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Abstract

Detecting small moving targets accurately in infrared
(IR) image sequences is a significant challenge. To address
this problem, we propose a novel method called spatial-
temporal local feature difference (STLFD) with adaptive
background suppression (ABS). Our approach utilizes fil-
ters in the spatial and temporal domains and performs
pixel-level ABS on the output to enhance the contrast be-
tween the target and the background. The proposed method
comprises three steps. First, we obtain three temporal frame
images based on the current frame image and extract two
feature maps using the designed spatial domain and tem-
poral domain filters. Next, we fuse the information of the
spatial domain and temporal domain to produce the spatial-
temporal feature maps and suppress noise using our pixel-
level ABS module. Finally, we obtain the segmented bi-
nary map by applying a threshold. Our experimental results
demonstrate that the proposed method outperforms exist-
ing state-of-the-art methods for infrared small-moving tar-
get detection.

Index Terms— Infrared image sequences, spatial-
temporal domain, background suppression, small target de-
tection.

1. Introduction

The detection and tracking of small moving targets in
infrared (IR) image sequences play a vital role in multiple
fields, including aerospace, unmanned aerial vehicle (UAV)
shooting, night shooting, and guidance [1]. However, ac-
curately identifying small targets in IR image sequences
presents a significant challenge due to their low energy in-
tensity, lack of distinct semantic texture features, and poten-
tial confusion with background noise [2]. Furthermore, the
use of drones for photography introduces additional com-
plexities such as background movement, further complicat-
ing the detection of small moving targets in diverse and in-

tricate scenes. Consequently, the detection of small moving
targets in various complex IR image sequences remains a
formidable task.

In recent years, several studies have focused on utilizing
deep learning methods for IR small target detection [3, 4].
However, these methods face issues such as a lack of suffi-
cient public data to support effective training, and the high
complexity of models leading to the inability to meet the
demand for real-time and lightweight requirements in real
applications. Therefore, we only discuss methods without
deep learning in this paper. Current studies mainly rely on
two branches: the single-frame spatial filtering methods [5]
and the combination of multi-frame spatial and temporal fil-
tering methods [6, 7].

Most single-frame spatial domain filtering methods are
mainly based on the local contrast information in space to
enhance the target region and suppress the background re-
gion. Chen et al. [8] proposed the local contrast method
(LCM), which first used a patch to calculate the difference
between the target and the surrounding area, enhancing the
target area. Building on the LCM, Han et al. [9] proposed
the multi-scale relative local contrast measure (RLCM).
Wei et al. [10] proposed the multi-scale patch-based con-
trast measure (MPCM), which combined gradients in each
direction to enhance targets with various energy intensi-
ties. Wu et al. [11] introduced the double-neighborhood
gradient method, which defined a tri-layer window to de-
tect multi-scale targets. However, single-frame based meth-
ods that rely solely on spatial domain information may not
effectively suppress background noise. Additionally, these
methods are limited by the use of only single-frame 2-D
features, which may not distinguish the target from some
backgrounds with disturbing properties. As small targets in
IR images have motion characteristics, methods that com-
bine spatial and temporal information have been proposed
to address these limitations.

In recent years, several methods combining multi-
frame spatial and temporal filtering have made significant
progress. Deng et al. [12] proposed the spatial–temporal lo-
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Figure 1. The framework of the proposed STLFD method for IR small moving target detection. The detection process mainly includes
spatial feature extraction of the kth frame, temporal feature extraction of kth, (k-n)th and (k-2n)th frames, and pixel-level ABS module to
calculate the output of the spatial and temporal domain extractor.

cal contrast filter (STLCF) method based on local contrast
filter, which used a mean filter to calculate the feature map
on both spatial and temporal domains. Du and Hamdulla
[13] proposed the spatial–temporal local difference measure
(STLDM) method, which directly calculated the IR image
sequence as a 3-D spatial-temporal domain. Pang et al. [14]
proposed the spatiotemporal saliency method (NSTSM) for
low-altitude slow small target detection, which used a tri-
layer window to calculate the mean of the variance differ-
ence between the internal and external windows. Zhang
et al. [15] proposed the spatial-temporal local vector dif-
ference (STVDM) measure, which converted spatial in-
formation into vectors by calculating the cosine similarity
to obtain the target information. Although the methods
mentioned above incorporate temporal domain information,
there are still two key issues to consider. Firstly, previ-
ous methods use future information in the video sequence,
which generates an unavoidable delay that varies with the
amount of future information used and can not meet the
need for real-time in some scenarios. Secondly, camera
movement can cause the background to be perceived as mo-
tion information, while the previous method directly uses
the temporal domain information between frames, which
cannot effectively avoid such problems.

To address the challenges mentioned above, we propose
a novel approach for small target detection in IR image se-
quences, called the spatial-temporal local feature difference
(STLFD) method. Our method focuses on extracting spa-
tial gray value features in IR image sequences using a spe-
cially designed spatial domain filter. By utilizing the spatial
feature of the current frame along with previous frames as
temporal domain information, we eliminate the need for fu-
ture information and mitigate output delays. Additionally,
we introduce a pixel-level adaptive background suppression
(ABS) module to enhance the contrast of the output fea-
ture maps and effectively suppress noise generated by back-

ground motion. The implementation details of our method
are described in the following sections. We demonstrate the
effectiveness of our approach through experimental results.

2. Proposed Method

The detection framework of the algorithm is illustrated
in Fig. 1. Here, given an IR image sequence, we only
use the information of the current frame and its previous
frames, we choose the kth frame, the (k - n)th frame and the
(k - 2n)th frame as input. The input is then passed through
a spatial filter to generate the spatial feature map (Smap).
Temporal feature information will be extracted to obtain the
temporal feature map (Tmap) based on Smap. To obtain
the spatial-temporal feature map (STmap) of the kth frame,
the Smap and Tmap are element-wise multiplied. Finally,
a pixel-level ABS is applied to enhance the target and sup-
press the background, resulting in the final output feature
map. The binary segmentation results are obtained by ap-
plying a threshold to the final output feature map.

T
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Figure 2. Structure of the spatial filter kernel in one frame.
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Table 1. The detailed description of five real IR image sequences

Frame Number Image Scale Scene Description Target Type

Seq. 1 745 256×256
Ground-sky background
Background movement and jitter
Strong road and mountain noise impact

UAV

Seq. 2 1500 256×256
Ground-sky background
Background slow movement and jitter
Strong ground noise impact

UAV

Seq. 3 750 256×256
Low-altitude background
Background fast movement and large jitter
Strong building noise impact

UAV

Seq. 4 500 256×256
Ground-sky background
Background slow movement and slight jitter
Strong woods noise and edge background impact

UAV

Seq. 5 100 320×240
sky bacground
Static bacground
Cloud noise impact and low target contrast

UAV

2.1. Spatial Feature Extraction

The spatial filter kernel is shown in Fig. 2. We define a
3×3 area as a patch [8], and a filter kernel is formed by 9
adjacent patches. The patch in the middle area is the target
patch T , while the patch in the surrounding area is the back-
ground patch Bi (i = 1, 2, ..., 8). The purpose of our spatial
filter is to obtain the local contrast information between the
target patch T and the surrounding background patch Bi of
the kth frame, so as to suppress the background and enhance
the target features. To be able to obtain the local contrast
information, we calculate the difference between the target
patch and the surrounding background patch separately, and
the function is defined as follows:

Dn = max{2 ·MAXT −MEANBn −MEANBn+4 , 0},
(n = 1, 2, 3, 4),

(1)

where MAXT and MEANBn
denote the maximum value

of patch T and the mean value of patch Bn, respectively.
Therefore, we can obtain four local gradient contrast val-
ues D1, D2, D3, D4 to characterize the information of the
current area. For patch T , we use maximum filtering to ef-
fectively enhance the energy intensity of weak targets and
their area on the output feature map.

To obtain the final spatial feature map, we calculate the
product of the maximum and minimum of the four contrast
values D1, D2, D3, D4, then normalize the result. This
process results in a spatial feature map named Smap, which
is given by the following function:

Smap(i, j) = max(Dn) ·min(Dn), (n = 1, 2, 3, 4), (2)

Smap(i, j) =
Smap(i, j)

maxi,j{Smap(i, j)}
. (3)

The output of Smap is a normalized representation of
the local gradient contrast values that are indicative of the
target present in the current region.

It is worth noting that the calculation of Dn only retains
values greater than zero since including negative values can
affect the calculation of the area, where the central gray
value is lower than the surrounding area. By excluding neg-
ative values, we ensure that Smap reflects the true local
gradient values that are indicative of the target present in
the current area. Furthermore, by calculating the product of
the maximum and minimum non-negative gradient values,
we can effectively suppress false detection regions caused
by factors such as edges. This is beneficial for subsequent
spatial-temporal feature multiplication and ABS operations,
as it reduces false positives and improves the accuracy of the
target detection system.

2.2. Temporal Feature Extraction

Although the spatial filter is effective in enhancing tar-
get regions, it has limited ability to suppress non-target re-
gions such as temporal noise and edge noise. To address
this issue, we introduce a temporal domain filter. Unlike
conventional temporal domain filtering for images, we per-
form filtering in time based on the target-enhanced features
obtained from the spatial filter. To account for the real-time
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factor and limited memory constraints on some hardware,
we only use information from the previous frames for fea-
ture calculation. Specifically, we calculate the maximum
and minimum temporal domain values for the current kth
frame, (k−n)th frame, and (k− 2n)th frame, respectively,
to extract the motion vector of the target. The function is
defined as follows:

Tmax = max{Smapki,j
, Smap(k−n)i,j

, Smap(k−2n)i,j
}, (4)

Tmin = min{Smapki,j
, Smap(k−n)i,j

, Smap(k−2n)i,j
}, (5)

where Smapki,j
denotes the spatial feature value of the

pixel at the (i, j) coordinate of the kth frame. The final
Tmap is defined as follows:

Tmap = Tmax − Tmin, (6)

Tmap(i, j) =
Tmap(i, j)

maxi,j{Tmap(i, j)}
. (7)

2.3. Pixel Level ABS

The detection feature obtained from the spatial filter and
the temporal filter is defined as:

STmap(i, j) = Smap(i, j) · Tmap(i, j). (8)

Although this map has been able to get more accurate fea-
tures, it still cannot suppress some edges, especially for
shooting camera movement. Therefore, we designed the
pixel-level ABS module to further suppress non-target ar-
eas and improve the contrast between the target area and
the background area. We define an area of p×p pixels as an
ABS kernel and the final STLFD map is defined as follows:

STLFD =

{
Ii,j , Ii,j = ABSi,j

Ii,j ·ABSi,j , else
, (9)

where Ii,j denotes the feature map value at (i, j) of the
STmap, and ABSi,j denotes the maximum value within
an ABS kernel size region centered at (i, j) of the STmap.
Since the value of the STmap ranges from 0 to 1, multiply-
ing the maximum value by the non-maximum value in the
ABS kernel can suppress the surrounding area based on the
feature value of that area.

2.4. Threshold Segmentation Binary Map

After obtaining the output feature map of STLFD, we
use the dynamic threshold to obtain the segmented binary
output map based on the general method of selecting the
threshold. The threshold is defined as follows:

Threshold = µSTLFD + k × σSTLFD, (10)

where µSTLFD and σSTLFD denote the mean value and
standard value of the STLFD map, respectively, and k is a
hyper-parameter that needs to be adjusted empirically.

Seq. 1

Image SMAP TMAP STNMS 3-D

Seq. 2

Seq. 3

Seq. 4

Seq. 5

Figure 3. The detection results of the proposed method on five
IR image sequences. where the red rectangular box identifies the
position of the groundtruth target. The results, from left to right
are input image, spatial map, temporal map, spatial-temporal map
with ABS module, and 3-D output feature map.

3. Experiment
We conducted experiments to assess the effectiveness

of the proposed method, by comparing it against multiple
baseline methods on five IR image sequences. For all ex-
periments, we used fixed hyper-parameter settings, with an
ABS kernel width of 15×15 and a time gap of 5, which
remained consistent across all tests.

3.1. Datasets and Baseline Methods

Table 1 provides a detailed description of the IR im-
age sequences used in the experiment. Seq. 1-4 [16] in-
clude shooting camera movement and jitter, which increase
the difficulty of detecting weak targets in motion. Seq. 5
features a static cloud background with low contrast be-
tween the background and the target. To evaluate the per-
formance of the proposed method, we compared it against
several classical single-frame detection methods and multi-
frame detection methods. The single-frame detection meth-
ods used in the comparison were LCM [8], RLCM [9], and
MPCM [10]. The multi-frame detection methods included
STLCF [12], STLDM [13], NSTSM [14], and STVDM
[15]. The parameter settings for all methods were consis-
tent with those described in the original paper.

3.2. Evaluation Metrics

There are several metrics used to evaluate the perfor-
mance of IR small target detection algorithms. The main
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Seq. 1

Image LCM RLCM MPCM STLCF STLDM NSTSM STVDM proposed

Seq. 2

Seq. 3

Seq. 4

Seq. 5

Figure 4. Quality comparison of the detection results of the compared methods with the proposed method on the five IR image sequences.
The red rectangular box identifies the position of the groundtruth target. The results from left to right are input image, LCM, RLCM,
MPCM, STLCF, STLDM, NSTSM, STVDM, and proposed STLFD

Table 2. Average SCRG and BSF obtained from each method on the five IR image sequences

Seq. LCM RLCM MPCM STLCF STLDM NSTSM STVDM Proposed

SCRG

1 15.1309 15.5328 7.6966 6.8236 73.6724 72.3106 18.5422 82.4716
2 13.9867 15.0874 10.3713 3.0633 80.8504 81.8743 13.9208 91.1291
3 14.2249 14.5249 10.1730 4.9626 91.0629 82.8706 69.5515 94.3947
4 19.2291 18.1442 14.9650 11.0055 73.5611 22.2123 17.9511 27.1421
5 3.2595 9.9861 11.8585 1.4126 8.9046 88.8715 5.9907 14.1818

BSF

1 -3.2808 -0.1328 6.4999 0.0001 60.8000 76.6493 10.2905 78.7617
2 -3.2215 -0.4893 6.9551 -0.9537 73.6884 78.6917 9.1504 82.4908
3 -4.4437 -2.0283 11.6067 0.1224 83.3581 84.4983 78.2508 83.9236
4 -0.1651 1.8001 6.5400 2.3709 65.6871 18.9929 13.1851 16.7844
5 -0.8221 3.4637 13.4629 4.1208 20.6295 91.3577 13.1702 12.0608

metric is the receiver operating characteristic (ROC) curve,
which directly measures the detection performance by an-
alyzing the relationship between the probability of detec-
tion (Pd) and the probability of false alarm (Pf ) [13, 17].
In addition to the ROC curve, there are other metrics that
indirectly evaluate the performance of small target detec-
tion algorithms. These include the signal-to-clutter ratio

gain (SCRG) and the background suppression factor (BSF).
These two metrics reflect the local contrast enhancement
effect of the target area and the suppression effect of back-
ground noise, which are used to measure whether a target
is relatively easy to detect. We take the ROC curve as our
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Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5

Figure 5. ROC curve of the detection result of all the methods on five real IR image squences.

Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5

Figure 6. ROC curves for ablation study of the proposed method with and without the pixel-level ABS module.

main evaluation metric, where Pd and Pf are defined as:

Pd =
nt

Nt
, (11)

Pf =
nf

N
, (12)

where nt, Nt, nf , N denote the number of detected true tar-
gets, the total number of real targets, the number of pixels
of detected false targets and the total number of pixels in
the image sequences, respectively. We obtain the relation-
ship curve between Pd and Pf by continuously changing
the threshold of the segmented image, and the larger the
area covered by the curve, the better the performance of the
method.

We also refer to the metric results of SCRG and BSF
[18, 19]. These two metrics do not fully reflect the re-
sults of the method on target detection, because the met-
rics only measure groundtruth target area and cannot quan-
tify the noise of the whole image comprehensively. Due to
the characteristics of some datasets and the nature of some
methods, it may cause the variance calculation of the back-
ground around the target to converge to zero and lead to the
metrics statistics of infinitely large. We suppress the occur-
rence of metrics infinity by taking the logarithm of SCRG
and BSF. The definitions of the functions for SCR, SCRG
and BSF are defined as follows:

SCR =
|µT − µB |

σ
, (13)

SCRG = 10 · log10
SCRout

SCRin
, (14)

BSF = 10 · log10
σin

σout
, (15)

where |·| denotes the absolute value of the function, µT , µB

denote the mean value of patch T and patch B, respectively,
and σ denotes the standard deviation of patch B.

3.3. Qualitative Evaluation

We employed a qualitative evaluation to assess the effec-
tiveness of our method, which focuses on detecting small
moving targets in complex dynamic scenes. To this end,
we present spatial, temporal, and spatial-temporal outputs,
as well as 3-D feature maps, based on five IR image se-
quences, shown in Fig. 3. The results demonstrate the su-
perior performance of the proposed method. Specifically,
our spatial filter first extracts features that may correspond
to target regions in a single frame image. Then, the tempo-
ral filter suppresses non-target regions, and the final output
of a single target can be obtained through the ABS module.
Moreover, the 3-D feature maps reveal that only the target
patch T is enhanced, while other background and noise re-
gions are suppressed.

We also compare the performance of seven state-of-the-
art methods in single-frame detection and multi-frame de-
tection with our proposed method on public IR image se-
quences, shown in Fig. 4. The first column shows the input
samples of the public images, and each subsequent column
displays the output feature maps of a method. In Seq. 1-4,
the background is in motion due to camera movement and
jittering, resulting in significant interference of the back-
ground noise on the target. Some methods fail to effectively
suppress the noise and enhance the intensity of the target
area while the proposed method is still able to accurately
detect the target. Even in the stationary background of Seq.
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5, our method still outperforms other methods in finding the
target and suppressing the noise.

3.4. Quantitative Evaluation

In order to quantify the performance of our work, we
utilized the metrics SCRG and BSF to evaluate the local
enhancement of the target region by our method. Table 2
presents the performance of each method on each sequence.
It can be seen from the results of the quantitative evalua-
tion that some of the methods also suppress the surrounding
background to 0 on some frames. At the same time, it is
worth noting that the proposed method does not achieve the
highest metrics in the target region for Seq. 4 and Seq. 5.
The reason for this is the use of maximum filtering in the
patch T of the spatial kernel, which enhances the area of
the target, especially for very small targets. However, for
larger targets, it can result in a larger area of output target
enhancement, causing the edge area of the target to overlap
with the background region, leading to lower metrics. Nev-
ertheless, our method still achieved competitive scores on
two metrics, as demonstrated by the results.

We also utilized the metric ROC curve to evaluate the
overall target detection ability and false detection rate of the
algorithm for the entire IR image sequence. As shown in
Fig. 5, we compared the ROC curve of our method to other
state-of-the-art methods on five public IR image sequences.
The proposed method outperforms all other methods on the
five IR image sequences, demonstrating its superior over-
all performance on the entire IR image sequence, not just
the ground truth target region. It is worth noting that our
approach achieves better performance on Seq. 1-3, which
have large background motion and jitter, compared to Seq.
4 and Seq. 5, where the background motion is slower or
static. Despite this challenge, our method still proves effec-
tive and provides a significant improvement over existing
methods.

3.5. Ablation Study

We further conducted ablation experiments on our pixel-
level ABS module to demonstrate the effectiveness of this
strategy. It is worth noting that we propose the method
mainly for the large amount of background noise caused by
the synchronized motion of the background due to camera
motion. Therefore when the background motion is smooth
and slow, the motion of the background does not cause a
great impact on the algorithm and our proposed ABS mod-
ule may not play a significant boost, while when the back-
ground is static, the module is ineffective. Fig. 6 shows the
impact of the ABS module on the detection effect. The re-
sults indicate that for Seq. 1-4, the proposed method effec-
tively improves target detection and background suppres-
sion in the presence of background motion. However, for
Seq. 5, the use of the ABS module does not significantly

affect detection results, either positively or negatively. As
the ABS module can be inserted into any method, it can be
omitted to enhance the speed of an algorithm when a priori
conditions indicate that the background will not move.

3.6. Discussion

Our proposed method provides a solution for detecting
weak IR small moving targets in the presence of back-
ground motion, with a focus on small point-like targets.
Therefore, we perform target feature enhancement and ex-
pansion for spatial filtering. In the temporal domain, we use
spatial features instead of multi-frame images for filtering
and use a pixel-level ABS module to suppress the effect of
motion background on target detection. Each module of our
method can be integrated into other approaches, resulting
in competitive performance in scenarios with scene-specific
effects, although it may not achieve the best metric perfor-
mance for larger volume targets or non-motion background
image sequences. Our method exhibits good generalization
ability.

4. Conclusion
In this paper, we proposed a novel method for detect-

ing small moving targets in IR image sequences, called the
spatial-temporal local feature difference method with adap-
tive background suppression. The method computes two
feature maps using spatial and temporal filters respectively
and obtains the final output feature maps after multiply-
ing the corresponding elements by pixel-level ABS mod-
ule. The experimental results demonstrate that our method
is effective, accurate, and meaningful in practical applica-
tion scenarios for small target detection in various types of
environments.
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