A Hybrid of Inference and Local Search for Distributed Combinatorial
Optimization

Adrian Petcu and Boi Faltings
EPFL, Switzerland
{adrian.petcu, boi.faltingg@epfl.ch

Abstract To address distributed optimization, complete algorithms
like ADOPT and DPOP have been recently introduced.

We present a new hybrid algorithm for local search in ADOPT [12] is a backtracking based bound propagation
distributed combinatorial optimization. This method is a mechanism. It operates completely decentralized, and asyn
mix between classical local search methods in which nodeschronously. Its downside is that it may require a very large
take decisions based only on local information, and full in- number of messages, thus producing big communication
ference methods that guarantee completeness. overheads.DPOP [14] is a complete algorithm based on

We propose LS-DPOP(K), a hybrid method that combinesdynamic programming which generates a linear number of
the advantages of both these approaches. LS-DPOP(K) ismessages. HowevdDPOP is time and space exponential
a utility propagation algorithm controlled by a parameter in the induced width of the problem. Therefore, in case the
k which specifies the maximal allowable amount of infer- problems have high induced width, the messages generated
ence. The maximal space requirements are exponential inin the high-width areas of the problem get large, B@RDOP
this parameter. In the dense parts of the problem, where may be infeasible.
the required amount of inference exceeds this limit, the al- For such difficult problems, local search methods have
gorithm executes a local search procedure guided by asbeen developed. These methods start with a random as-
much inference as allowed ldy LS-DPOP(K) can be seen signment, and then gradually improve it by applying incre-
as a large neighborhood search, where exponential neigh-mental changes. Their advantage is that they require linear
borhoods are rigorously determined according to problem memory, and in many cases provide good solutions with a
structure, and polynomial efforts are spent for their com- small amount of effort. However, the decisions taken are
plete exploration at each local search step. often myopic in the sense that they take into account only

We show the efficiency of this approach with experimen-local information, thus getting stuck into local optimaat
tal results from the distributed meeting scheduling domain easily. Large neighborhood search [1] tries to overcome

this problem by exploring a much larger set of neighbor-

ing states before moving to the next one. Dynamic pro-
1 Introduction gramming has already been recognized as an efficient way

to explore exponential size neighborhoods with a polyno-

Constraint satisfaction and optimization are powerful mial effort: see [6], or the hybrid technique of Kask and
paradigms that model a large range of tasks like schedul-Dechter from [7] (see Section 6). In a parallel line of re-
ing, planning, optimal process control, etc. Traditiopall search, local search has also been combined with complete
such problems were gathered into a single place, and a censearch algorithms, for example in [10] or [5].
tralized algorithm was applied in order to find a solution. For distributed environments, there are distributed local
However, problems are sometimes naturally distributed, sosearch methods like DSA ([8, 2]) / DBA([17]) for optimiza-
Distributed Constraint Satisfaction (DisCSP) was formal- tion, and DBA for satisfaction ([16]). To our knowledge,
ized [15]. DisCSPs are divided between a set of agents,the concept of large neighborhoods has not been exploited
which have to communicate among themselves to solve it. in distributed environments.

The DisCSP formalism has a number of advantages over We propose a distributed algorithm that combines the ad-
its centralized counterpart. Centralized solving may be in vantages of both these approaches. This method is a utility
feasible due to privacy and data integration problems. Dy- propagation algorithm controlled by a parametewhich
namic systems are another reason: by the time we managspecifies the maximal allowable amount of inference. The
to centralize the problem, it has already changed. maximal space requirements are exponential in this param-

eter. In the dense parts of the problem, where the requiredproperty that adjacent nodes from the original graph fall in

amount of inference exceeds this limit, the algorithm exe-

the same branch of the tree (e &y and X5 in Figure/1).

cutes a local search procedure guided by as much inference

as allowed byk. If this parameter is equal to the induced
width of the graph or larger, then the algorithm is full infer
ence, therefore complete. Larger values afe conjectured
to produce better results.

We show the efficiency of this approach with experimen-
tal results from the distributed meeting scheduling domain

The rest of this paper is structured as follows: Sedtion 2
formally describes the optimization problem. Section 3
presents thddPOP algorithm from [14], upon which we
will build our present work. Sectidn 4 presents the hybrid
optimization algorithm. Sectidn 5 presents an experinienta
evaluation. Section 6 presents the relationship betwdsn th
approach and existing work. Sectidn 7 concludes.

2 Definitions and Notation

Definition 1 (DCOP) A discretedistributed constraint op-
timization problem(DCOP) is a tuple< X', D, R >:

o X ={X;,..,X,}isasetof variables
e D ={d,,...,d,} is aset of finite variable domains

e R ={ry,..,m}is asetof relations, where a relation
r; is any function with the scopeX;,, -+, X,), r; :
d;, x .. x d;, — R, which denotes how much utility is
assigned to each possible combination of values of the
involved variables. Negative utilities mean cost.

DCOPs are multiagent instances of thalued CSP
framework, where each variable and constraint is owned by
an agent. The goal is to find a complete instantiatién
for the variablesX; that maximizeghe sum of utilities of
individual relations.

A simplifying assumption [15] is that each agent controls

a virtual agent for each one of the variablésthat it owns.

To simplify the notation, we us&; to denote either the
variable itself, or its (virtual) agent.We also assume here
only unary and binary relatiorfs

2.1 Depth-First Search Trees (DFS)

LS-DPOP uses a DFS traversal of the problem graph.

Definition 2 (DFS tree) A DFS arrangement of a graph G
is a rooted tree with the same nodes and edges as G and th

IHard constraints (that explicitly forbid/enforce certaimlue combi-
nations) can be simulated with soft constraints by assigring to dis-
allowed tuples, and 0 to allowed tuples. Maximizing utilityus avoids
assigning such value combinations to variables.

2However, all *-DPOP algorithms easily extend to non-binaonc
straints, with minor modifications to the DFS and UTIL phases.

DFS trees have already been investigated as a means to
boost the performance of optimization algorithms [12, 3,
14]. Due to the relative independence of nodes lying in dif-
ferent branches of the DFS tree, it is possible to perform
search in parallel on independent branches, and then com-
bine the results.

Figure 1 shows an example DFS tree that we shall refer
to in the rest of this paper. We distinguish betwerme
edgesshown as solid lines (e.d{; — X5), andback edges
shown as dashed lines (el® — 8,4 — 0).

Definition 3 (DFS concepts)Given a nodeX;, we define:

e parent P; / children C;: these are the obvious defini-
tions (e.g.P4 = X, CO = {X17X8}).

pseudo-parentsP P; are X;'s ancestors directly con-
nected taX; through back-edgesAP; = {X}).

pseudo-children PC; are X;'s descendants directly
connected toX; through back-edgesiC; = {X4}).

separator Sep; of X;: ancestors of X; which
are directly connected withX; or with descen-
dants of X; (e.g. Sepis = {Xo} and Sepi;
{Xo, X3, X9, X10}). Removing the nodes ifiep;
completely disconnects the subtree rooted(atfrom
the rest of the problem.

Definition 4 (Induced width) Given an ordering of the
nodes in a graph, the width| ([9, 3]) induced by the given
ordering is obtained by processing the nodes in the reverse
ordering, and connecting at each step all their neighboring
predecessors in the ordering. The width induced by a DFS
ordering equals the size of the largest separator of any node
in the problem.

3 DPOP: optimization based on inference

The basic utility propagation scherd®OPhas been in-
troduced in [14] DPOPIis an instance of the general bucket
elimination scheme from [3], which is adapted for the dis-
tributed case, and uses a DFS traversal of the problem graph
as an orderingDPOPhas 3 phases:

e Phase 1 - &DFS traversal of the graph is done using

a distributed DFS algorithm, like in [14], which works for
any graph requiring a linear number of messages. The out-
come is that all nodes consistently label each other as par-
ent/child or pseudoparent/pseudochild, and edges are iden
tified as tree/back edges. The DFS tree serves as a commu-
nication structure for the other 2 phases of the algorithm:

Original problem DFS from X' pseudotree arrangement DPOP (X) on C,
—>

Figure 1. A problem graph, one possible rooted DFS tree, and an ex@tdttail of DPOP inCs.

UTIL messages (phase 2) travel bottom-up, and VALUE 4.1 Detecting areas of high induced width
messages (phase 3) travel top down, only via tree-edges.

Phase 2 UTIL propagation : the agents (starting from
the leaves) sendTIL messages to their parents. The sub- During the utility propagation procedure froBPOP,
tree of a nodeX; can influence the rest of the problem only €ach node computes th&TIL message for its parent. In
through X,’s separatorSep;. Therefore, a message con- high width areas, some nodes have to send messages whose
tains the optimal utility obtained in the subtree for each in dimensionality exceed#. In such cases, those nodes
stantiation ofSep;. Thus, messages are size-exponential in choosedims — k dimensions of the message, mark them
the separator size (which is in turn bounded by the inducedaslocal searchdimensions, project them out of the outgo-
width). ing message, and add these dimensions todhéextof the

Phase 3 VALUE propagation top-down, initiated by ~ message. Thus, the final dimensionality of the message is
the root, when phase 2 has finished. Each node determine& (size limit observed). The dimensions to be marked as
its optimal value based on the computation from phase 2 andl:S are chosen according to their level in the pseudotree.
the VALUE message it has received from its parent. Then, This is easy to determine for each node just by finding their
it sends this value to its children througLUE messages. ~ Position in the node’s root path.

It has been proved in [14] th&POP produces a linear
number of messages. Its complexity lies in the size of the
UTIL messages: the largest one is space-exponential in th&xample 1 (Detecting high width) Consider C3 in Fig-

width of the DFS ordering used. ure/1(b). If we run LSDPOP witk = 2, then the mes-
saged/TILi} andUTIL}} proceed normally as in DPOP,
4 LS-DPOP - local search/inference hybrid with dims(UTIL1}) = {11,0} and dims(UT1Ly;) =

{11,9}. However,dims(UTILY) = {10,0,8,9}, thus
it exceedsk = 2. Therefore, X;; marks X, and Xg
(the 2 highest nodes idims(UTILY?)) as LS nodes,
projects them out ot/ T7L19, and adds them to the con-

We keep the basic utility propagation mechanism from
DPOP, but we introduce a control parametavhich spec-
ifies the maximal amount of inference (maximal message :
dimensionality). In the dense parts of the problem, the ex- ©€Xt Of UTILH{O Thus;dZTS(UTILH) = {10,9} and
act propagation produces messages with more dimension§*"t¢xt(UT1L1}) = {07,873
than this limit. In such cases, the algorithm executes d loca The propagation continues, and when the respective
search procedure guided by as much inference as allowednessages arrive ak's and X,, they know that they must
by k. The nodes whose processing by inference would ex- revert to local search. Note that in this exampIé; is la-
ceed thek limit are the ones who execute the local search beled as LS only i3, and not inC> (k not exceeded in

procedure. All other nodes execute the normal utility prop- C2), S0 it will receive an exact message fréry, and it will
agation protocol. perform local search i, together withXg.

4.2 Local search in independent clusters a vector (one dimension) with the desired valuations. The
value giving the maximal valuation can be proposed as the

In the example of Figurel 1, we notice that there are 4 in- next value (in case it is different than the current value).
dependent parts which do not communicate between them- Figure[1.(c) shows an example execution of a local
selves except for some "frontier” nodes. These 4 cyclic sub-search step foX,. All LSnodes send to their pseudochil-
graphs C; — C.), separated by the nodé§,, X, X,y can dren value messages, announcing their current values. The
be explored separately for optimal solutions, and then thePropagation starts normally from the leaves ¢ sendsX,
results assembled through the sab®L/VALUE propaga- @ message witlk';; and X, as dimensions)X1; performs
tions. The advantage of this separation becomes apparent iformally the join between the messages it received from
we consider that many such Separate prob|em Componentgs children. Note that the message it received initialqmir
could be too complex to apply the exddPOP propaga- X13 can be reused, since there is no link in that subtree with
tion, and it may be needed to apply the local search mech-any LS node. Additionally, sinceXs is considered fixed at
anism. Then, it is obvious that by applying local search its present value, the relatioxy — X1, is logically replaced
on each independent componeht separately, we restrict by a corresponding unary constraint &y (this is the slice
the search space that needs to be explored figml to of R, along the current value ok, computed byX1;).
dIF5(C)1 where| LS| is the total number dfSnodes inthe ~ The join is performed also with this induced unary con-
whole problem, andZS(C;)| is the number of. Snodes in straint, and the relatio®}?. X11 projects itself out of the
the component),. This, together with optimal combination join, and sends the messageXe,. The propagation con-
of these local optima througt TIL/VALUE propagations, tinues untilXg, which performs the joit/ TTL§ ® Ry. In-
gives us a much better chance of finding a better overall lo- Stead of projecting itself out of the join to compufé'1 Lg,
cal optima. Xg performs a slice of this join along its current value (the

Frontier nodes are identified by considering the sizes of ON€ previously announced 8:,). It then send€/T7Lg
their separators: if the separator size is 1, the node isa fro t0 Xo, who receives complete information about how much

tier node. For exampléX; is a frontier node fot’; because ~ €ach of its values is worth for the whote, provided X

Sep; = {Xo}. keeps its current value.
If a frontier node is also designated & node in one of Xo can now computeAX, = UTILy Ly,
its subtrees, then that node will sendWSIL message toits —UTILg[Xo = wo], which is the maximal improvement

parent only after having explored through local search the that the whole”; can achieve i, changes fromiits current
respective subtree. For example, assufgehanging out ~ value to the new optimal oneYs keeps its present value,
from X, would be so complex as to require local search. and all the other nodes i@i; change to their new optimal
Then X, would be marked akS, and it would first partici- ~ values.

pate in the local search i, and only after a local optimum Xy also initiates a top-down propagation with itself as
is reached there, would it start its propagation(J'in The aLSnode. It sendsXg UTILS, with dims(UTILS) =
utilities computed as the local optima for each of its values {Xo, Xs} (actually, this message is exacth}, since X,

in C, are then added to the messages going thrétigithe does not have anything else to join for sendingtta Rj?
process is logically equivalent to replaciog with a unary s taken into account by(;», when sending out/ 7’7 L13).
constraint onXy. Xg joins this message with T L§, and performs a slice
of this join, along its current value. The result is exacily t
same vector aX, receives fromXg asUTILS. What we
achieved with the uniform propagation is thus the ability of
In the subgraphs where local search is required, LtBe Xs to have the same information a& about the possible
nodes start by assigning themselves values. Then, we cafinprovementsX, can make itXs keeps the current value.
run a DPOP-like propagation on the cyclic subgraph for After having run all propagations (with one of the
eachLS node X,,. For each propagation, we consider all nodes being allowed to change at the time), eaSimode
LS nodes assigned with their current values, excepkipr ~ X; can thus computa X; for each othet. SnodeX; in the
Such a propagation is just a simple variation of (20 P same cyclic subgraph. In other words, ea€modeX;; can
one, where instead of applying projections for all nodes, we thus compute the maximal improvements that each dtBer

4.2.1 One local search step

execute slices for the nodes in the LS excEpt Thus, X, nodeX; can make, provided only; is allowed to change.
can determine how much utility each one of its values gives For the change itself, one can apply any policy known in
for the whole cyclic subgraph in which it is involvegro- current local search methods, and guide this policy by the

vided the other LS nodes maintain their current values As computed like this. The termination policy can be either
does so by joining all incomingT'I L messages, and pro- a maximal number of cycles, or detection of local/global
jecting out any other dimensions than itself. The result is minima by detecting that allSnodes have\ = 0.

Correctnessin the current formulation, only the node Algorithm 1: LSDPOP - local search/inference hybrid.

with the highest improvement changes its value. Thus, the
algorithm executes a hill climbing procedure for the nodes
designated as LS, and exact inference for the rest, therefor
it will reach a local maximum given by local maxima in
each individual cyclic subgraph.

4.3 Large neighborhood exploration - 3
analysis and complexity

Let us assume that in a cyclic subgraph there are
cc; nodes designated dsS nodes,n; total nodes, andn; 5
edges. The size of the neighborhood completely explored
at each local search stepds, x d x d™t—<¢ (for all val-
ues of each.S node, complete exploration of then-LS 6
nodes). The effort for each step consistof (n; — 1)
UTIL messages sent for exploridg. The largest message ’
is of sized* 1. Thus, each step explores an exponential size
neighborhood with a polynomial amount of effort. 8
Assume the termination policy for the local search pro-
cess involves at mogt local search steps. The whole pro-
cess is then equivalent to explorikgx cc; x d x d™ <t
neighboring states. An exhaustive search method would re- g
quire at least as many messages (big communication over-
head), while classical local search would not be guaranteed
to completely explore this part of the search space.

5 Experimental evaluation

LSDPOP(X, D, R, k): each agenk; does:
UTIL propagation protocol

1 wait for UTIL messagesX., UTIL:) from all

childrenX,. € C;

if any ofUTI L contains myself as LS notieen
execute LS procedure

else

JOIN?}

<(®C€Ci UTIL%) @ (eace{PiUPPi} Rf))
if X, is rootthen startVALUE propagation
else

if |[dims(JOIN}")| > k then

sortdims(JOIN?) by root path {; is
always last)

mark the firstdims(JOIN")| — k
non-LS dimensions from the JOIN as
LS, project them out and add them to the
context of JOIN/". P; is always kept in.

computeUTILY = JOIN/ 1 x, and
send it toP;
end

end

Local search procedure

10 assign a value according to heuristic (can be random)

11 while termination criteria for local search not met

Our experiments were performed on distributed meet-
ing scheduling problems. We modeled a realistic scenario,12
where a set of agents working for a large organization try
to jointly find the best schedule for a set of meetings. The 13
organization itself has a hierarchical structure: a treth wi
departments as nodes, and a set of agents working in each
department. We generate meetings with high probability
within departments, and with a lower probability between
agents belonging to parent-child departments.

We model this problem as a DCOP following [11].
Specifically, each agent; has a set of variableX?, one
for each meeting it is involved in. Each such variaig
is controlled only by the agent;, and represents the time
when meeting j of agen#i; will start (X; has time slots

the equivalent variables of all agents involved in a particu

lar meeting (all agents must agree on a start time for their 1
meeting). If a meeting hag participants, it is sufficient

to createp — 1 equality constraints that connect the corre- 19
sponding variables in a chain (no need to fully connect them

do

sendVALUE(X; < current_value) messages
to all PC;

wait for all correspondin@ TIL messages to
arrive

join them, and slice through

(X; « current_value); store

end
get and store imgent _view all VALUE messages
(Xe 'U:)

15 v} «— argmaxx, (JOINiP’ [v(P;), v(PPZ-)]>
16 SendVALUE(X; « v}) to all C; and PC;

: : i . VALUE propagation(X, « v.)
ty as values). There is an equality constraint connecting ., ¢ sending node, is pseudoparerthen
c

perform sliceR¥ [X, = v.] and join it withUTIL
messages from children

project self out of this join, ad&. < v, to the
context of the message and send it to parent

pairwise). Since an agent cannot participate in 2 meetings gng
at the same time, there is an all-different constraint on all 5, get and store ingent_view all VALUE messages
variablesX? belonging to the same agent. (X, — v*)

C c

21v) — argmaz, (JOIN[o(P.).v(PP,))
22 SendVALUE(X; <) to all C; and PC;

We model the utility that each agendt assigns to each are close to the true optimum.
meeting)/; at each particular timeg, € dom(X;) by im-

posing unary constraints on the variabl&g; each such 6 Related Work
constraint is a vector private td;, and denotes how much

utility A; associates with starting meetidg; at each time The nodes involved in the local search process can be
tq. The ObjeCtive is to find a schedule s.t. the overall Ut|||ty thought of a$yc|e cutset nodqg, 3] From this perspec-
is maximized. tive, there are a number of similar existing approaches.

We have run 2 series of experiments with random prob- Kask and Dechter present in [7] a method of combining a
lems generated as specified before. In the first part, we gentocal search algorithm (GSAT) with inference. That method
erated "easy” problems, such that they can be solved by thes formulated for constraint satisfaction problems, in a-ce
complete algorithm as well, in order to see how far from the tralized setting. A subset of the problem nodes are given
global optima the local search method is. The problems hadas cycle cutset nodes, and local search is performed on this
induced width 8, and the domain size was 8, meaning thesubset. For each instantiation of the cutset nodes, a tree in
largest message in the complete algorithmdias 16.5)/ ference algorithm is applied to the rest of the problem. The
values. These problems are quite close to the feasibility differences between these methods are manyfold. First, our
limit for a complete algorithm. method is distributed, and is defined for optimization, not

The results of these experiments are presented in Table 1satisfaction. Second, the set of nodes that perform local
Each row represents an execution with an increasing boundsearch is identified at runtime (not given a priori). Third,
k. The columns represent (in order): thébound,LS#is we allow for inference with maximal width greater than 1,
the total number of nodes executing the local search pro-controlled byk. Finally, we separate the problem in dis-
cedure %Non-LSis the percentage of nodes executing the tinct cyclic subgraphs which are explored separately, and
normal propagationCyclesis the number of independent the subsolutions are aggregated in a distributed fashion.
subgraphs identifieddvg LS/Non-LS nodes per cyddethe Petcu and Faltings present in [13] a distributed cycle cut-
average number of LS/non-LS nodes in a single componentset optimization method. The idea of isolating indepen-
Sol %off is the distance from the optimal solution in per- dent cyclic subgraphs appears there, too, but unfortynatel
cent, anceffort/stepis an upper bound on the total amount there is no efficient method presented for identifying cy-
of data transmitted within an independent component, for cle cutsets nodes, nor for isolating independent cyclic sub
one local search step. graphs. Here, the DFS traversal of the graph is an excellent

We have run the algorithm with increasihgand noticed ~ way to achieve both goals. There, exhaustive search is per-
relatively small increases in solution quality (perceritoé ~ formed on the cycle cutset variables, as opposed to local
true optimum decreases slowly) and exponential increasessearch/propagation here. The synchronization problems be
of the amount of effort spent for each local search step. tween cycles from that method are solved here by simply

We notice that small values d@f are already producing ~Making each node that borders 2 cyclic subgraphs wait for
good solutions, with relatively low effort. We explain this complete exploration of all its subtrees before sending its
by the fact that even small values/ofillow for a large per- ~ Message to its parent.
centage of nodes to execute the exact propagation, and thus
at each local search step, a large exponential neighborhood Conclusions and future work
is explored. For example, imposikg= 1 (first row in Ta-
ble[1) still leaves on the average almost 70% of the nodes \We have presented the first approach to large neighbor-
to execute the exact propagation. On the average, in a subhood search in distributed optimization. Exponential heig
graph, 13hon-LSnodes adjust optimally to the values of the borhoods are rigorously determined according to problem
6 LSnodes, which is equivalent to explorigg® neighbor- structure, and polynomial efforts are spent for their com-
ing states at eadhS step. plete exploration at each local search step.

The second sets of experiments involved much larger The algorithm explores independent parts of the prob-
and more difficult instances of the same meeting schedul-lem simultaneously and asynchronously, and then combines
ing problems. In this case, the problems were generatecthe results, all in a distributed fashion. The experimental
with 200 agents, 498 variables and 1405 constraints. Theresults show that this approach gives good results for low
induced width was 20, making for&° maximal message width, practically sized dynamical optimization problems
size, which renders complete methods completely infeasi-For loose problems, most of the search space is optimally
ble. We ran agaihSDPOPwith increasingk, and noticeda explored, and only small, tightly connected components are
similar behavior: a large percentage of nodes execute exacexplored by local search. This increases the chance that the
propagation even for small and solution quality improves algorithm avoids some of the local optima, especially for
slowly with increasingk. We conjecture that these results loose problems.

k | LS# | %Non-LS | Cycles| Avg LS/cycle | Avg non-LS/cycle| Sol %off Effort/step

1| 68 68 11 6 13-4 10.86 640 O(d?))

2| 39 81 9 4 19— d% 10.62 30720(d?))
3| 25 88 8 3 23— d?3 9.71 204800 (d*))
4 | 15 93 6 2 33— a3 9.3 1310720(d))
5 5 97 2 2 105— d'% 8.25 7864320(d"))
6 2 99 1 2 214 — %4 7.26 41943040(d"))
oo | O 100 0 0 216 — d*16 0.0 (O(d®))

Table 1. LSDPOP experiments: 100 agents, 59 meetings, 199 variables, 514 constraints, width 8

k | LS nodes| %Non-LS | Cycles| Avg LS/cycle | Avg non-LS/cycle| Solution Effort/step

1 194 61 10 19 30— %0 7910.0 40320 (d?))
2 131 73 10 13 36— 36 7946.0 | 230400(d?))
3 96 80 9 10 44 — g+ 7964.0 | 1392640(d*))
4 73 85 9 8 47 — a7 7980.0 | 8847360(d’))
5 58 88 9 6 48 — 48 8021.0 | 6029312(0(d®))

Table 2. LSDPOP experiments: 200 agents, 498 variables, 1405 constraints, width 20

For future work we plan to experiment with several dif- [10] J. Lever. A local search/constraint propagation hybrid for a
ferent value switching policies (like simultaneous swish
by several variables or allowing non-improving switches) [11]
and different termination policies.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A

[12]

survey of very large-scale neighborhood search techniques.[13]

Discrete Appl. Math.123(1-3):75-102, 2002.
M. Arshad and M. C. Silaghi. Distributed simulated an-

nealing and comparison to DSA. Distributed Constraint

Problem Solving and Reasoning in Multi-Agent Systems, 10S [14]

Press, “Frontiers in Artificial Intelligence; 2004.
R. Dechter. Constraint Processing Morgan Kaufmann,

2003.
R. Dechter and Y. E. Fattah. Topological parameters for

time-space tradeoffrtificial Intelligence 125(1-2):93-118,

2001.
C. Eisenberg. Distributed Constraint Satisfaction For Co-

ordinating And Integrating A Large-Scale, Heterogeneous
Enterprise Phd. thesis no. 2817, Swiss Federal Institute
of Technology (EPFL), Lausanne (Switzerland), September

2003.
O. Ergun and J. Orlin. Dynamic programming method-

ologies in very large scale neighborhood search applied to
the traveling salesman problem. Technical Report 4463-03,

MIT, Sloan School of Management, Dec. 2004.]
K. Kask and R. Dechter. A graph-based method for improv-

ing GSAT. INAAAI/IAAL Vol. 1 pages 350-355, 1996.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-

tion by simulated annealingcience, Number 4598, 13 May

1983 220, 4598:671-680, 1983. o
T. Kloks. Treewidth, Computations and Approximatipwsl-

ume 842 ofLecture Notes in Computer Scienc8pringer,
1994.

[15]

[16]

[17]

network routing problem. IIFLAIRS Conference2004.
R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and

P. Varakantham. Taking DCOP to the real world: Efficient
complete solutions for distributed multi-event scheduling. In

AAMAS-042004.
P. J. Modi, W. M. Shen, and M. Tambe. An asynchronous

complete method for distributed constraint optimization. In

Proc. AAMAS2003.
A. Petcu and B. Faltings. A distributed, complete method for

multi-agent constraint optimization. 1@P 2004 - Fifth In-
ternational Workshop on Distributed Constraint Reasoning

(DCR2004) Toronto, Canada, Sep 2004.
A. Petcu and B. Faltings. DPOP: A scalable method for

multiagent constraint optimization. IRroceedings of the
19th International Joint Conference on Artificial Intelli-
gence, IJCAI-05pages 266271, Edinburgh, Scotland, Aug

2005.
M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Dis-

tributed constraint satisfaction for formalizing distributed
problem solving. Irinternational Conference on Distributed

Computing Systempages 614-621, 1992.
M. Yokoo and K. Hirayama. Distributed breakout algorithm

for solving distributed constraint satisfaction problems. In
V. Lesser, editofProceedings of the First International Con-

ference on Multi-Agent SystenMIT Press, 1995.
W. Zhang and L. Wittenburg. Distributed breakout algorithm

for distributed constraint optimization problems - DBAre-
lax. In Proceedings of the International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS-03)
Melbourne, Australia, 2003.

	Introduction
	Definitions and Notation
	Depth-First Search Trees (DFS)

	DPOP: optimization based on inference
	LS-DPOP - local search/inference hybrid
	Detecting areas of high induced width
	Local search in independent clusters
	One local search step

	Large neighborhood exploration - analysis and complexity

	Experimental evaluation
	Related Work
	Conclusions and future work

