
OpenAIR@RGU

The Open Access Institutional Repository
at The Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

2007 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT 2007 Main Conference Proceedings) (ISBN 0769530273)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

BASHARU, M., ARANA, I and AHRIZ, A., 2007. Solving coarse-
grained DisCSPs with Multi-DisPeL and DisBO-wd. Available from
OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk

Citation for the publisher’s version:

BASHARU, M., ARANA, I and AHRIZ, A., 2007. Solving coarse-
grained DisCSPs with Multi-DisPeL and DisBO-wd. In: TSAU
YOUNG LIN, JEFFREY M. BRADSHAW, MATTHIAS KLUSCH,
CHENGQUI ZHANG, ANDREI BRODER and HOWARD HO, eds. 2007
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT 2007 Main Conference Proceedings). 2-5
November 2007. California, USA. Pp. 335-341.

Copyright
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional
Repository, are protected by copyright and intellectual property law. If you believe that
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact
openair-help@rgu.ac.uk with details. The item will be removed from the repository while
the claim is investigated.



Solving Coarse-grained DisCSPs with Multi-DisPeL and DisBO-wd

Muhammed Basharu
4C, University College

Cork, Ireland
mb@4c.ucc.ie

Inés Arana
School of Computing, RGU
Aberdeen AB25 1HG, UK

ia@comp.rgu.ac.uk

Hatem Ahriz
School of Computing, RGU
Aberdeen AB25 1HG, UK

ha@comp.rgu.ac.uk

0-7695-3027-3/07 Copyright c© 2007 IEEE. Reprinted
from Proceedings of the IEEE/ACM International
Conference on Intelligent Agent Technology, IAT2007,
California, USA, 335-341, 2-5 November 2007. DOI
10.1109/IAT.2007.68
This material is posted here with permission of the
IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of The Robert Gordon
University’s products or services. Internal or personal
use of this material is permitted. However, permission to
reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for
resale or redistribution must be obtained from the IEEE
by writing to pubs-permissions@ieee.org.
By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

Abstract

We present Multi-DisPel, a penalty-based local search
distributed algorithm which is able to solve coarse-grained
Distributed Constraint Satisfaction Problems (DisCSPs) ef-
ficiently. Multi-DisPeL uses penalties on values in order
to escape local optima during problem solving rather than
the popular weights on constraints. We also introduce
DisBO-wd, a stochastic algorithm based on DisBO (Dis-
tributed Breakout) which includes a weight decay mecha-
nism. We compare Multi-DisPeL and DisBO-wd with other
algorithms and show, empirically, that they are more effi-
cient and at least as effective as state of the art algorithms
in some problem classes.

1. Introduction and background

Some problems are naturally formalised as a set of inter-
connected sub-problems where each sub-problem is a Con-
straint Satisfaction Problem (CSP) comprising a set of vari-
ables, a set of domains (one per variable) and a set of con-
straints between those variables. In addition, there is a set

of constraints between some variables in the local CSP and
variables in other sub-problems. In these coarse-grained
DisCSPs, each agent is responsible for a local CSP, i.e.
represents a sub-problem. Thus, besides the inter-agent
constraints between variables held by different agents in
the DisCSP there are intra-agent constraints between the
local variables within an agent. Agents have, therefore,
more problem information available and, consequently, they
can carry out more (local) computation in the search for a
solution without incurring communication costs. Despite
the additional information available to agents when solving
coarse grained DisCSPs, these can prove to be a real test for
collaborative problem solving because agents have to find a
balance between the emphasis they place on resolving the
internal and the external constraints in order to ensure their
collective ability to solve problems.

Yokoo and Hirayama [15] state that the amount of lo-
cal computation required by complex agents can vary along
two extremes. At one extreme, each sub-problem becomes
a variable and each agent does all its local computation
beforehand by finding all possible solutions for its sub-
problem which are then used as the “domain values” of the
variable. This approach is unsuitable for problems where
local sub-problems are large and complex, since it may be
impossible to find all local solutions beforehand. At the
other extreme, each variable in a sub-problem acts as a vir-
tual agent. This is wasteful because the cost of local com-
putation is significantly lower than that of communications
between virtual agents. Also, not all the information which
an agent could consider during problem solving is available
to it. The solution appears to lie somewhere between these
two extremes.

In distributed backtracking algorithms for DisCSPs with
complex agents, most prominently Asynchronous Back-
tracking [10] and Asynchronous Weak Commitment Search
(Multi-AWCS) [15], variables are treated as virtual agents.
Thus, these algorithms use a single strategy to deal with
both inter-agent and intra-agent constraints, and deadlocks
are still detected (and no-goods generated) from each vari-
able rather than from entire sub-problems. The amount of



local computation within agents is significant since each
agent typically tries, exhaustively in the worst case, to find
a local solution that is consistent with higher priority exter-
nal variables before either extending the partial solution or
requesting a revision of earlier choices by other agents.

Multi-DB [6] attaches weights to constraints in order to
modify the cost landscape whenever quasi-local-optima are
encountered. Agents act concurrently - i.e. they send value
updates in the ok? cycle and find and coordinate concurrent
improvements in the improve cycle. In addition, agents run
a local search algorithm for a fixed number of steps to iden-
tify a set of local changes that reduces the cost of the current
solution. These changes are exchanged with neighbouring
agents, and the best changes are accepted. Simultaneous
value changes of two or more co-constrained variables are
permitted where such changes do not increase the cost of
the solution.

Multi-AWCS combines backtracking and iterative im-
provement search and escapes deadlocks through the use
of variable re-ordering and storage of explicit no-goods.
While the algorithm has been shown to outperform other
distributed backtracking algorithms [15], it has the draw-
back of possibly requiring an exponential amount of mem-
ory to store no-goods.

This paper presents two efficient and effective local
search distributed constraint satisfaction algorithms for
solving coarse-grained DisCSPs. The first algorithm, Multi-
DisPeL, uses a penalty-based strategy to escape local op-
tima. The second, DisBO-wd, uses a constraint-based strat-
egy with weight-decay to avoid deadlocks.

The remainder of this paper is structured as follows.
First, Multi-DisPeL is introduced in section 2. Next,
DisBO-wd is explained in section 3. Finally, section
4, presents the results of empirical evaluations of Multi-
DisPeL and DisBO-wd along with comparisons with other
similar algorithms.

2. Multi-DisPeL

DisPeL [1] is an iterative improvement distributed con-
straint satisfaction algorithm where each agent controls just
one variable and the objective is to find the first solution that
satisfies all constraints. At each cycle, agents take turns to
improve a random initialisation in a fixed order determined
by the Distributed Agent Ordering scheme [5]. Thus, at
initialisation, each agent locates its position in the ordering
by locally partitioning its neighbours into parents (γ+) and
children (γ−) using their lexicographic tags (or IDs).

In order to resolve deadlocks (quasi-local-optima
where an agent’s view remains unchaged for 2 iterations),
DisPeL applies penalties to variable values in a 2-phased
strategy : (i) In phase one, the solution is perturbed with
a temporary penalty in order to encourage agents to try

other values, therefore exploring other areas of the search
space and; (ii) If phase one fails to resolve a deadlock
(i.e. a deadlock is revisited), agents try to learn about and
avoid the value combinations that caused the deadlock
by increasing the incremental penalties attached to the
culprit values. Whenever an agent detects a deadlock and
has to use a penalty, it imposes the penalty on its current
assignment and asks its neighbours to impose the same
penalty on their current assignments as well. In addition,
a no-good store is used to keep track of the deadlocks
encountered. The cost function for each agent is as follows:

h(di) = v(di)+p(di)+





t if temporary penalty used

0 otherwise
(1)

where: di is the ith value in the variable’s domain; v(di) is
the number of constraints violated if di is selected; p(di) is
the incremental penalty attached to di and t is the temporary
penalty (t = 3 in most experiments [1]).

Stoch-DisPeL [2] is a stochastic variation of Dis-
PeL where if an agent is at a quasi-local-optimum it ran-
domly decides to either impose a temporary penalty (with
probability p) or to increase the incremental penalty (with
probability 1− p). It, therefore, does not need to keep track
of previous deadlocks and, consequently, does not require a
no-goods store. For most problem types p = 0.3 gives the
best results.

DisPeL and Stoch-DisPeL have been shown to be effec-
tive and efficient when compared to state-of-the-art local
search algorithms [1, 2].

A contribution of this paper is Multi-DisPeL (see Al-
gorithm 1) - a penalty-based algorithm for solving coarse-
grained problems. In Multi-DisPeL both variables and
agents have unique IDs and agents know the owners of vari-
ables constrained with their local variables. Hence, agent’s
neighbours are those agents whose variables share at least
one constraint with the variables belonging to the agent.
At initialisation, agents create an ordering using the Dis-
tributed Agent Ordering heuristic with their IDs, as done in
DisPeL. Agents will, therefore, treat all variables belong-
ing to higher priority agents as higher priority variables and
variables belonging to lower priority agents as lower prior-
ity variables. Each agent communicates with both sets of
neighbours and takes its turn to improve the solution after
receiving updates from all higher priority neighbours. Dur-
ing the initialisation process, agents also initialise their local
variables with random instantiations and exchange these as-
signments with their neighbours. Multi-DisPeL is outlined
in detail in Algorithms 1 to 6.

In each cycle, each agent uses a modified steepest de-
scent local search (Algorithm 3) in order to minimise the
total number of constraints violated by its local variables
as follows: (i) Find all improvements to the solution for

2



Algorithm 1 Multi-DisPeL: Main loop
initialise
ordering ← empty
for i = 0 to OwnV ars.size do

ordering ← ordering ∧ vari

end for
loop

messgs ← accept()
while active do

for i = 0 to num(messgs) do
processMessage(messgi)

end for
for i = 0 to V ars.size do

if vari is consistent or cost function for vari is
distorted then

reset vari.incrementalPenalties
end if
if vari.penaltStat 6= null then

implement penalty on vari

end if
end for
improveSolution()

send var. values & penalty requests to all neigh-
bours

end while
end loop

each variable; (ii) Implement simultaneously all the best im-
provements which are compatible, breaking ties in favour of
variables with the largest number of constraints or the high-
est lexicographic IDs.

When penalties are used, variables are treated as vir-
tual agents, i.e. penalties are “sent” from individual vari-
ables involved in deadlocks to variables sharing constraints
with them. Like in Stoch-DisPeL, agents choose ran-
domly between using a temporary penalty or an incremental
one. However, agents do not have to detect a quasi-local-
optimum in order to apply penalties. Rather, penalties are
used as soon as the underlying search, which agents use in-
dividually, is stuck. Since agents do not distinguish between
internal and external constraints, the steepest descent search
could go on indefinitely i.e. an agent keeps trying to find a
consistent local solution when values of external variables
prevent it from doing so. To avoid this problem, when the
steepest descent is stuck agents do not impose any “new”
penalties on variables whose assignments have changed or
have been penalised in the current (Algorithm 5, lines 8-10).

The steepest descent search terminates, in each itera-
tion, when the local solution is consistent, no further im-
provements can be found, or agents cannot impose any new
penalties on the local variables. When this happens, agents
send the new variables’ assignments to all affected neigh-

Algorithm 2 procedure processMessage(messg)
1: update AgentV iew with

messg.variable,messg.value
2: if messg.penaltyRequest = null then
3: return
4: end if
5: for each vari constrained with messg.variable do
6: if messg.penaltyRequest = increaseIncPenalty

then
7: vari.penaltStat ← increaseIncPenalty
8: else
9: if vi.penaltStat 6= increaseIncPenalty then

10: vari.penaltStat ← imposeTempPenalty
11: end if
12: end if
13: end for

Algorithm 3 procedure improveSolution()
1: for i = 0 to V ars.size do
2: xi.moved ← FALSE
3: end for
4: while true do
5: improvements ← getImprovements()
6: if improvements = ∅ then
7: penaltyImposed ← imposePenalties()
8: if ¬penaltiesUsed then
9: break

10: end if
11: else
12: for i = 0 to improvements.size do
13: x ← improvementsi.var
14: update < x, improvementsi.value >
15: x.moved ← TRUE
16: end for
17: end if
18: end while

bours, as well as any requests to impose penalties.
Like Stoch-DisPeL, Multi-DisPeL is sound, incomplete

and terminates only if a solution is found. Multi-DisPeL’s
space requirements are minimal since the only additional in-
formation agents store are the penalty vectors for each vari-
able. Hence, the space complexity increases only linearly
with the problem size.

Multi-DisPeL was compared, empirically, to Stoch-
DisPeL. Table 1 shows results of experiments on critically
difficult, solvable, random distributed graph colouring prob-
lems with k = 3, degree = 4.7 (for a description of how
coarse-grained problems were generated see section 4). The
results show a substantial reduction in costs with Multi-
DisPeL, confirming that problem solving is quicker when
agents do additional computation when dealing with coarse-

3



Algorithm 4 getImprovements()
1: impSet ← ∅
2: for i = 0 to V ars.size do
3: get v ∈ di with the minimum h(xi)
4: δ ← h(xi.currentV alue)− h(xi.v)
5: if δ > 0 then
6: impSet ← impSet ∪ improvement(xi, v, δ)
7: end if
8: end for

bestImps ← ∅
9: for all (improvement, xi, vi, δi) ∈ impSet do

10: remove ← FALSE
11: for all (improvement, xj , vj , δj) ∈ impSet do
12: if ¬isNeighbour(xi, xj) then continue
13: if δi < δj then remove ← TRUE
14: if δi = δj then
15: if (xi.Constr < xj .Constr)∨(xi.id > xj .id)

then
16: remove ← TRUE
17: end if
18: end if
19: end for
20: if ¬remove then
21: bestImps ← bestImps ∪

improvement(xi, vi, δi)
22: end if
23: end for
24: return bestImps

grained DisCSPs, as opposed to treating each variable as
a virtual agent. This is unsurprising given that in Multi-
DisPeL agents have more information available to them.

3. DisBO-wd

Multi-DB [6, 7] is a Distributed Constraint Satisfaction
algorithm for coarse-grained DisCSPs, which is particu-
larly effective at solving distributed SAT problems. DisBO
[3] is an extension which increases weights only at real
local optima. Thus, DisBO has an additional third cycle
for global state detection. At each improvement phase the
agents select values for their intra-agent variables (those
only involved in intra-agent constraints) that minimise the
weighted constraint violations until no further improve-
ments are possible. The inter-agent variables, i.e. those
involved in at least one inter-agent constraints, on the other
hand, are treated like virtual agents and a coordination
heuristic is used to prevent any two inter-agent variables
(even those within one agent) from changing their values
simultaneously unless the concurrent changes do not cause
the constraints between them to be violated.

We have produced DisBO-wd, an algorithm based on

Algorithm 5 imposePenalties()
1: penaltyImposed ← FALSE
2: for i = 0 to V ars.size do
3: if isConsistent(xi)∨ cost function of xi is dis-

torted then
4: xi.resetIncrementalPenalties
5: end if
6: end for
7: for i = 0 to V ars.size do
8: if xi.moved ∨ isConsistent(xi) ∨

(xi.penaltStat 6= null) then
9: continue

10: end if
11: r ← random value in [0..1]
12: if r < p then
13: xi.penaltStat ← sentAddTempPenalty
14: else
15: xi.penaltStat ← sentIncreaseIncPenalty
16: end if
17: penaltyImposed ← TRUE
18: implLocPenalts(getRecipients(xi), xi.penaltStat)
19: end for
20: return penaltyImposed

DisBO where the weight update scheme is replaced with a
weight decay scheme similar to Frank’s [4]. Instead of mod-
ifying weights only when a search is stuck at local optima,
weights on violated constraints are continuously updated af-
ter each move, so DisBO’s global state detection phase is
not required. At the same time, weights are decayed at a
fixed rate (dr < 1) during the updates allowing focus on re-
cent increments. Thus, the weight on a violated constraint
at time t is Wi,t = (dr∗Wi,t−1)+lr where lr is the learning
rate (lr > 0). In addition, weights on satisfied constraints
are continuously decayed (Wi,t = max((dr ∗ Wi,t−1), 1)
and the coordination heuristic is replaced with the random
break as in [13]. Other alternatives for improving DisBO
were also considered, notably probabilistic weight resets
and probabilistic weight smoothing [9], which both outper-
formed DisBO but were not as strong as the weight decay
strategy.

We run a set of experiments which evaluated the perfor-
mance of DisBO and DisBO-wd. Figure 1 summarises em-
pirical results from experiments on critically difficult dis-
tributed graph colouring problems (k = 3, degree = 4.7)
which show that DisBO-wd solved more problems than
DisBO (Figure 1), especially on the larger problems. Fur-
thermore, DisBO-wd required substantially fewer cycles on
average to solve the problems.

4



Algorithm 6 implLocPenalts(recipientList, penaltySent)
1: for each xi ∈ (recipientList.size ∩ V ars) do
2: if penaltySent = addTempPenalty then
3: if xi.penaltStat = null then
4: xi.penaltStat ← imposeTempPenalty
5: impose temporary penalty on xi.currentV alue
6: end if
7: else
8: if xi.penaltStat = null ∨ xi.penaltStat =

imposeTempPenalty then
9: xi.penaltStat ← increaseIncPenalty

10: increase incremental penalty on
xi.currentV alue

11: end if
12: end if
13: end for

4. Evaluation of Multi-DisPeL and DisBO-wd

We evaluated Multi-DisPeL and DisBO-wd on random
DisCSPs, distributed SAT problems and distributed graph
colouring problems. We studied the relationship between
search costs and the problem size, as well as the influence of
agent size (i.e. the number of variables each agent controls)
on its performance. In the experiments, each algorithm was
limited to a maximum of 100n iterations in each attempt
where n is the number of variables. However, a maximum
of 200n iterations were used for DisBO-wd, to account for
its two cycles (i.e. improve and ok?) and as such give it
the same number of opportunities to change variable assign-
ments as the other algorithms. For each problem, we gener-
ated 100 instances and recorded the percentage of problems
solved within the maximum number of iterations, the aver-
age and median number of iterations required.

Since Multi-DisPeL gives a better performance than
Stoch-DisPeL (see section 2) and the latter has been shown
to be more effective and efficient than other non-coarse-
grained DisCSP algorithms such as DBA [14] and DSA
[16], it can be concluded that Multi-DisPeL is more effi-
cient and effective than these algorithms.

Multi-DisPeL and DisBO-wd’s performance was com-
pared to that of Multi-AWCS [15]. Since Multi-DB works
particularly well on distributed SAT problems and it has
been shown to outperform Multi-AWCS in that domain we
use Multi-DB in the experiments on distributed SAT prob-
lems. Note that given its completeness, Multi-AWCS is
guaranteed to solve all problems used since they all have
solutions but we are evaluating its performance in bounded
time.

The problems used in the experiments were partitioned
into inter-connected sub-problems for each agent using a
simple partitioning algorithm. For each agent ai: (i) select a

num. number % avrg. median
vars. agents solved cost cost

Stoch- 100 - 100 236.5 111
DisPeL 150 - 100 686.4 300

200 - 99 1878.5 890
250 - 98 2201.2 1277

Multi- 100 2 100 84.5 44
DisPeL 4 100 102.6 43

5 100 105.3 58
10 100 112.1 55

150 3 100 300.7 110
5 99 271.3 121
10 100 291.2 148
15 100 351.1 135

200 4 100 804.4 329
5 100 897.3 324
10 100 1135.4 373

250 5 99 1242.6 417
10 100 1660.5 529
25 97 1785.7 668

Table 1. Performance of Multi-DisPeL and
Stoch-DisPeL on distributed graph colouring
problems.

non-allocated variable xi and allocate it to ai; (ii) repeatedly
select a non-allocated variable connected to a variable in
ai and allocate it to ai until the right number of variables
is given to ai; with a very small probability, step (ii) will
choose a non-allocated variable possibly not connected to
any variable in ai.

Random DisCSPs were used to evaluate the algo-
rithms on three groups of 100 problems with varying sizes
(< n, d = 10, p1 ≈ 0.1, p2 = 0.5 >) - see results in Table
2. Note that for Multi-AWCS results were only obtained in
the runs with 50 variables due to the exponential amount
of memory it requires to store no-goods [12]1. Multi-
DisPeL generally gives a better performance and lower
search costs than Multi-AWCS and DisBO-wd. The av-
erage and median search costs for Multi-DisPeL show a
steady increase as the number of agents increases whereas
DisBO-wd’s performance degrades considerably on the
largest problems.

Distributed SAT problems (satisfiable 3-SAT) from the
SATLib dataset [8] made up of formulae with 100, and 150
literals were used to compare the algorithms. For Multi-
DB and Multi-AWCS, we used results on experiments with
the same instances from [6] - note, however, that variables
are randomly distributed amongst agents in [6], so the dis-
tribution may not be identical to ours. For Multi-DisPeL,
the temporary penalty (t) was fixed to 2 and the probabil-
ity of using the temporary penalty (p) was set to 0.5. The
results of the experiments (see Table 2) show that, in terms
of % of problems solved, DisBO-wd does best followed by
Multi-DB which performed slightly worse. Multi-DisPeL,

1We used Java on a 3Ghz Pentium PC with 1GB of RAM.

5



Random DiscSPs
algorithm n agents % avrg. c. medn. c.
Multi- 50 5 99 307 124
DisPeL 10 99 309 146

100 5 97 856 276
10 94 928 449

200 5 95 1382 534
10 95 2190 727

Multi- 50 5 100 738 288
AWCS 10 98 995 527

≥ 100 out of memory
DisBO- 50 5 94 1927 1336
wd 10 99 1855 1104

100 5 83 4996 2922
10 88 4695 3065

200 5 62 13454 8060
10 65 16832 14432

SAT Problems
algorithm lits agents % avrg. c. medn. c.
Multi- 100 5 98.1 487 136
DisPeL 10 98.7 593 154

150 5 90 829 268
10 93 1214 292

Multi- 100 5 100 1640 570
DB 10 99.6 3230 1150

150 5 100 3230 1200
10 96 9030 2090

Multi- 100 5 97.6 6100 1730
AWCS 10 96.8 7630 2270

150 5 67 37100 26100
10 61 39400 36000

DisBO- 100 5 100 984 490
wd 10 99.9 1003 516

150 5 99 2186 910
10 99 2054 1012

Graph colouring problems
algorithm n agents % avrg. c. medn. c.
Multi- 100 5 100 105 58
DisPeL 10 100 112 55

150 5 99 271 121
10 100 291 148

200 5 100 897 324
10 100 1135 373

Multi- 100 5 100 123 92
AWCS 10 100 163 129

150 5 100 288 198
10 100 341 277

200 5 100 556 431
10 100 704 527

DisBO- 100 5 100 1084 691
wd 10 100 1020 817

150 5 97 4376 2274
10 98 4977 2482

200 5 82 11727 6686
10 83 10262 5956

Multi- 100 7.2† 100 126 61
DisPeL∗ 150 9.6† 99 304 129

200 11.9† 100 1056 348
Multi- 100 7.2† 100 121 98
AWCS∗ 150 9.6† 100 304 263

200 11.9† 100 672 558
DisBO- 100 7.2† 100 1100 568
wd∗ 150 9.6† 100 3872 2401

200 11.9† 89 11432 7414

Table 2. Algorithms’ performance

Figure 1. Comparison of success rates
and average cycles required by DisBO
and DisBO-wd on random distributed graph
colouring problems of various sizes. Each
point represents attempts on 100 problems.

does substantially better than Multi-AWCS, although it is
not quite as good as the other two algorithms. Regarding
cost, Multi-DisPeL does remarkably well compared to the
other algorithms, with substantially lower average and me-
dian search costs. Also, DisBO-wd search costs were sig-
nificantly smaller than those of Multi-DB and Multi-AWCS.

Distributed graph colouring problems were used to
compare the algorithms and to study the relationship be-
tween search costs and problem size (see Table 2). 100 in-
stances of critically difficult, solvable, random distributed
graph colouring problems (k = 3, degree = 4.7) were gen-
erated for each problem size used. In the table, ∗ indicates
an uneven distribution of variables per agent and † indicates
the average number agents per problem.

With an even distribution of variables to agents, Multi-
DisPeL solved slightly less problems than Multi-AWCS but
it incurred lower costs. DisBO-wd solved fewer problems
and its search costs were considerably higher. When the
distribution of variables to agents is uneven, Multi-AWCS
solves slightly more problems than Multi-DisPeL and it
has lower average but higher median costs. DisBO-wd per-
formed substantially worse than the other two algorithms.

6



The results of the experiment show that Multi-DisPeL is
able to achieve similar levels of performance to Multi-
AWCS without the additional overhead of creating new con-
straints (in form of no-goods) and not breaching privacy by
connecting variables that were not previously linked in the
original specification of the problem being solved.

5. Discussion and conclusions

We have presented two successful algorithms for solving
coarse-grained DisCSPs: (i) Multi-DisPeL - an algorithm
where each agent runs a steepest descent algorithm locally
and uses (temporary and incremental) penalties on individ-
ual domain values to escape from local optima and; (ii)
DisBO-wd, an effective algorithm based on DisBO which
incorporates weight decay and randomness and eliminates
the need for a global state detection phase.

Compared to Multi-AWCS, Multi-DisPeL performed
better and more efficiently in two problem classes (ran-
dom DisCSPs and distributed SAT problems). Multi-
DisPeL solved slightly less problems in the experiments
with distributed graph colouring problems, but it had lower
median and average search costs. Note that, in addition,
Multi-DisPeL has the following two advantages: (i) a much
lower space complexity than Multi-AWCS since it does not
create any new constraints (in the form of no-goods) and;
(ii) no new links are created between unconnected agents,
so privacy is preserved.

Multi-DisPeL solved more problems than DisBO-wd
and it required fewer iterations for two problem classes (dis-
tributed graph colouring and random DisCSPs), but DisBO-
wd was better at solving SAT problems where it was the
most competitive algorithm. DisBO-wd was also compet-
itive on SAT problems compared to Multi-DB because in
DisBO-wd weights are not allowed to grow unbounded
so its costs are lower. Multi-DB was better than Multi-
DisPeL and Multi-AWCS for SAT problems although both
its average and median costs were substantially greater than
Multi-DisPeL’s.

Search efficiency in Multi-DisPeL could be further
improved by using pre-processing techniques locally on
agents. In addition, agents are not necessarily restricted to
using a steepest descent search heuristic to improve their lo-
cal sub-problem resolution. Other heuristics could be used
locally (e.g. Novelty[11]) as long as penalties can be di-
rectly incorporated in the cost functions of such methods
and agents can determine when to implement new penal-
ties.

In summary, we have presented two algorithms for
solving coarse-grained DisCSPs, i.e. Multi-DisPeL and
DisBO-wd, which are effective and efficient when com-
pared to other well-known algorithms for some problem
classes.

References

[1] M. Basharu, I. Arana, and H. Ahriz. Solving DisCSPs
with penalty-driven search. In Proceedings of AAAI 2005 -
the Twentieth National Conference of Artificial Intelligence,
pages 47 – 52. AAAI, 2005.

[2] M. Basharu, I. Arana, and H. Ahriz. Stoch-DisPeL: Ex-
ploiting randomisation in DisPeL. In Proceedings of DCR
06 - the Seventh Intenational Workshop on Distributed Con-
straint Reasoning, pages 117–131, 2006.

[3] C. Eisenberg. Distributed Constraint Satisfaction For Coor-
dinating And Integrating A Large-Scale, Heterogeneous En-
terprise. PhD thesis, Swiss Federal Institute of Technology
(EPFL), Lausanne (Switzerland), September 2003.

[4] J. Frank. Learning short-term weights for GSAT. In M. Pol-
lack, editor, Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI97), pages 384–
391, San Francisco, August 1997. Morgan Kaufmann.

[5] Y. Hamadi, C. Bessière, and J. Quinqueton. Backtracking in
distributed constraint networks. In H. Prade, editor, 13th Eu-
ropean Conference on Artificial Intelligence ECAI 98, pages
219–223, Chichester, August 1998. John Wiley and Sons.

[6] K. Hirayama and M. Yokoo. Local search for distributed
SAT with complex local problems. In Proceedings of the
first international joint conference on Autonomous agents
and multiagent systems, AAMAS 2002, pages 1199 – 1206,
New York, NY, USA, 2002. ACM Press.

[7] K. Hirayama and M. Yokoo. The distributed breakout al-
gorithms. Artificial Intelligence, 161(1–2):89–115, January
2005.

[8] H. H. Hoos and T. Stutzle. Satlib: An online resource for
research on SAT. In I. P. Gent, H. van Maaren, and T. Walsh,
editors, Third Workshop on the Satisfiability Problem (SAT
2000), pages 283–292. IOS Press, 2000.

[9] F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and
probabilistic smoothing: Efficient dynamic local search for
SAT. In P. V. Hentenryck, editor, Proceedings of the 8th In-
ternational Conference on Principles and Practice of Con-
straint Programming (CP02), volume 2470 of LNCS, pages
233–248, London, UK, September 2002. Springer-Verlag.

[10] A. Maestre and C. Bessiere. Improving asychronous back-
tracking for dealing with complex local problems. In
R. L. de Mntaras and L. Saitta, editors, Proceedings of the
16th Eureopean Conference on Artificial Intelligence (ECAI
2004), pages 206–210. IOS Press, August 2004.

[11] D. A. McAllester, B. Selman, and H. A. Kautz. Evidence for
invariants in local search. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence (AAAI ’97),
pages 321–326. AAAI Press / The MIT Press, 1997.

[12] A. Meisels and O. Lavee. Using additional information in
DisCSPs search. In P. J. Modi, editor, Proceedings of the
5th International Workshop on Distributed Constraint Rea-
soning, September 2004.

[13] L. Wittenburg. Distributed constraint solving and optimiz-
ing for micro-electro-mechanical systems. Master’s thesis,
Technical University of Berlin, December 2002.

7



[14] M. Yokoo and K. Hirayama. Distributed breakout algo-
rithm for solving distributed constraint satisfaction prob-
lems. In Proceedings of the Second International Confer-
ence on Multi-Agent Systems, pages 401–408. MIT Press,
1996.

[15] M. Yokoo and K. Hirayama. Distributed constraint satisfac-
tion algorithm for complex local problems. In ICMAS ’98:
Proceedings of the 3rd International Conference on Multi
Agent Systems, pages 372–379, Washington, DC, USA, July
1998. IEEE Computer Society.

[16] W. Zhang, G. Wang, and L. Wittenburg. Distributed
stochastic search for constraint satisfaction and optimiza-
tion:parallelism, phase transitions and performance. In Proc.
AAAI Workshop on Probabilistic Approaches in Search,
pages 53–59, 2002.

8


