
A Hybrid of Inference and Local Search for Distributed Combinatorial
Optimization

Adrian Petcu and Boi Faltings
EPFL, Switzerland

{adrian.petcu, boi.faltings}@epfl.ch

Abstract

We present a new hybrid algorithm for local search in
distributed combinatorial optimization. This method is a
mix between classical local search methods in which nodes
take decisions based only on local information, and full in-
ference methods that guarantee completeness.

We propose LS-DPOP(k), a hybrid method that combines
the advantages of both these approaches. LS-DPOP(k) is
a utility propagation algorithm controlled by a parameter
k which specifies the maximal allowable amount of infer-
ence. The maximal space requirements are exponential in
this parameter. In the dense parts of the problem, where
the required amount of inference exceeds this limit, the al-
gorithm executes a local search procedure guided by as
much inference as allowed byk. LS-DPOP(k) can be seen
as a large neighborhood search, where exponential neigh-
borhoods are rigorously determined according to problem
structure, and polynomial efforts are spent for their com-
plete exploration at each local search step.

We show the efficiency of this approach with experimen-
tal results from the distributed meeting scheduling domain.

1 Introduction

Constraint satisfaction and optimization are powerful
paradigms that model a large range of tasks like schedul-
ing, planning, optimal process control, etc. Traditionally,
such problems were gathered into a single place, and a cen-
tralized algorithm was applied in order to find a solution.
However, problems are sometimes naturally distributed, so
Distributed Constraint Satisfaction (DisCSP) was formal-
ized [15]. DisCSPs are divided between a set of agents,
which have to communicate among themselves to solve it.

The DisCSP formalism has a number of advantages over
its centralized counterpart. Centralized solving may be in-
feasible due to privacy and data integration problems. Dy-
namic systems are another reason: by the time we manage
to centralize the problem, it has already changed.

To address distributed optimization, complete algorithms
like ADOPT and DPOP have been recently introduced.
ADOPT [12] is a backtracking based bound propagation
mechanism. It operates completely decentralized, and asyn-
chronously. Its downside is that it may require a very large
number of messages, thus producing big communication
overheads.DPOP [14] is a complete algorithm based on
dynamic programming which generates a linear number of
messages. However,DPOP is time and space exponential
in the induced width of the problem. Therefore, in case the
problems have high induced width, the messages generated
in the high-width areas of the problem get large, andDPOP
may be infeasible.

For such difficult problems, local search methods have
been developed. These methods start with a random as-
signment, and then gradually improve it by applying incre-
mental changes. Their advantage is that they require linear
memory, and in many cases provide good solutions with a
small amount of effort. However, the decisions taken are
often myopic in the sense that they take into account only
local information, thus getting stuck into local optima rather
easily. Large neighborhood search [1] tries to overcome
this problem by exploring a much larger set of neighbor-
ing states before moving to the next one. Dynamic pro-
gramming has already been recognized as an efficient way
to explore exponential size neighborhoods with a polyno-
mial effort: see [6], or the hybrid technique of Kask and
Dechter from [7] (see Section 6). In a parallel line of re-
search, local search has also been combined with complete
search algorithms, for example in [10] or [5].

For distributed environments, there are distributed local
search methods like DSA ([8, 2]) / DBA([17]) for optimiza-
tion, and DBA for satisfaction ([16]). To our knowledge,
the concept of large neighborhoods has not been exploited
in distributed environments.

We propose a distributed algorithm that combines the ad-
vantages of both these approaches. This method is a utility
propagation algorithm controlled by a parameterk which
specifies the maximal allowable amount of inference. The
maximal space requirements are exponential in this param-

eter. In the dense parts of the problem, where the required
amount of inference exceeds this limit, the algorithm exe-
cutes a local search procedure guided by as much inference
as allowed byk. If this parameter is equal to the induced
width of the graph or larger, then the algorithm is full infer-
ence, therefore complete. Larger values ofk are conjectured
to produce better results.

We show the efficiency of this approach with experimen-
tal results from the distributed meeting scheduling domain.

The rest of this paper is structured as follows: Section 2
formally describes the optimization problem. Section 3
presents theDPOP algorithm from [14], upon which we
will build our present work. Section 4 presents the hybrid
optimization algorithm. Section 5 presents an experimental
evaluation. Section 6 presents the relationship between this
approach and existing work. Section 7 concludes.

2 Definitions and Notation

Definition 1 (DCOP) A discretedistributed constraint op-
timization problem(DCOP) is a tuple< X ,D,R >:

• X = {X1, ...,Xn} is a set of variables

• D = {d1, ..., dn} is a set of finite variable domains

• R = {r1, ..., rm} is a set of relations, where a relation
ri is any function with the scope(Xi1 , · · · ,Xik

), ri :
di1 × ..× dik

→ R, which denotes how much utility is
assigned to each possible combination of values of the
involved variables. Negative utilities mean cost.1

DCOPs are multiagent instances of thevalued CSP
framework, where each variable and constraint is owned by
an agent. The goal is to find a complete instantiationX ∗

for the variablesXi that maximizesthe sum of utilities of
individual relations.

A simplifying assumption [15] is that each agent controls
a virtual agent for each one of the variablesXi that it owns.
To simplify the notation, we useXi to denote either the
variable itself, or its (virtual) agent.We also assume here
only unary and binary relations2

2.1 Depth-First Search Trees (DFS)

LS-DPOP uses a DFS traversal of the problem graph.

Definition 2 (DFS tree) A DFS arrangement of a graph G
is a rooted tree with the same nodes and edges as G and the

1Hard constraints (that explicitly forbid/enforce certainvalue combi-
nations) can be simulated with soft constraints by assigning−∞ to dis-
allowed tuples, and 0 to allowed tuples. Maximizing utility thus avoids
assigning such value combinations to variables.

2However, all *-DPOP algorithms easily extend to non-binary con-
straints, with minor modifications to the DFS and UTIL phases.

property that adjacent nodes from the original graph fall in
the same branch of the tree (e.g.X0 andX12 in Figure 1).

DFS trees have already been investigated as a means to
boost the performance of optimization algorithms [12, 3,
14]. Due to the relative independence of nodes lying in dif-
ferent branches of the DFS tree, it is possible to perform
search in parallel on independent branches, and then com-
bine the results.

Figure 1 shows an example DFS tree that we shall refer
to in the rest of this paper. We distinguish betweentree
edges, shown as solid lines (e.g.X1−X2), andback edges,
shown as dashed lines (e.g.12− 8, 4− 0).

Definition 3 (DFS concepts)Given a nodeXi, we define:

• parent Pi / children Ci: these are the obvious defini-
tions (e.g.P4 = X2, C0 = {X1,X8}).

• pseudo-parentsPPi are Xi’s ancestors directly con-
nected toXi through back-edges (PP5 = {X0}).

• pseudo-children PCi are Xi’s descendants directly
connected toXi through back-edges (PC1 = {X4}).

• separator Sepi of Xi: ancestors of Xi which
are directly connected withXi or with descen-
dants ofXi (e.g. Sep15 = {X9} and Sep11 =
{X0,X8,X9,X10}). Removing the nodes inSepi

completely disconnects the subtree rooted atXi from
the rest of the problem.

Definition 4 (Induced width) Given an ordering of the
nodes in a graph, the width ([9, 3]) induced by the given
ordering is obtained by processing the nodes in the reverse
ordering, and connecting at each step all their neighboring
predecessors in the ordering. The width induced by a DFS
ordering equals the size of the largest separator of any node
in the problem.

3 DPOP: optimization based on inference

The basic utility propagation schemeDPOPhas been in-
troduced in [14].DPOPis an instance of the general bucket
elimination scheme from [3], which is adapted for the dis-
tributed case, and uses a DFS traversal of the problem graph
as an ordering.DPOPhas 3 phases:

Phase 1 - aDFS traversal of the graph is done using
a distributed DFS algorithm, like in [14], which works for
any graph requiring a linear number of messages. The out-
come is that all nodes consistently label each other as par-
ent/child or pseudoparent/pseudochild, and edges are iden-
tified as tree/back edges. The DFS tree serves as a commu-
nication structure for the other 2 phases of the algorithm:

Figure 1. A problem graph, one possible rooted DFS tree, and an execution detail of DPOP inC3.

UTIL messages (phase 2) travel bottom-up, and VALUE
messages (phase 3) travel top down, only via tree-edges.

Phase 2 -UTIL propagation : the agents (starting from
the leaves) sendUTIL messages to their parents. The sub-
tree of a nodeXi can influence the rest of the problem only
throughXi’s separator,Sepi. Therefore, a message con-
tains the optimal utility obtained in the subtree for each in-
stantiation ofSepi. Thus, messages are size-exponential in
the separator size (which is in turn bounded by the induced
width).

Phase 3 -VALUE propagation top-down, initiated by
the root, when phase 2 has finished. Each node determines
its optimal value based on the computation from phase 2 and
theVALUE message it has received from its parent. Then,
it sends this value to its children throughVALUEmessages.

It has been proved in [14] thatDPOPproduces a linear
number of messages. Its complexity lies in the size of the
UTIL messages: the largest one is space-exponential in the
width of the DFS ordering used.

4 LS-DPOP - local search/inference hybrid

We keep the basic utility propagation mechanism from
DPOP, but we introduce a control parameterk which spec-
ifies the maximal amount of inference (maximal message
dimensionality). In the dense parts of the problem, the ex-
act propagation produces messages with more dimensions
than this limit. In such cases, the algorithm executes a local
search procedure guided by as much inference as allowed
by k. The nodes whose processing by inference would ex-
ceed thek limit are the ones who execute the local search
procedure. All other nodes execute the normal utility prop-
agation protocol.

4.1 Detecting areas of high induced width

During the utility propagation procedure fromDPOP,
each node computes theUTIL message for its parent. In
high width areas, some nodes have to send messages whose
dimensionality exceedsk. In such cases, those nodes
choosedims − k dimensions of the message, mark them
as local searchdimensions, project them out of the outgo-
ing message, and add these dimensions to thecontextof the
message. Thus, the final dimensionality of the message is
k (size limit observed). The dimensions to be marked as
LS are chosen according to their level in the pseudotree.
This is easy to determine for each node just by finding their
position in the node’s root path.

Example 1 (Detecting high width) Consider C3 in Fig-
ure 1(b). If we run LSDPOP withk = 2, then the mes-
sagesUTIL11

12 andUTIL11
13 proceed normally as in DPOP,

with dims(UTIL11
12) = {11, 0} and dims(UTIL11

13) =
{11, 9}. However,dims(UTIL10

11) = {10, 0, 8, 9}, thus
it exceedsk = 2. Therefore,X11 marks X0 and X8

(the 2 highest nodes indims(UTIL10
11)) as LS nodes,

projects them out ofUTIL10
11, and adds them to the con-

text of UTIL10
11. Thus,dims(UTIL10

11) = {10, 9} and
context(UTIL10

11) = {0∗, 8∗}.

The propagation continues, and when the respective
messages arrive atX8 and X0, they know that they must
revert to local search. Note that in this example,X0 is la-
beled as LS only inC3, and not inC2 (k not exceeded in
C2), so it will receive an exact message fromC2, and it will
perform local search inC3, together withX8.

4.2 Local search in independent clusters

In the example of Figure 1, we notice that there are 4 in-
dependent parts which do not communicate between them-
selves except for some ”frontier” nodes. These 4 cyclic sub-
graphs (C1 − C4), separated by the nodesX0,X1,X9 can
be explored separately for optimal solutions, and then the
results assembled through the sameUTIL/VALUEpropaga-
tions. The advantage of this separation becomes apparent if
we consider that many such separate problem components
could be too complex to apply the exactDPOP propaga-
tion, and it may be needed to apply the local search mech-
anism. Then, it is obvious that by applying local search
on each independent componentCt separately, we restrict
the search space that needs to be explored fromd|LS| to
d|LS(Ct)|, where|LS| is the total number ofLSnodes in the
whole problem, and|LS(Ct)| is the number ofLSnodes in
the componentCt. This, together with optimal combination
of these local optima throughUTIL/VALUE propagations,
gives us a much better chance of finding a better overall lo-
cal optima.

Frontier nodes are identified by considering the sizes of
their separators: if the separator size is 1, the node is a fron-
tier node. For example,X1 is a frontier node forC1 because
Sep1 = {X0}.

If a frontier node is also designated aLS node in one of
its subtrees, then that node will send itsUTIL message to its
parent only after having explored through local search the
respective subtree. For example, assumeC4 hanging out
from X9 would be so complex as to require local search.
ThenX9 would be marked asLS, and it would first partici-
pate in the local search inC4, and only after a local optimum
is reached there, would it start its propagation(s) inC3. The
utilities computed as the local optima for each of its values
in C4 are then added to the messages going throughC3. The
process is logically equivalent to replacingC4 with a unary
constraint onX9.

4.2.1 One local search step

In the subgraphs where local search is required, theLS
nodes start by assigning themselves values. Then, we can
run a DPOP-like propagation on the cyclic subgraph for
eachLS nodeXn. For each propagation, we consider all
LS nodes assigned with their current values, except forXn.
Such a propagation is just a simple variation of theDPOP

one, where instead of applying projections for all nodes, we
execute slices for the nodes in the LS exceptXn. Thus,Xn

can determine how much utility each one of its values gives
for the whole cyclic subgraph in which it is involved,pro-
vided the other LS nodes maintain their current values. It
does so by joining all incomingUTIL messages, and pro-
jecting out any other dimensions than itself. The result is

a vector (one dimension) with the desired valuations. The
value giving the maximal valuation can be proposed as the
next value (in case it is different than the current value).

Figure 1.(c) shows an example execution of a local
search step forX0. All LSnodes send to their pseudochil-
dren value messages, announcing their current values. The
propagation starts normally from the leaves (X12 sendsX11

a message withX11 andX0 as dimensions).X11 performs
normally the join between the messages it received from
its children. Note that the message it received initially from
X13 can be reused, since there is no link in that subtree with
anyLS node. Additionally, sinceX8 is considered fixed at
its present value, the relationX8−X11 is logically replaced
by a corresponding unary constraint onX11 (this is the slice
of R8

11 along the current value ofX8, computed byX11).
The join is performed also with this induced unary con-
straint, and the relationR10

11. X11 projects itself out of the
join, and sends the message toX10. The propagation con-
tinues untilX8, which performs the joinUTIL8

9 ⊕R0
8. In-

stead of projecting itself out of the join to computeUTIL0
8,

X8 performs a slice of this join along its current value (the
one previously announced toX11). It then sendsUTIL0

8

to X0, who receives complete information about how much
each of its values is worth for the wholeC3, providedX8

keeps its current value.
X0 can now compute∆X0 = UTIL0

8 ⊥X0

−UTIL0
8[X0 = v0], which is the maximal improvement

that the wholeC3 can achieve ifX0 changes from its current
value to the new optimal one,X8 keeps its present value,
and all the other nodes inC3 change to their new optimal
values.

X0 also initiates a top-down propagation with itself as
a LS node. It sendsX8 UTIL8

0, with dims(UTIL8
0) =

{X0,X8} (actually, this message is exactlyR8
0, sinceX0

does not have anything else to join for sending toX8. R12
0

is taken into account byX12, when sending outUTIL11
12).

X8 joins this message withUTIL8
9, and performs a slice

of this join, along its current value. The result is exactly the
same vector asX0 receives fromX8 asUTIL0

8. What we
achieved with the uniform propagation is thus the ability of
X8 to have the same information asX0 about the possible
improvementsX0 can make ifX8 keeps the current value.

After having run all propagations (with one of theLS
nodes being allowed to change at the time), eachLS node
Xi can thus compute∆Xj for each otherLSnodeXj in the
same cyclic subgraph. In other words, eachLSnodeXi can
thus compute the maximal improvements that each otherLS
nodeXj can make, provided onlyXj is allowed to change.

For the change itself, one can apply any policy known in
current local search methods, and guide this policy by the
∆s computed like this. The termination policy can be either
a maximal number of cycles, or detection of local/global
minima by detecting that allLSnodes have∆ = 0.

Correctness In the current formulation, only the node
with the highest improvement changes its value. Thus, the
algorithm executes a hill climbing procedure for the nodes
designated as LS, and exact inference for the rest, therefore
it will reach a local maximum given by local maxima in
each individual cyclic subgraph.

4.3 Large neighborhood exploration -
analysis and complexity

Let us assume that in a cyclic subgraphCt there are
cct nodes designated asLS nodes,nt total nodes, andmt

edges. The size of the neighborhood completely explored
at each local search step iscct × d × dnt−cct (for all val-
ues of eachLS node, complete exploration of thenon-LS
nodes). The effort for each step consists of2 × (nt − 1)
UTIL messages sent for exploringCt. The largest message
is of sizedk+1. Thus, each step explores an exponential size
neighborhood with a polynomial amount of effort.

Assume the termination policy for the local search pro-
cess involves at mostk local search steps. The whole pro-
cess is then equivalent to exploringk × cct × d × dnt−cct

neighboring states. An exhaustive search method would re-
quire at least as many messages (big communication over-
head), while classical local search would not be guaranteed
to completely explore this part of the search space.

5 Experimental evaluation

Our experiments were performed on distributed meet-
ing scheduling problems. We modeled a realistic scenario,
where a set of agents working for a large organization try
to jointly find the best schedule for a set of meetings. The
organization itself has a hierarchical structure: a tree with
departments as nodes, and a set of agents working in each
department. We generate meetings with high probability
within departments, and with a lower probability between
agents belonging to parent-child departments.

We model this problem as a DCOP following [11].
Specifically, each agentAi has a set of variablesXj

i , one
for each meeting it is involved in. Each such variableX

j
i

is controlled only by the agentAi, and represents the time
when meeting j of agentAi will start (Xj

i has time slots
tq as values). There is an equality constraint connecting
the equivalent variables of all agents involved in a particu-
lar meeting (all agents must agree on a start time for their
meeting). If a meeting hasp participants, it is sufficient
to createp − 1 equality constraints that connect the corre-
sponding variables in a chain (no need to fully connect them
pairwise). Since an agent cannot participate in 2 meetings
at the same time, there is an all-different constraint on all
variablesXj

i belonging to the same agent.

Algorithm 1: LSDPOP - local search/inference hybrid.
LSDPOP(X ,D,R, k): each agentXi does:

UTIL propagation protocol
1 wait for UTIL messages (Xc, UTILi

c) from all
childrenXc ∈ Ci

2 if any ofUTILi
c contains myself as LS nodethen

execute LS procedure
3 else

4 JOINPi

i =
(

(
⊕

c∈Ci
UTILi

c

)

⊕
(

⊕

c∈{Pi∪PPi}
Rc

i

))

5 if Xi is root then startVALUEpropagation
else

6 if |dims(JOINPi

i)| > k then

7 sortdims(JOINPi

i) by root path (Pi is
always last)

8 mark the first|dims(JOINPi

i)| − k

non-LS dimensions from the JOIN as
LS, project them out and add them to the
context ofJOINPi

i . Pi is always kept in.

9 computeUTILPi

i = JOINPi

i ⊥Xi
and

send it toPi

end
end

Local search procedure
10 assign a value according to heuristic (can be random)
11 while termination criteria for local search not met

do

12 sendVALUE(Xi ← current value) messages
to all PCi

13 wait for all correspondingUTIL messages to
arrive

14 join them, and slice through
(Xi ← current value); store

end
get and store inagent view all VALUEmessages
(Xc ← v∗

c)

15 v∗
i ← argmaxXi

(

JOINPi

i [v(Pi), v(PPi)]
)

16 SendVALUE(Xi ← v∗
i) to all Ci andPCi

VALUE propagation(Xc ← vc)
17 if sending nodeXc is pseudoparentthen

18 perform sliceRk
i [Xc = vc] and join it withUTIL

messages from children
19 project self out of this join, addXc ← vc to the

context of the message and send it to parent

end
20 get and store inagent view all VALUEmessages

(Xc ← v∗
c)

21 v∗
i ← argmaxXi

(

JOINPi

i [v(Pi), v(PPi)]
)

22 SendVALUE(Xi ← v∗
i) to all Ci andPCi

We model the utility that each agentAi assigns to each
meetingMj at each particular timetq ∈ dom(Xj

i) by im-
posing unary constraints on the variablesX

j
i ; each such

constraint is a vector private toAi, and denotes how much
utility Ai associates with starting meetingMj at each time
tq. The objective is to find a schedule s.t. the overall utility
is maximized.

We have run 2 series of experiments with random prob-
lems generated as specified before. In the first part, we gen-
erated ”easy” problems, such that they can be solved by the
complete algorithm as well, in order to see how far from the
global optima the local search method is. The problems had
induced width 8, and the domain size was 8, meaning the
largest message in the complete algorithm has88 ≈ 16.5M

values. These problems are quite close to the feasibility
limit for a complete algorithm.

The results of these experiments are presented in Table 1.
Each row represents an execution with an increasing bound
k. The columns represent (in order): thek bound,LS# is
the total number of nodes executing the local search pro-
cedure,%Non-LSis the percentage of nodes executing the
normal propagation,Cyclesis the number of independent
subgraphs identified,Avg LS/Non-LS nodes per cycleis the
average number of LS/non-LS nodes in a single component,
Sol %off is the distance from the optimal solution in per-
cent, andEffort/stepis an upper bound on the total amount
of data transmitted within an independent component, for
one local search step.

We have run the algorithm with increasingk, and noticed
relatively small increases in solution quality (percent off the
true optimum decreases slowly) and exponential increases
of the amount of effort spent for each local search step.

We notice that small values ofk are already producing
good solutions, with relatively low effort. We explain this
by the fact that even small values ofk allow for a large per-
centage of nodes to execute the exact propagation, and thus
at each local search step, a large exponential neighborhood
is explored. For example, imposingk = 1 (first row in Ta-
ble 1) still leaves on the average almost 70% of the nodes
to execute the exact propagation. On the average, in a sub-
graph, 13non-LSnodes adjust optimally to the values of the
6 LSnodes, which is equivalent to exploring813 neighbor-
ing states at eachLSstep.

The second sets of experiments involved much larger
and more difficult instances of the same meeting schedul-
ing problems. In this case, the problems were generated
with 200 agents, 498 variables and 1405 constraints. The
induced width was 20, making for a820 maximal message
size, which renders complete methods completely infeasi-
ble. We ran againLSDPOPwith increasingk, and noticed a
similar behavior: a large percentage of nodes execute exact
propagation even for smallk, and solution quality improves
slowly with increasingk. We conjecture that these results

are close to the true optimum.

6 Related Work

The nodes involved in the local search process can be
thought of ascycle cutset nodes[4, 3]. From this perspec-
tive, there are a number of similar existing approaches.

Kask and Dechter present in [7] a method of combining a
local search algorithm (GSAT) with inference. That method
is formulated for constraint satisfaction problems, in a cen-
tralized setting. A subset of the problem nodes are given
as cycle cutset nodes, and local search is performed on this
subset. For each instantiation of the cutset nodes, a tree in-
ference algorithm is applied to the rest of the problem. The
differences between these methods are manyfold. First, our
method is distributed, and is defined for optimization, not
satisfaction. Second, the set of nodes that perform local
search is identified at runtime (not given a priori). Third,
we allow for inference with maximal width greater than 1,
controlled byk. Finally, we separate the problem in dis-
tinct cyclic subgraphs which are explored separately, and
the subsolutions are aggregated in a distributed fashion.

Petcu and Faltings present in [13] a distributed cycle cut-
set optimization method. The idea of isolating indepen-
dent cyclic subgraphs appears there, too, but unfortunately
there is no efficient method presented for identifying cy-
cle cutsets nodes, nor for isolating independent cyclic sub-
graphs. Here, the DFS traversal of the graph is an excellent
way to achieve both goals. There, exhaustive search is per-
formed on the cycle cutset variables, as opposed to local
search/propagation here. The synchronization problems be-
tween cycles from that method are solved here by simply
making each node that borders 2 cyclic subgraphs wait for
complete exploration of all its subtrees before sending its
message to its parent.

7 Conclusions and future work

We have presented the first approach to large neighbor-
hood search in distributed optimization. Exponential neigh-
borhoods are rigorously determined according to problem
structure, and polynomial efforts are spent for their com-
plete exploration at each local search step.

The algorithm explores independent parts of the prob-
lem simultaneously and asynchronously, and then combines
the results, all in a distributed fashion. The experimental
results show that this approach gives good results for low
width, practically sized dynamical optimization problems.
For loose problems, most of the search space is optimally
explored, and only small, tightly connected components are
explored by local search. This increases the chance that the
algorithm avoids some of the local optima, especially for
loose problems.

k LS# %Non-LS Cycles Avg LS/cycle Avg non-LS/cycle Sol %off Effort/step
1 68 68 11 6 13→ d13 10.86 640 (O(d2))
2 39 81 9 4 19→ d19 10.62 3072(O(d3))
3 25 88 8 3 23→ d23 9.71 20480(O(d4))
4 15 93 6 2 33→ d33 9.3 131072(O(d5))
5 5 97 2 2 105→ d105 8.25 786432(O(d6))
6 2 99 1 2 214→ d214 7.26 4194304(O(d7))
∞ 0 100 0 0 216→ d216 0.0 (O(d8))

Table 1. LSDPOP experiments: 100 agents, 59 meetings, 199 variables, 514 constraints, width 8

k LS nodes %Non-LS Cycles Avg LS/cycle Avg non-LS/cycle Solution Effort/step
1 194 61 10 19 30→ d30 7910.0 4032(O(d2))
2 131 73 10 13 36→ d36 7946.0 23040(O(d3))
3 96 80 9 10 44→ d44 7964.0 139264(O(d4))
4 73 85 9 8 47→ d47 7980.0 884736(O(d5))
5 58 88 9 6 48→ d48 8021.0 6029312(O(d6))

Table 2. LSDPOP experiments: 200 agents, 498 variables, 1405 constraints, width 20

For future work we plan to experiment with several dif-
ferent value switching policies (like simultaneous switches
by several variables or allowing non-improving switches)
and different termination policies.

References

[1] R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A
survey of very large-scale neighborhood search techniques.
Discrete Appl. Math., 123(1-3):75–102, 2002.

[2] M. Arshad and M. C. Silaghi. Distributed simulated an-
nealing and comparison to DSA. InDistributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems, IOS
Press, “Frontiers in Artificial Intelligence”, 2004.

[3] R. Dechter. Constraint Processing. Morgan Kaufmann,
2003.

[4] R. Dechter and Y. E. Fattah. Topological parameters for
time-space tradeoff.Artificial Intelligence, 125(1-2):93–118,
2001.

[5] C. Eisenberg. Distributed Constraint Satisfaction For Co-
ordinating And Integrating A Large-Scale, Heterogeneous
Enterprise. Phd. thesis no. 2817, Swiss Federal Institute
of Technology (EPFL), Lausanne (Switzerland), September
2003.

[6] O. Ergun and J. Orlin. Dynamic programming method-
ologies in very large scale neighborhood search applied to
the traveling salesman problem. Technical Report 4463-03,
MIT, Sloan School of Management, Dec. 2004.

[7] K. Kask and R. Dechter. A graph-based method for improv-
ing GSAT. InAAAI/IAAI, Vol. 1, pages 350–355, 1996.

[8] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing.Science, Number 4598, 13 May
1983, 220, 4598:671–680, 1983.

[9] T. Kloks. Treewidth, Computations and Approximations, vol-
ume 842 ofLecture Notes in Computer Science. Springer,
1994.

[10] J. Lever. A local search/constraint propagation hybrid for a
network routing problem. InFLAIRS Conference, 2004.

[11] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham. Taking DCOP to the real world: Efficient
complete solutions for distributed multi-event scheduling. In
AAMAS-04, 2004.

[12] P. J. Modi, W. M. Shen, and M. Tambe. An asynchronous
complete method for distributed constraint optimization. In
Proc. AAMAS, 2003.

[13] A. Petcu and B. Faltings. A distributed, complete method for
multi-agent constraint optimization. InCP 2004 - Fifth In-
ternational Workshop on Distributed Constraint Reasoning
(DCR2004), Toronto, Canada, Sep 2004.

[14] A. Petcu and B. Faltings. DPOP: A scalable method for
multiagent constraint optimization. InProceedings of the
19th International Joint Conference on Artificial Intelli-
gence, IJCAI-05, pages 266–271, Edinburgh, Scotland, Aug
2005.

[15] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Dis-
tributed constraint satisfaction for formalizing distributed
problem solving. InInternational Conference on Distributed
Computing Systems, pages 614–621, 1992.

[16] M. Yokoo and K. Hirayama. Distributed breakout algorithm
for solving distributed constraint satisfaction problems. In
V. Lesser, editor,Proceedings of the First International Con-
ference on Multi–Agent Systems. MIT Press, 1995.

[17] W. Zhang and L. Wittenburg. Distributed breakout algorithm
for distributed constraint optimization problems - DBAre-
lax. In Proceedings of the International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS-03),
Melbourne, Australia, 2003.

	Introduction
	Definitions and Notation
	Depth-First Search Trees (DFS)

	DPOP: optimization based on inference
	LS-DPOP - local search/inference hybrid
	Detecting areas of high induced width
	Local search in independent clusters
	One local search step

	Large neighborhood exploration - analysis and complexity

	Experimental evaluation
	Related Work
	Conclusions and future work

