
Evaluating Different Genetic Operators in the Testing for Unwanted Emergent
Behavior using Evolutionary Learning of Behavior

Jörg Denzinger, Jordan Kidney
Department of Computer Science

University of Calgary, Calgary, Canada
�denzinge,kidney�@cpsc.ucalgary.ca

Abstract

We present an experimental comparison of different ge-
netic operators regarding their use in an evolutionary learn-
ing method that searches for unwanted emergent behavior
in a multi-agent system. The idea of the learning method is
to evolve cooperative behavior of a group of so-called at-
tack agents that act in the same environment as the tested
agents. The attack agents use action sequences as agent ar-
chitecture and the quality of a group of such agents is mea-
sured by how near their behavior brings the tested agents
to show the unwanted behavior. Our experiments within
the ARES II rescue simulator with an agent team written
by students show that this method is able to find unwanted
emergent behavior of the agents. They also show that rather
standard genetic operators (on the team level and the agent
level) are already sufficient to find this unwanted behavior.

1 Introduction

One of the hot research topics in multi-agent systems
(MAS) is achieving emergent behavior of a group of agents.
The form of emergent behavior researchers are most inter-
ested in is the creation of synergetic effects that have as re-
sult that the group of agents achieves goals that are well
beyond what can be expected from them if we just add up
the individual abilities of these agents. But unfortunately,
emergent behavior can also result in a system behavior that
is not wanted by the developers of the system.

So far, very few researchers have looked into the prob-
lem of unwanted emergent behavior. Detecting unwanted
behavior of a system in general is usually the task of the sys-
tem test phase in the development, but software testing as a
discipline also has not looked intensively into this problem.
There the best practice is the use of randomly generated in-
teraction sequences to see if something bad is happening

(see [4]). The detection of unwanted emergent behavior of
a system, which can also be caused by adaptive abilities of a
single agent, still is the sole responsibility of human testers,
with very limited tool support (see [6], [9]).

In [3], we presented an approach to support testing for
unwanted emergent behavior that fights ”fire with fire” by
using techniques from learning of cooperative behavior to
search for a particular unwanted behavior. The general idea
of this approach is to have a group of tester (or attack)
agents act as users and other systems that a group of agents,
the tested agents, interact with. We then use learning tech-
niques for the attack agents to have them produce interac-
tion sequences with the tested agents that come nearer and
nearer to showing the particular behavior that is unwanted.
In [3], we used as learning method an evolutionary learning
method that uses sequences of actions as individuals, one
sequence for each attack agent.

[3] presented a proof of concept application that tested
multi-agent systems developed by students of a basic MAS
class. While fitness functions for two rather different behav-
iors were presented, other parameters of the evolutionary
learning method, like genetic operators or population size,
and their influence on the results were not evaluated. There
have been many studies on the influence of such parameters
on the performance of evolutionary algorithms in general
(see, for example, [13] or [7]), but the gist of these studies
is that it depends on the particular application what setting
of these parameters offers a chance for a good performance,
with the usual caveat that there still might be some problem
instances for which this setting might not be good.

Since we used a class of genetic operators, namely so-
called targeted operators, that were specially developed for
action sequences, in this paper we examine and analyze dif-
ferent genetic operators and their combinations with regards
to their influence on finding unwanted emergent behavior.
Our experiments with simulated rescue teams written by
students show that quite a few of the genetic operators allow
the system to find a particular unwanted behavior (the stu-
dents’ agents freeze at some point in the simulation). But in-



terestingly, the combination of rather standard operators on
the level of the agent team and on the level of a single agent
was consistently the best choice in our experiments both
with regard to quality of the evolved attack team and the
number of generations needed to produce the attack team.

2 Agents and multi-agent systems

Since we provide a rather general framework for testing
multi-agent systems we use a rather general definition of
agent (although our attack agents will naturally be a very
specific instantiation of the following definition). An agent
�� is a quadruple �� = (���,���,���,���). ��� is a set of
situations that the agent can find itself in, ��� is the set of
actions that �� can perform and ��� is the set of possible
values that ��’s internal data areas can have. When having
to determine its next action, �� uses ��� � ��� � ��� �

��� applied to the current situation and the current values
of its internal data areas to make this decision.

Obviously, a multi-agent system requires a set of agents
�. But these agents need to share an environment (or at
least parts of it) in order to interact with each other, and this
environment �	
 has quite some impact on what the agents
can do. So, formally a multi-agent system ��� is a pair
��� = (�, �	
). Actions of the agents might change the
environment (or it can change on its own) and therefore �	

should consist of a set of environment states. Going back to
our agent definition, a situation in an agent’s set ��� might
contain a view on the current environment state, information
about the agent itself that has not found its way into a data
area in ���, and information about the other agents based
on the perception of the agent.

3 Using learning of behavior to test for emer-
gent behavior

Our general idea for testing a multi-agent system
��������� = (�������, �	
) for unwanted emergent be-
havior is to use a set of so-called attack agents1 ������� that
play the role of entities that the agents in ������� usually
interact with in �	
. Such entities can be some of the team
mates of the agents in �������, human users interacting with
��������� or other systems that interact with���������.
In our general setting, we also allow for the existence of a
third set �	
�� of agents, the bystander agents, which are
agents that are neither in ������� nor under control of the
tester, but interact with at least some agents in ������� in
the environment.

Figure 1 presents a graphical view of the general set-
ting. Key for our general approach is that the behavior of

1We use the term attack in the following, since “tester” and “tested”
are very difficult to distinguish and what the attack agents are doing can
definitely be seen as an attack on the tested agents.

Figure 1. General setting of our approach

. . .

Learner

Ag
tested,1

Ag
tested,m. . .

.

.

.
Env

Ag
byst,1

Ag
byst,k

Ag
attack,1

Ag
attack,n

the agents in ������� is the product of learning that aims at
figuring out what interactions of these agents with the en-
vironment, the tested agents and the bystander agents may
produce (or at least comes near) a certain behavior by the
tested agents. While Figure 1 suggests that this learning is
performed by a central learner that feeds behaviors into the
attack agents (which is the approach we have taken in Sec-
tion 4), we can also envision that the learning takes place
inside of the agents of �������, which then obviously re-
quires concepts for coordinating the learning.

More formally, our general approach is as follows: If
we look at the setting in Figure 1 as an outside observer,
then the interaction of an agent ���������� � ������� with
the other agents can be described as a sequence of actions
����,...,���
� (���� � �����������). The action sequences of all
the agents in ������� then result in a sequence ��,��,...,�� of
(enhanced) environment states. An (enhanced) environment
state is a view on �	
�

�
����������

�����, which means
that we allow the observer (which could be the learner) to
see some aspects of the environment (hence our use of the
term “view”) and the content of some or all the internal data
areas of the tested agents. An unwanted emergent behav-
ior of the tested agents can then be characterized by defin-
ing a condition ������� on a set of (enhanced) environment
states, i.e. �������((��,��,...,��)) = true.

One of the distinctions we can make regarding multi-
agent systems is whether they interact with the environ-
ment and each other in a synchronous fashion or in an asyn-
chronous fashion. If interaction takes place synchronously,
then the length of the action sequences of the attack agents
is always the same and by going through the action se-
quences simultaneously, we also create a sequence of en-
vironment states of this length (formally: �� � �� and
�� � 
 for all �� �). Allowing for asynchronous interac-



tions requires from us to record every change of the envi-
ronment state. Even more, it might be necessary to add
to the action sequences of the attack agents information
on the time that passed between performing the actions of
the sequence. This leads us to a sequence of timed ac-
tions for an attack agent����������: (����,����),...,(���
� ,���
�).
Every ���� indicates the number of time units that pass be-
tween the previous action and the new action and, as usual,
���� � �����������.

Coming back to the task of finding an unwanted be-
havior, the goal of the learning process we use has to be
to create instantiations of the attack agents in ������� (or
behaviors) that produce action sequences for these agents
that result in a sequence of environment states that fulfills
�������. Obviously, the particular learning approach for
this will depend on the agent architecture and the possible
instantiations of it that we have available, what we (resp.
the learner(s)) can observe, what kind of actions the agents
have available and last but not least how ������� is defined.

4 Evolutionary learning to test for unwanted
behavior

There are various methods described in the literature
about how behavior for a single agent or a group of agents
can be learned ([8] provides an overview of most of these
methods). Evolutionary learning methods have a very good
track record for being able to come up with looked-for be-
haviors requiring very little knowledge about the particu-
lar setting a group of agents finds itself in (see, for exam-
ple, [1]). The merging of knowledge-based components
and random components that is typical for evolutionary al-
gorithms creates effects similar to what human intuition
achieves, which is not only important for learning in gen-
eral but especially something that is very valuable in testing
of systems.

An evolutionary algorithm works on a set of so-called
individuals that often represent solution candidates for the
problem instance that the algorithm tries to solve. The set
of individuals is called the population and every individual
in the population is evaluated using a so-called fitness mea-
sure ��� that tries to represent a lot of the knowledge that the
developer of the algorithm has about the problem to solve.
The evolutionary search is performed by applying so-called
genetic operators to selected individuals, which creates new
individuals. These new individuals replace the individuals
in the population with the worst fitness. Often, several new
individuals are created at once and then the replacement of
the bad individuals takes place. The new individuals with
the remaining ones are then called the next generation. This
process is repeated until a given end condition is fulfilled.
The selection of the individuals for the application of the ge-
netic operators usually combines some random component

with some fitness orientation, creating the intuition-like ef-
fect that we mentioned above.

This general scheme can be easily instantiated to the in-
tended learning process from the last section. We want
to learn behaviors (or strategies) for the attack agents in
�������. The easiest way to describe such a behavior is
by action sequences, as we did in the last section. There-
fore, an obvious agent architecture for the agents in �������

is just to execute a given action sequence. And this means
that an individual in an evolutionary algorithm aiming at
creating particular behaviors best consists of an action se-
quence ����,...,���
� for each of the agents ���������� �
������� (or (����,����),...,(���
� ,���
� ) if we have an asyn-
chronous system). So, an individual has the general form
((����,...,���
�),...,(����,...,���
�)).

To evaluate the fitness of an individual we follow the
general idea used to evaluate programs in evolutionary com-
putation: we apply the attack team represented by the indi-
vidual within the environment and let the attack agents in-
teract with the tested agents and the bystander agents. As
stated before, this will produce a sequence ��,��,...,�� of
(enhanced) environment states and this environment states
sequence represents the obvious item to measure the suc-
cess of the individual on. Note that there are several rea-
sons why repeating the application of the attack team can
lead to a different environment sequence. There might be
random events in the environment, the bystander agents are
not under our control and therefore cannot be set into the
same start state all the time, and the tested agents might do
some random decisions. Since we are interested in repro-
ducible results, we perform several of these trial runs for
each individual and sum up the fitness of each of these runs.

The fitness of an individual should reflect how near the
produced environment state sequence comes to fulfilling the
condition ������� that we are interested in. Obviously, in
general this depends on ������� and on what information
is represented in an enhanced environment state. In [3] and
[1], we based the fitness of a trial run ��	��� ��� on evalu-
ating the environment state sequence after every new state:

��	��� ���((��,...,��)) �

������
�����

j, if �������((��,...,��)) = true
and �������((��,...,��))
= false for all � � ���
��� 	��� ������((��,...,��)),

else.

where 	��� ������ is measuring how near its argu-
ment state sequence comes to fulfilling �������. How to
define 	��� ������ for a particular multi-agent system
��������� depends on this multi-agent system. We will
describe an example in the next section.

While the structure of an individual is rather straightfor-
ward given our view of a multi-agent system from the last
section, this structure is already rather complex and there-



fore allows for many ideas regarding how to define opera-
tors on individuals for the creation of new individuals. In
fact, there are two levels on which such operators can work,
namely the team level and the single agent level. And, as for
many evolutionary algorithms, on both levels we can have
crossover operators that essentially recombine traits from
several individuals to create new ones and mutations that
allow for the creation of new traits in individuals. In this
paper, we will be looking at 3 pairs of operators, one on the
team level (that we call team level operators) and two on the
agent level, namely the standard operators and the targeted
operators.

The idea of the team level operators is to cre-
ate new individuals by combining individual agent
strategies (at least for the crossover operator). So,
given two individuals ((����,...,���
�),...,(����,...,���
�)) and
((����,...,���
�),...,(����,...,���
�)), team level crossover cre-
ates the individual ((����,...,���
�),...,(����,...,���
�)), with
(����,...,���
�) = (����,...,���
�) or (����,...,���
�) = (����,...,���
�).
The decision for each agent where to get the strategy from
is done randomly. Team level mutation takes one individ-
ual ((����,...,���
�),...,(����,...,���
�)) and creates the new in-
dividual ((����,...,���
�),...,(�����,...,�

�
��
�

),...,(����,...,���
�)),
with � � � � 	 and (�����,...,����
�) created randomly using
the actions of �����������.

The first pair of agent level operators represents the
usual ideas of evolutionary algorithms with regard to
sequences: for crossover, cut two individuals at the same
position and take the beginning of the sequence from
one individual and the end of the sequence from the
other individual to create the new individual. And for
mutation, select one element of the sequence and change it
to another element from the set of possible elements. More
formally, this means that standard crossover requires as
parents two individuals ((����,...,���
�),...,(����,...,���
�))
and ((����,...,���
�),...,(����,...,���
�)), it selects a sequence
position � randomly and then creates as new individual
((����,...,����,������,...,���
�),...,(����,...,���� ,������,...,���
�)).
Standard mutation takes an individual (����,...,���
�),
...,(����,...,���
�)), selects again a sequence position � ran-
domly and creates the new individual (����,...,������,����� ,
������,...,���
�),...,(����,...,������,����� ,������,...,���
�))
with ����� � ����������� and ���� �� ����� .

Our third pair of operators is what we consider an
improvement of the standard operators aiming at taking
away the randomness of the place within a sequence where
crossover, resp. mutation occur and targeting positions that
are not good. Here not good means that during the eval-
uation runs that are done to compute the fitness of an in-
dividual, the actions of the agents at this position are not
good. And this then means that we see quite a drop in
the evaluation of the state that was created by these actions
(compared to the previous states). More precisely, we use

the 	��� ������ values for all the starting state sequences
and identify in each run the first position in the produced
environmental state sequence, where adding the next state
produces a substantially higher 	��� ������ value for this
new sequence. And then we use as core for selecting the
position for a standard crossover or a standard mutation the
smallest such position � over the evaluation runs done for
the fitness computation. What is substantially higher is de-
fined via a parameter ��� ���� ���� and the inequation
	��� ������((��,...,��)) 	 	��� ������((��,...,����))

+ ��� ���� ����,
Since the reason for getting into a much worse state might
not be the last action taken, but for sure an action taken
very recently, we have targeted crossover select a crossover
position between ��������� and �� . ������ is another pa-
rameter. Targeted mutation selects the mutation position
between ���������� and �� (with ������� the third param-
eter regarding targeted operators).

5 Experimental evaluation in ARES II

In this section, we will first present a short introduction
to the ARES II system, which provides us with the envi-
ronment in which all our agents are interacting. Then we
instantiate our method from last section to testing agent
teams, written by students, that act within ARES II. Next,
we present details on one particular attack team found by
our method that reveals a weakness in one student team that
we were not able to find without our method. Finally, we
compare the results of the different evolutionary operators
presented at the end of the last section (and their combina-
tions) for several different ARES II worlds and searching
for attack teams that let the student team look bad.

5.1 The ARES II system

The ARES and ARES II systems simulate a city struck
by an earthquake and allow to have rescue robots that are
controlled by external programs (agents) act within this
simulation (see [2]). While the well-known RoboCupRes-
cue simulator (see [10]) tries to provide a rather realistic
simulation of such a disaster scenario, the goal in devel-
oping ARES and ARES II was to provide abstractions and
simplifications of the scenario that allow a team of students
in a basic multi-agent systems class to create agents con-
trolling the rescue robots within the very limited time of
this class. ARES II is a new version of ARES that allows
several teams of rescue agents to interact within one rescue
scenario simulation, which naturally sets up a lot of oppor-
tunities for emergent behavior between all agents.

A basic component of the ARES II system are the so-
called world rules. They allow for setting rather differ-
ent tasks for the students by choosing their instantiations



differently. Among the world rules are how many agents
maximally are needed to remove rubble in the world, how
agents can recharge their energy (that is used up by their ac-
tions), how communication actions are counted with regard
to the action allotment, and how rescuing survivors results
in scores in situations where agents from different teams
are doing the rescuing. A simulation run in ARES II is per-
formed in rounds or turns. In each turn, each agent can per-
form one action and has a certain amount of processing time
to decide on this action. The action(s) of an agent are send
to ARES and ARES then updates its simulated world ac-
cordingly. After such a world update, ARES sends to each
agent the results of its actions and all communications that
were directed to the agent.

A world (or scenario) in ARES consists of a collection of
connected grids (see Figure 2). Each grid contains a stack
with each layer in the stack either being a piece of rubble
or a survivor or survivor group. In Figure 2, the top layer
of the stack of a grid field is indicated in the lower left cor-
ner of the field. A grey block with a number indicates a
rubble piece with the number telling us how many agents
are needed to remove this piece. A block without number
(in blue) indicates a survivor. Each grid field also has a
move cost associated with in. The ARES viewer in Figure 2
uses a color code to indicate this move cost in the lower
right block (the smaller block) in a grid field. The picture
below the title MV Legend provides the meaning of these
colors. The move cost is the amount of energy that an agent
looses when moving on this field. A grid field can also in-
dicate that it is a fire or instant death field (which results in
killing an agent moving on it), but we did not use those in
the world of Figure 2. If agents get new energy by sleeping
on charge grids, then we usually also have this type of grids
in a world. In the graphical representation of an ARES grid
we can also see some circles with numbers, starting in the
upper left corner of the field. These are the agents, identi-
fied by their numbers, that are occupying the field. Agents
in different teams have different colors (grey scales).

To rescue a survivor, agents have to dig them out using
the dig command. Only if at least the necessary number of
agents to remove the piece are sending the dig command
in the same round while standing on the grid ARES will
remove this piece of rubble. Other actions of an agent are
naturally moving from grid to grid and rescuing survivors.
Agents can also observe other grids and communicate with
other agents.

When creating a scenario for ARES, the user can either
tell ARES to create a random world or the user can totally
control the world by defining each grid individually. The
user then also defines the energy of each agent and each
survivor (survivors loose energy every turn and therefore
can die), the start position of the agents and how many turns
a simulation will take.

5.2 Instantiation of our method

The most crucial part in instantiating our method from
Section 4 is obviously the fitness function, more precisely
the function 	��� ������. While in [3] we presented two
such functions for opposite unwanted behaviors, in this pa-
per we concentrate on the 	��� ������-function that tries
to learn an attack team that lets the student team look bad.
This means that we are interested in very low rescue scores
by the team ������� (ideally this would be a score of 0).
We called the function that measures the score of a team
������� and thus have

	��� ������((��,...,��)) � �����������

We can then define ������� by �������((��,...,��)) = true if
����������� = 0 for all � � � � �.

With regard to the length of the action sequences for the
agents in ������� we use the number of turns given by the
user. The agents in ������� do not need to use communica-
tion actions, since their coordination is already achieved by
the learner. They also do not observe the world, so that we
are left with the movement actions, the digging action and
the rescue action. As 	��� ������ shows, our view on the
environment (which is the ARES II system) is very limited
and we do not use any internal information from the agents
in �������.

5.3 An interesting result

Our first experiments in [3] resulted in finding some
clearly unwanted behavior in one of the student teams that
we tested. The agents of the students sometimes freeze
when working in a scenario with another team (although
this unfortunately did not happen when we tested this team
using teams from other students and the tested team itself as
partner team). We were able to create attack agent teams for
several ARES II worlds that achieved this effect and in this
subsection we will provide some more information on what
happens for a world that we called Path3 (for pathological
3).

Path3 is a simplistic scenario where there are a total of
nine survivors in the world. Two of the survivors are out
in the open and can be easily saved, six more survivors
are buried under one layer of rubble each that requires two
agents to remove it. Finally there is one survivor that is
buried under one piece of rubble that requires three agents to
be removed. This piece of rubble was intended to see if the
agents from the different teams would cooperate (the world
rule settings score a survivor for every team that performs
the save action after the rubble is removed and therefore
the different student teams should try to cooperate, which
can be tested by using a different fitness function, see [3]).



Table 1. Comparison of scores and generation for different operator combinations
Exp. Te St Ta Te&St Te&Ta St&Ta All

sc. gen. sc. gen. sc. gen. sc. gen. sc. gen. sc. gen. sc. gen.

Path3 3 4 3 4 3 6 3 1 5 2 3 2 3 6
Rand2 3 2 5 1 5 3 3 2 3 5 7 2 3 2
Rand3 5 4 9 4 7 1 4 4 6 3 10 2 8 7

Working alone the student team rescues all 8 possible sur-
vivors.

Figures 2 to 4 show the situations after 4, 21 and 32 turns
when the student team works together with the attack team
that our method found. The attack team is represented by
the darker agents. In Figure 3, we see that the student team
was able to save one of the survivors in the open and two
of the survivors buried under rubble. But this picture shows
the student agents in the same positions as they were after
turn 20. And these two grids are where the agents will stay
for the rest of the run, as Figure 4 indicates. The attack
team does not save any survivors (there was no need to do
that to get the low score for the student team and the attack
teams score is not measured for its fitness), but the agents
in ������� simply do not get their act together.

5.4 Experiments with different genetic operators

To evaluate the three pairs of genetic operators presented
in Section 4 we have selected 3 examples out of the ones
presented in [3]. We already presented information on
Path3. Rand2 and Rand3 are randomly created worlds of
size 7�7 with 99 survivors in it. For all scenarios, we give
the agents 50 turns which results in a time requirement of
roughly 200 seconds per simulation run. Note that in Rand3
the agents of the students do not freeze after some time.

Due to the rather long time requirements for a single sim-
ulation run, we used a very small population size of 7 and 10
generations, again. The selection of the parents for a genetic
operator used 3-tournament selection and ��� ���� ����

was chosen so that a scored point for the tested team would
create a targeted position. The crossover to mutation ratio
was always set 30:70. The runs using two pairs of operators
give 50 percent of the operation application to each of the
pairs and then use the 30:70 ratio again within the pair. To
make sure that all operators are used in every generation,
we had to perform each operator once when using all oper-
ators (with an additional targeted crossover for the seventh
new individual). In Table 1, Te refers to the team level op-
erators, St to the standard operators and Ta to the targeted
operators.

As Table 1 shows, there is a clear winner, namely the
combination of the team level operators with the standard
operators for strings on the agent level. This combination
produces always the best result with regard to the score of

the tested agents (columns sc.) and it produces this result
always the earliest (as indicated by column gen. that reports
the generation the result first occurred). And it seems that
the team level operators are very important for this, since
using them alone is already very good: for Path3 and Rand2
we get the same score and the score for Rand3 is only one
survivor higher than the score by the combination.

To our disappointment, it seems that the targeted oper-
ators, that were crucial for the success in [1], are not very
useful. In combination with the team level operators they
only produce the best score for Rand2, but even for this ex-
ample they need 3 generations longer. And the combination
of all three pairs of operators performs only at the top for
Rand2, while needing the most generations to produce the
freeze for Path3. For Rand3 it only beats the combination
of the agent level operators.

The results suggest that concentrating more on the team
level leads to better results, at least for this application and
this particular team of tested agents. Given the large time re-
quirements of the simulations and the consequent low num-
ber of individuals that we want to produce, the combination
of Te and St should be the first choice of a user.

6 Related work

As already stated, there is nearly no work on helping hu-
man testers finding unwanted emergent behavior in MAS.
Exploratory testing (see [5]) introduces learning from tests
as an important part of testing, but puts the task of learning
solely with the human tester. In [6], we find some work that
helps visualize the behavior of multi-agent systems, which
naturally can help finding unwanted behavior. [9] is an ex-
ample for special protocols and languages that are devel-
oped to give a developer or tester a standard way to inspect
the interactions of agents.

The use of evolutionary methods to help in software test-
ing is developing in a rather active research area. [11]
is an early paper that used an evolutionary algorithm to
slightly modify and combine known errors to create new
test cases for controllers. The work in [12] helps with
code inspections by finding examples that cover the pos-
sible paths through a program. While there are other works,
whole workshops in fact, these two works come the nearest
to our approach but even they are not dealing with finding
unwanted behavior of an MAS from scratch.



7 Conclusion

We presented an evolutionary learning method that al-
lows to find unwanted emergent behavior of a multi-agent
system. Our method uses a rather primitive agent archi-
tecture for the agents that interact with the agents that we
want to test, thus testing agents with less complex agents.
We evaluated several combinations of genetic operators and
found that the usage of operators that work on the team
level, i.e. exchange whole agents when creating new attack
behaviors, is clearly recommended. This team level oper-
ators were newly introduced for the method in this paper.
Future work will be looking at more experiments with stu-
dent teams developed for ARES II for other world rule in-
stantiations.

References

[1] B. Chan, J. Denzinger, D. Gates, K. Loose, J. Buchanan:
Evolutionary behavior testing of commercial computer
games, Proc. CEC 2004, Portland, 2004, pp. 125–132.

[2] J. Denzinger, J. Kidney: Teaching Multi-Agent Systems us-
ing the ARES Simulator, Italics e-journal 4(3), 2005.

[3] J. Denzinger, J. Kidney: Testing the limits of emergent be-
havior in MAS using learning of cooperative behavior, Proc.
ECAI-06, Riva del Garda, 2006, pp. 260–264.

[4] R.G. Hamlet: Predicting dependability by testing, Proc. In-
tern. Symp. on SW Testing and Analysis, 1996, pp. 84–91.

[5] C. Kaner, J. Back, B. Pettichord: Lessons Learned in Soft-
ware Testing, Wiley Computer Publishing, 2001.

[6] L. Lee, D. Ndumu, H. Nwana, J. Collins: Visualizing and
debugging distributed multi-agent systems, Proc. 3rd AA,
1999, pp. 326–333.

[7] S. Luke, L. Spector: A comparison of crossover and muta-
tion in genetic programming, Proc. GP-97, Stanford, 1997,
pp. 240–248.

[8] L. Panait, S. Luke: Collaborative Multi-Agent Learning: A
Survey, Technical Report GMU-CS-TR-2003-01, Dept. of
Comp. Sci. George Mason University, 2003.

[9] D. Poutakidis, L. Padgham, M. Winikoff: Debugging multi-
agent systems using design artifacts: The case of interaction
protocols, Proc. AAMAS-2002, 2002, pp. 960–967.

[10] RoboCup Rescue: http://jelly.cs.kobe-u.ac.jp/robocup-
rescue/. (as viewed on January 3, 2006).

[11] A.C. Schultz, J.J. Grefenstette, K.A. De Jong: Adaptive
Testing of Controllers for Autonomous Vehicles, Proc. Sym-
posium on Autonomous Underwater Vehicle Technology,
IEEE, 1992, pp. 158–164.

[12] J. Wegener: Evolutionary testing of embedded systems,
In Evolutionary Algorithms for Embedded Systems Design,
Kluwer, 2003, pp. 1–34.

[13] X. Yao: An empirical study of genetic operators in ge-
netic algorithms, Microprocessing and Microprogramming
38, 1993, pp. 707–711.

Figure 2. Round 4: ������� + �������

Figure 3. Round 21: ������� + �������

Figure 4. Round 32: ������� + �������


