, the CAgents
search and negotiate with suppliers to decide which sup-
plier is best for manufacturer. EAgents are those who carry
out tasks. They are the suppliers who have been selected by
manufacturer. YP can perform some basic functions, such
as allowing MAgents registering and organizing the regis-
tration information. RC monitors and controls the reconfig-
uration behavior of the whole agent system.

Specifically, to achieve the goal of reconfiguration, YP
has been used for agents discovery and registration in
ADRM. Methods for Constraint Solving Problems (CSP)
has been borrowed for second issue. Every requirement of
user can be regarded as one constraint, and the ability of
each agent can be represented as a constraint value. IERA
algorithm will be used for solving problem (3). An algo-
rithm ADSR will be developed for question (4). Due to the
limit of space, this paper focuses on the main idea of the
ADRM model and the IERA algorithm.

As Figure 2 shows, ADRM model performs reconfigu-
ration behavior as follows: During the period of task im-
plementation, YP will receive the applications of MAgents

Figure 1. The ADRM system architecture

(Suppliers) about joining or exiting continuously. At the
same time, YP will arrange the information of joining MA-
gents in a two dimension lattice as the logical environment.
RC is used for producing CAgents, dispatching CAgents
with searching tasks according to user’s requests. More-
over, RC should monitor the EAgents implementation situa-
tion. If some of the EAgents capability decrease to a certain
range, e.g., 4% of the EAgents have disabled, it will conduct
reconfiguration behavior. If the number of leaving EAgents
is too large, e.g., 40% of the EAgents have disabled, the RC
will disband the old agent system, build a new one, instead
of reconfiguring the old ones.

Figure 2. The ADRM system architecture

3. Formal Framework of ADRM Model

In this section, the formal framework of ADRM will be
briefly introduced. In our method, the CAgent is the au-
tonomous entity in AOC. The lattice formed by MAgents
registration information is represented as multi-entity en-
vironment. Thus, the problem of finding a solution to a
dynamic reconfiguration is reduced to that of how a group
of CAgents find a certain desired state by performing their
primitive behaviors in such an environment.

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

3.1 Definition of Key Elements in ADRM

As discussed, there are five different types of agents in
ADRM. One of the key components is CAgent. It is an
autonomous entity which implements the self-organization
computation.

Definition 1 (Construct agent) : An construct agent
(CAgent) is a tuple <CID, BV, BVL, CL>, where CID is
the id of CAgent. BV is the best utility value found by this
CAgent until now. BVL is the location of the MAgent who
owns the best utility value. CL points the position of this
CAgent in logical environment.

Definition 2 (Construct agent primitive behaviors):
The primitive behaviors set for CAgent is R= {better-move,
best-move, across-move}, which are improved from ERA
system [11].

better-move: A CAgent moves to a better position with
a probability of better-move. The better-move behavior can
be expressed as function Ψbetter:

Ψbetter(x, y) = j | j ∈ [low, |Dx|],
e(x, j).value ≥ e(x, y).value

Where

low =
{

1 y − s ≤ 1,
y − s y − s > 1.

Note that in this function, e(x,y) is the current position of
CAgent in logical environment. x is the row number. y is
the column number. s means search step. low is the lower
limit of the search range.

best-move: A CAgent moves to a best position with a
probability of best-move.

Ψbest(x, y) = j | j ∈ [low, top],
(∀t ∈ [low, top]) e(x, j).value ≥ (x, t).value

Where

low =
{

1 y − s ≤ 1,
y − s y − s > 1.

top =
{

n y + s ≥ |Dx|,
y + s y + s < |Dx|.

Note that in this function, e(x,y) is the current position
of CAgent. x is the row number. y is the column number.
s means search step. low is the lower limit of the search
range, and top is the upper limit.

across-move: A CAgent moves to a new row with a
probability of across-move.

Ψacross(x, y) =

i ∀t[1, n],
|Di|∑
j=1

e(i, j) >
|Dt|∑
j=1

e(t, j)

Random(n)

Definition 3 (Environment E): Particularly, here, E is a
lattice composed by utility values of all the MAgents.

The data structure of E can be defined as:
– E =〈row1, row2, . . . , rown〉.

– ∀i ∈ [1,m], rowi ⇔ the domain of ith CAgenti ⇔ Di,
so rowi has |Di| columns.

– rowi =<latticei1, latticei2, . . . , latticei|Di|>.
– e(i, j).value records the jth value of rowi. It is the utility

value of MAgentij .
The utility value is calculated through the matching of

constraint conditions. Due to the limit of space, the detailed
calculation process is omitted.

3.2 IERA Algorithm

IERA algorithm which has been improved from ERA
undertakes the searching task in dynamic reconfiguration.
The main improvements include: (1) the definition of au-
tonomous entity primitive behaviors; (2) the implementa-
tion ways of autonomous entity primitive behaviors; (3) the
interaction content between environment and autonomous
entities; (4) the goal of the whole system.

The IERA algorithm includes three main function mod-
ules. Function Initialize initializes the parameters of CA-
gents, such as search footstep, primitive behaviors probabil-
ity, etc. Function SelectBehavior uses Roulette method [6]
to select one primitive behavior according to different be-
havior probability. Function OrganizationFormation is the
main program of IERA. The CAgents will do some primi-
tive behaviors to find the proper Eagents, which will form
the organization to undertake user’s tasks.

4. Experiment and Discussion

The experiment in this paper focuses on two aspects.
Can IERA converge? What effects do different better-
move/best-move/random-move probability ratios make?
The experiments were conducted with the number-of-
MAgents = {32, 100, 1000, 10000}, number-of-CAgents=
{4, 10, 50, 100}, better-move/best-move/random-move
probability between [0.0, 1.0]. And each case runs 100
times.

The experiment shows that if only the behaviors prob-
ability is appropriate, the IERA can convergence in a re-
ceivable time. The experiment also shows that the behav-
iors probability has impact on IERA convergence and the
speed of convergence significantly. Figure 3 is one of the
experiment results to show the relationship between behav-
iors probability and average convergence speed of CAgents.

By analyzing the results, some valuable rules for behav-
ioral probability settings can be obtained. (1) The proba-
bility of across p should be neither too small, nor too big.
Because if across p is too small (e.g. across p=0.0), the
CAgent will be restrict to a small area. If it is too large,
the whole agent system will be instable. (2) When across p
fixed, the bigger the better p is, the faster convergence speed
will be have. (3) Best p should not be too big. When

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

across p fixed and best p ∈ [0.1, 0.3], fastest average con-
vergence speed can be obtained. Because best-move is a
traversal in an area that will waste too much time to find a
solution.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

better
p

th
e

av
er

ag
e

ru
nt

im
e(

s)

across
p
=0.1

across
p
=0.1

across
p
=0.3

across
p
=0.4

across
p
=0.5

across
p
=0.6

across
p
=0.7

across
p
=0.8

Figure 3. Relationship between behav-
iors probability and average convergence
speed of CAgents. (Parameters Setting:
MAgent Number=1000, CAgent Number=50,
best p=1.0–across p–better p)

5. Conclusions

The emphasis of this article is on the dynamic reconfig-
uration of agent-based systems at macro-level with differ-
ent tasks and with changing environment. In this paper, we
have described an AOC-based approach to solving multi-
agent dynamic reconfiguration. Dynamic reconfiguration of
agent-based systems has been modeled by AOC framework.
The environment, primitive behaviors and behavioral rules
of CAgents, and the interactions between agents and their
environment have been clearly defined. In addition, the
multi-agent oriented approach to solving CSP called ERA
has been proposed for supporting reconfiguration problems.
The Experiment of IERA algorithm shows that behaviors
probability have significant influence on the convergence
and the convergent speed. Some practical rules for behav-
ioral settings have been found.

Although we have done some work on multi-agent dy-
namic reconfiguration, a lot of work remains. In the future,
we hope to further improve the IERA algorithm by intro-
ducing heuristic rules, and to extend our reconfiguration ap-
proach to virtual organization formation and management in
Grid Computing domain.

References

[1] Z. Zhang and C. Zhang. Agent-Based Hybrid Intelli-
gent Systems: An Agent-Based Framework for Com-
plex Problem Solving. LNAI 2983, Springer, 2004.

[2] M. Luck, P. Mcburney and C. Preist. A Manifesto for
Agent Technology: Towards Next Generation Com-
puting. Autonomous Agents and Multi-Agent Systems,
Vol. 9, No. 3, pp. 203-252, 2004.

[3] K. Sycara, J. Lu, M. Klusch, S. Widoff. Matchmaking
among Heterogeneous Agents on the Internet. Proc.
AAAI Spring Symposium on Intelligent Agents in Cy-
berspace, Stanford, USA, 1999.

[4] M. Hannebauer. Autonomous Dynamic Reconfigura-
tion in Multi-Agent Systems: Improving the Qual-
ity and Efficiency of Collaborative Problem Solving.
LNAI 2427, Springer, 2002.

[5] N. De Palma, L. Bellissard and M. Riveill. Dynamic
Reconfiguration of Agent-Based Applications. Third
European Research Seminar on Advances in Distrib-
uted Systems, Madeira Island (Portugal), April 23rd-
28th, 1999.

[6] S. Russell, P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall (2nd edition), 2002.

[7] K. Lerman, O. Shehory. Coalition Formation for
Largescale Electronic Markets. Proceedings of the In-
ternational Conference on Multi-Aent Systems, 2000.

[8] C. Preist, A. Byde, C. Bartolini. Economic Dynam-
ics of Agents in Multiple Auctions. Proceedings of the
5th International Conference on Autonomous Agents,
ACM Press, pp. 545-551, 2001.

[9] J. Yamamoto, K. Sycara. A Stable and Efficient Buyer
Coalition Formation Scheme for E-Marketplaces.
Proceedings 5th International Conference on Au-
tonomous Agents, Montreal, Canada, ACM Press,
2001.

[10] J. Liu, X. Jin and K. Tsui. Autonomy Oriented Com-
puting: From Problem Solving to Complex Systems
Modeling. Springer, 2005.

[11] J. Liu, H. Jing, Y. Y. Tang. Multi-agent Orinented Con-
straint Satisfaction. Artificial Intelligence, Vol. 136,
No. 1, pp. 101-144, 2002.

[12] K. C. Tsui and J. Liu. Evolutionary Diffusion Opti-
mization. Proceedings of the 2002 Congress on Evolu-
tionary Computation, Honolulu, Hawaii, May 12-17,
2002.

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006

