
 

Newcastle University ePrints 
 

Abouzamazem A, Ezhilchelvan P. Efficient Inter-Cloud Replication for High-

Availability Services. In: IEEE International Conference on Cloud Engineering 

(IC2E). 25-27 March 2013, San Francisco: IEEE Press. 

 

Copyright: 

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

The definitive version of this paper is available at: 

http://dx.doi.org/10.1109/IC2E.2013.27 

Always use the definitive version when citing.   

Further information on publisher website: http://www.ieee.org 

Date deposited:  10th September 2013 

Version of file:  Author final 

 

 

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License 

 ePrints – Newcastle University ePrints 

http://eprint.ncl.ac.uk 

 

javascript:ViewPublication(190539);
javascript:ViewPublication(190539);
http://dx.doi.org/10.1109/IC2E.2013.27
http://www.ieee.org/
http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/


Efficient Inter-Cloud Replication for High-Availability Services 

 

Abdallah Abouzamazem 

School of Computing Science 

Newcastle University 

Newcastle upon Tyne, UK 

Abdallah.Abouzamazem@ncl.ac.uk 

Paul Ezhilchelvan 

School of Computing Science 

Newcastle University 

Newcastle upon Tyne, UK 

Paul.Ezhilchelvan@ncl.ac.uk 

 

 
Abstract— Amazon’s recent service disruption and 

investigations into the underlying causes of similar major 

outages indicate that cloud outages in future cannot be ruled 

out with certainty. This paper investigates the idea of 

tolerating outages by inter-cloud replication, i.e., through 

service replication on multiple, fail-independent clouds.  A 

challenge in realizing this idea is to minimize performance 

degradation that inevitably arises when replicas on multiple 

clouds have to be kept in a mutually consistent state over the 

Internet. It is addressed by developing a new order protocol 

that makes the most use of the high bandwidth communication 

within a cloud and uses the Internet communication to 

minimum necessary. The protocol also deals with cloud 

outages and widely differing rates with which service requests 

can arrive at replicas in different clouds.  Experiments 

performed confirm that the protocol reduces the ordering 

latencies considerably and also improves throughput.  

Keywords: State Machine Replication, Multi-Cloud 

replication, Input Ordering, Mencius, Order latency and 

throughput, node crashes, cloud outages. 

I.  INTRODUCTION  

This paper addresses the availability concerns that arise 
when a service provider decides to avail cloud-based 
infrastructures, instead of his own dedicated infrastructure, to 
host his application. Clients can access a hosted application 
as a service using the Internet and processing a client’s 
request typically involves accessing and even updating data 
at the back-end and returning a sequence of responses to the 
client and/or to client-specified destinations. Such third-party 
hosted services can range from enterprise services to 
Scientific computing. In the rest of the paper, we term these 
hosted services simply as services. Note that a (hosted) 
service would commonly make use of some of the services 
offered by a cloud provider; in fact, this usage reliance is a 
major attraction in opting for cloud infrastructures.  

A service, even if built robustly, becomes unavailable 
when an underlying support service offered by the cloud 
provider becomes unavailable; we term the latter event as a 
cloud outage. Consequently, concerns about the availability 
of a hosted service arise because cloud outages have 
occurred in the recent past and subsequent investigations 
reveal that the underlying causes do not readily lend 
themselves to a permanent, fool-proof fix so that outages in 
future can be ruled out with certainty. These reasons form 
the rationale for our work and are expounded below. 

Cloud users have recorded outages in major cloud 
providers over the last three years. Some of these outages 
had gone on even for hours: Amazon EC2 (2011) [1], Skype 
(2010) [19], Wikipedia (2010) [20], Paypal (2010) [15], 
Google (2010) [10], two incidents with Gmail (2009) [8, 9]. 

Detailed, post-outage investigations reveal that the ‘root’ 
events that eventually led to these outages in fact caused 
anticipated failures (see Table I) and the cloud system had 
automated procedures to recover from these failures. In 
many cases, the recovery procedures had been tested offline 
to industry standards. Despite all these, the recovery not only 
did not work but instead caused correct components to fail, 
leading to an outage. This happened because the system 
conditions that prevailed at the time did not satisfy some 
implicit design assumptions in the recovery procedures. 

TABLE I.  OUTAGES THAT LASTED FOR HOURS. 

Service 
Outage 

Root Event  ‘supposedly tolerable’ failure 

 incorrect  recovery  Outage  Nature  

EBS Network  misconfiguration Nodes 

partitioning  re-mirroring  many clusters 
collapsed  [1] 

Gmail Upgrade  some servers offline  bad 

request routing  all routing servers went 
down [8] 

Gmail Maintenance  a datacenter (DC) offline  

Bad cross-DC re-mirroring  many DCs 
down [9]. 

Paypal Network failure  Front-end systems offline 

 late failover  global service interruption 

Skype System overload  30% supernodes (SN) 

crashed  positive feedback loop  all SNs 
crashed [19] 

Wikipedia Overheated DC  that DC offline  broken 

failover mechanism  global outage [20] 

App Eng Power failure  25% machines of a DC 

offline  bad failover   all user apps in 
degraded state [10] 

 
For example, the root-event in [10] was a power failure 

affecting 25% of machines; in Skype’s case, it was a system 
overload that affected 30% of supernodes. In both cases, 
recovery procedures attempted at shifting the load from 
affected nodes to healthy nodes; the assumption was that 
some healthy nodes around a crashed one would be 



sufficiently under-loaded to take on the extra load. On that 
occasion, this assumption was not met and the recovery 
attempt ended up compounding the overload problem.  Table 
I, taken from [12], summarizes the root event for each major 
outage and the recovery procedure (shown in bold) that not 
only failed to accomplish recovery from a ‘supposedly 
tolerable’ failure (shown in italic) but also led ultimately to 
the outage. The picture that emerges from investigations on 
these outage incidents can be summarized as follows.  

Some system conditions that were not encountered 
during offline tests emerged in actual deployment and caused 
bugs/oversights in the design of recovery procedures to 
manifest into failures which then lead to outages. Some 
researchers [12] propose regular online, fault-injection 
testing of recovery procedures (akin to ‘fire drills’ in 
institutions). The effectiveness of this approach is 
questionable given the large-scale and evolving nature of 
cloud systems; the probability of outage occurrences may 
well be reduced but cannot be assured to be zero.  

Given the complexity involved in eliminating all possible 
causes of cloud outages [6], it would only be practical to 
assume that long-lasting outages are inevitable and that 
critical, hosted services be supported to tolerate outages. 
Accomplishing outage-tolerance requires service replication 
on N, N > 1, clouds, which can be termed as inter-cloud 
replication, and managing replication efficiently so that the 
service remains responsive even in the most demanding load 
conditions. The latter is the core objective of this paper.  

Inter-cloud replication is effective against outages as 
multiple clouds are very unlikely to suffer outages at the 
same time for two reasons. Different cloud providers tend to 
employ diverse recovery strategies and their systems are 
unlikely to encounter the adversarial system conditions at the 
same time. Inter-cloud replication has recently been 
investigated for secure storage [2] and our focus here will be 
on service availability through replication without 
compromising service responsiveness.  

Replication requires that the replicas perform state 
updates in a consistent manner despite concurrent user 
access, server crashes and, additionally here, outage 
occurrences. Replica consistency, in turn, requires that the 
user requests be identically ordered at all replicas and the 
overheads incurred for ordering the requests predominantly 
influences responsiveness of a replicated service. In this 
paper, we first propose a 2-tier structure for organizing inter-
cloud replication: replication within a cloud forming a crash-
tolerant but outage-prone entity that is then replicated across 
multiple clouds. Secondly, we propose an outage-tolerant 
order protocol that mirrors this 2-tier replication structure. It 
is designed to make the most of the high bandwidth 
communication within a cloud and to minimally use the 
slow, inter-cloud communication over the Internet. Finally, 
we run experiments to show that the ordering latencies are 
reduced considerably compared to the inter-cloud replication 
pursued by the conventional 1-tier approach. These three 
aspects are the main contributions of the paper.  

The paper has the following structure. Next section 
describes the rationale behind the design choices that led to 
our 2-tier inter-cloud replication structure. Section III 

presents the two-stage order protocol for the proposed 2-tier 
replication structure.  Section IV is on performance 
comparison that shows that our approach leads to reduced 
ordering latencies and improved throughput. Section V 
concludes the paper.  

II. CHALLENGES AND DESIGN CHOICES 

We use the term server to mean the virtual or physical 
machine within a cloud that implements a hosted service. 
Figure 1 depicts the default inter-cloud service replication in 
which the service is hosted by one server in each of N, N = 
3, clouds which we call sites. Servers sj and sk, 0 ≤ j,k ≤ 2, 
communicate with each other over the Internet and through 
the firewalls of their respective sites. Internet communication 
is assumed reliable with retries being automatically carried 
out when a packet loss or corruption is detected. We assume 
that servers communicate using TCP/IP. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Inter-Cloud Replication: Default Approach. 

 
A client of the service can submit its request to any one 

server. Suppose that requests r0 and r1 are submitted 
respectively to s0 and s1 and lead to, upon being processed, 
updates u0 and u1 on the service state. (If, say, r0 is read-only, 
then u0 is null.) Though only two servers directly received 
one request each, all three servers must carry out both the 
updates and must do so in the same order: either u0 followed 
by u1 or vice versa; otherwise, the replication is incorrect. 
This leads to the requirement that the replication 
management maintain the abstraction of a single server with 
a single input queue: all requests, irrespective of the site 
where they are submitted at, enter the single, abstract queue 
in some order and update, one at a time, the service state held 
by the single, abstract server.  
Assumption A1: A server can fail only by crashing and a 
crashed server recovers or is replaced after an interval of 
some arbitrary duration. Further, message communication 
delays between two operative servers are finite but a fixed 
upper bound on these delays does not exist.  

The absence of a fixed bound on delays encapsulates (i) 
the possibilities of message propagation, especially over the 
Internet, being unduly delayed, e.g., due to congestion or a 
transient breakdown, at arbitrary moments, and (ii) hence the 
impossibility of estimating a bound that is guaranteed to hold 
on the delays that are to unfold in near future. In particular, it 
does not mean that the communication can be unreliable nor 
the delay bound should not be estimated, but merely admits 
that the delays can exceed any estimate of the bound.  

Site S1

  

s1

  

Site S2

  

s2

  

Site S0

  s0

  

Internet

  



A. False Suspicions in Dealing with Crashes 

In maintaining the 1-server abstraction mentioned earlier, 
a server crash must be dealt with at some level, irrespective 
of the replication strategy used. Typically, an operative 
server observes the crash of another server when the latter’s 
expected response is absent for ‘too long’; for example, if an 
‘are-you-alive’ probe is not responded to within a timeout of 
sufficiently long duration,  a crash suspicion is raised. A 
suspicion correctly indicates a crash only if the timeout 
duration used is at least as long as the round-trip delay 
prevailing at that moment; otherwise, it is a false alarm. 
Thus, a suspicion can be correct or false when it is raised; 
moreover, a correct one is never contradicted and a false one, 
on the other hand, is nullified with the passage of time when 
the expected response arrives later than expected.  

To deal with crashes and the uncertainty over suspicions, 
the following assumptions are made.  

Assumption A2. N > 2 and at most (N-1)/2 servers can fail 
at the same time. 

A2 requires that the causes of server crashes not be 
correlated. Throughout the paper, we assume that N=3 and 
the sites involved are denoted as S0, S1 and S2 (see Fig. 1, 2). 
Assumption A3. False crash suspicions are subsequently 
realized to be false and there is an unknown instance of time 
after which a correct server is not suspected. 
Assumption A4. Correct suspicions are eventually made.  

Assumptions A3 and A4 are collectively called eventual 

perfect detection (denoted as P) in the literature [4]. 

B. Primary-Backup vs. State Machine Replication 

In primary-backup (PB) replication, one of the servers is 
designated as the primary and the rest as backups. Backup 
servers forward the requests that they directly received, to 
the primary which processes the requests and returns the 
updates to all backups. When the backups agree that the 
primary has crashed, one of them becomes the new primary.  

In state machine replication (SMR, for short), servers 
exchange with each other the requests that they received 
directly, order all requests identically and process them in 
that order [17, 18]. Each server responds only to those 
requests that it directly received.   

Note that servers do not exchange state updates in SMR; 
whereas, in PB replication, the primary server has to 
disseminate all state updates to all backups and hence can 
become a performance bottleneck.  So,  
Choice 1: SMR is chosen with an objective to reduce the 
ordering overhead as small as possible. In fact, as we shall 
see later, our approach requires that a server disseminate a 
directly received request once to every other remote site. 
Choice 1 is orthogonal to N > 2 in A2 and PB replication is 
not possible when false suspicions can occur and when N = 
2: replication fails when both servers act as primary after 
(falsely) suspecting each other of having crashed and this 
situation is commonly referred to as split-brain syndrome. 

C. Default approach to Outage Tolerance 

A default approach to providing outage tolerance is to 
use the default replication approach by considering that a 
server crash is equivalent to a site outage from the 

perspective of remote servers, even though server crashes are 
far more common compared to site outages. However, the 
default approach is readily implementable using the state of 
art protocols. One of the most efficient protocols available 
for implementation is Mencius [13] which  

 is specifically designed for servers communicating 
over the Internet using TCP/IP,  

 assumes P detection,  

 offers several optimization features, and  

 enables a wrongly isolated server to receive the 
updates it missed while it was isolated.   

D. Proposed Approach to Outage Tolerance 

In this paper, we investigate an alternative approach to 
outage-tolerance which distinguishes site outages from 
server crashes; a server crash in one site would not even be 
visible to servers at remote sites. In the proposed approach, 
server sk, 0 ≤ k ≤ 2, in Fig 1 is replaced by a group of n, n>2, 
replicated servers: s0k, s1k, …,  snk, which are connected to 
each other by the high-bandwidth network within the cloud. 
Each sjk knows the address of, and communicates directly 
with, every other sj’k’,  0 ≤ k, k’ ≤ 2, 0 ≤  j, j’ ≤ n using TCP. 
Assumption A5: Among the n servers of an operative site, 

A3 and A4 hold and at most (n-1)/2 servers can remain 
crashed at any time. 

Assumption A6. At most (N-1)/2 sites can suffer an outage 
at the same time. 

Throughout the paper, we assume N = n = 3, for brevity, 
as in Fig 2, even though N ≥ 2 and n > 3 are possible. In the 
proposed approach, replication therefore involves 9 servers 
of which up to 3 servers (one in each site) can remain 
crashed in the absence of any site outage. One option is to let 
these 9 servers execute an order protocol (e.g., Mencius) for 
identically ordering the requests to be processed, with the 
bound f on the number of servers that can crash, set to 3.  

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Inter-Cloud Replication: Proposed Approach. 
 
This option, in addition to having the potential to increase 

the worst-case overheads due to f being large [7], cannot 
handle a site outage at all: a site outage makes three servers 
unavailable; if each of the operative sites already has one 
crashed server within, then f is exceeded by 2. So, 
Choice 2: request ordering is done in two stages: 

 Intra-site ordering using any known order protocol 

(Mencius, here) for f = (n-1)/2 = 1, followed by 

 Inter-site ordering using a new protocol proposed 

for (N-1)/2 =1. 

Internet

  

Site S0

  
s0

  

Site S2

  
s2

  

Site S1

  
s1

  

sk ={s0k, s1k, s2k}, 
0 ≤ k ≤ 2  



The new, inter-site ordering protocol treats the server 
triplet in a given site as a single, reliable unit that can crash 
only when the site suffers an outage. This means that a server 
in one site does not have to suspect crashes of a remote 
server; it only has to suspect outages of remote sites.  

As outages are major events, we assume that servers 
detect site outages reliably, e.g. by using an external oracle 
or using large timeouts, thus ruling out false outage 
suspicions. So, we make these additional assumptions:  
Assumption A7. False outage suspicions do not occur. 
Assumption A8. An operative server in an operative site 
correctly and eventually detects a site outage.  

Assumptions A7 and A8 are collectively called perfect 

detection (denoted as P) in the literature [4]. The advantages 
of the proposed, 2-stage approach are demonstrated by 
comparing ordering latencies and throughput against those 
observed in the default approach realized though Mencius.  
Recall that Mencius is developed for request ordering over 
the Internet, and hence is the best choice for the default 
approach; however, the same cannot be said for using it for 
intra-site ordering as the replicas are connected by high-
speed networks. Nevertheless, performance comparisons 
indicate that two-stage ordering offers considerable 
performance benefits which lead to a conclusion that benefits 
of 2-stage ordering would be more, had a protocol (e.g., [14, 
3]) designed specifically for high-speed networks been 
chosen for intra-site ordering.  

III. TWO-STAGE ORDERING OF REQUESTS  

Figure 2 depicts the replication context for 2-stage 

ordering. A client submits its request to any site and the site 

can forward the request to any of the 3 servers. If a client 

suspects a site outage, he can re-submit his request at 

another site; similarly, if a server is suspected to have 

crashed, requests sent to it may be re-forwarded to another 

server. Duplicates are ordered like the original requests but 

are filtered out prior to being processed.   

A. Background: Mencius 

We highlight those aspects of Mencius which are only 
relevant to 2-stage ordering and refer to [13] for full details. 
For presenting these relevant aspects, we will assume the 
context of the default approach depicted in Fig 1 where 
servers s0, s1 and s2, respectively in sites S0, S1 and S2, decide 
on an identical processing order for the client requests.  

An execution of any order protocol involves running an 
infinite sequence of ordering instances; each instance is 

uniquely numbered using a natural number i {0,1,2,…} 
assigned in the increasing order with no gaps. Several 
instances may be run concurrently at any given moment. The 
i
th
 instance assigns some request r the order number o=i. The 

assignment is irreversible and unanimous across all servers. 
The requests are processed (by all servers) as per the o 
assigned to them. 

Mencius divides the (infinite) set of all natural numbers 
into three disjoint (infinite) subsets, when there are three 
servers (as assumed here).  It uniquely assigns a subset to 

each server and a server initiates instances numbered from 
the subset assigned to it.  

For brevity, let server sk, 0≤k≤2, be assigned the subset 
of {k, k+3, k+6, …}. A counter Ck (initialized to k) holds the 
instance number to be initiated next by server sk. When sk 
receives a request r from a client, it initiates an instance for r 
with number i = Ck, increments Ck by 3 and coordinates the 
i
th
 instance so that o of r = i.  

If all servers are busy receiving client requests, at least 
three instances would be concurrently running. If, on the 
other hand, one server hardly receives requests or receives 
requests at a smaller rate, then the instance numbers of that 
server will not get assigned or will get assigned at a reduced 
rate. The requests of busy servers cannot be processed if the 
numbers assigned to them are larger than the number yet to 
be assigned by the slow server. To handle this problem, 
servers are permitted to skip instances by assigning the 
skipped numbers to null requests. Mencius ordering 
guarantees the following three properties: 
1. If a server learns that a non-null r is assigned the order 

number o, then r has been submitted by a client; 
(validity) 

2. If a server seeks to order a non-null r and remains 
operative for long enough, then r would be learnt to have 
been assigned an order number; (liveness) and, 

3. Whenever a server learns that a null or non-null r is 
assigned an order number o, then every other operative 
server will eventually learn, or has already learnt, that r is 
assigned the order number o (unanimity).  

B. Two Stage Ordering 

We first present the principle involved in 2-stage 
ordering, which consists of three steps. The three servers of 
each site k, s0k, s1k and s2k, execute Mencius (only) amongst 
themselves and order all requests submitted at site k. Thus, 
three executions of Mencius, one in each site, take place in 
parallel. Note that these executions do not require inter-site 
communication over the Internet, but only intra-site message 
exchanges over the high-speed networks of each cloud. Each 
of them leads to servers of a given site generating an 
identical stream of requests. This stream is referred to as the 
local stream (local to a given site) in Fig 3 where the site 

index, abbreviated to SI, denotes the value of k{0,1,2}.  
 

0   1   2   3   4   5 0   1   2   3   4   5 0   1   2   3   4   5 

0   3   6   9  12 15 1   4   7  10 13 16 2   5   8  11 14 17 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Site 0 local stream, SI=0, 

N=3

Site 1 local stream, SI=1 

N=3

Site 2 local stream, SI=2 

N=3

i i i

iN + SI iN + SI iN + SI

Step 1 - 

Step 2– 

each site 

converts its local 

streams to global

Step 3 – 

merging 3 streams 

to produce global 

commit stream  

...

...

...

...

...

...

...

...

 
Figure 3. Basic idea in 2-Stage Ordering. 



The next two steps involve merging these three local 
streams into a global stream, while preserving the order 
within each local stream. An ordered request in the local 
stream of site k with order number o is assigned a global 
order number go as: go = 3×o + k. The global stream is then 
composed as the stream of requests in all three streams, 
arranged in the increasing order of their go.  

Next, we present some definitions and then describe a 
protocol for implementing the last two steps in a distributed 
manner. The protocol is then extended to deal with outage 
detections and sites receiving requests at unequal rates.  
Definition 1: r’ <l r. Let r’ and r be two requests that have 
been ordered using Mencius in a given site and assigned the 
order numbers o’ and o respectively. r’ <l r if and only if o’ < 

o. Note that  r’ <l r  go’ < go. 
Definition 2: r’ < r. Let r’ and r be any two requests that 
have been assigned the global order numbers go’ and go 
respectively. r’ < r if and only if go’ < go. 

We will denote a server sj, 0 ≤ j ≤ 2, in site k, 0 ≤ k ≤ 2, 
as sjk, and the assignment of a global order number go to a 
request r as (r, go). Recall that the unanimity property of 
Mencius guarantees that when a server sjk assigns o to r 
(through Mencius ordering), every other operative server sj’k, 
j’≠ j, will assign or would have already assigned o to r. So, 
any assignment (r, go) originating at site k is already, or 
would soon be, known to at least two servers in site k.  
Definition 3: Stability and global stability for (r, go). An 
assignment (r, go) is said to be stable in site k if it is, or 
would be, known to at least two servers in site k. (r, go) is 
said to be globally stable if it is stable in at least two sites.  

1) Protocol: Normal Part 
This part is presented by assuming that all sites receive 

client requests nearly at the same (non-zero) rate and outage 
suspicions (false or correct) do not arise. It carries out three 
activities:  A server sjk 

 ensures that a locally generated assignment (r, go) is 
globally stabilized; (Activity 1) 

 enters a globally stable (r, go) (which may have been 
generated locally or remotely) into the local copy of 
the global stream GSjk as the go

th
 entry, GSjk[go], 

only after all r’,  r’ <l   r, have been entered at 
GSjk[go’]; (Activity 2) 

 more formally, activity 2 maintains the 
invariant: if GSjk[go] =  r then (r, go) is 

globally-stable and r’<l r: GSjk[go’] = r’;  

 processes GSjk[go] only after all GSjk[go’] < GSjk[go] 
are processed. (Activity 3) 

 formally,  GSjk[go’] not processed   go > 
go’:  GSjk[go] not processed.  

 Each server sjk maintains GSjk as above and executes the 
following five steps to carry out activity 1; the first two steps 
are executed at the site where (r, go) is generated and the last 
three at a remote site.  

Step 1.1: When sjk generates (r, go), it transmits 
propose((r, go), k) in parallel (using distinct TCP/IP sockets) 
to all servers in each remote site.  

Step 1.2 (a) sjk waits until it is known that the TCP 
communication in step 1.1 terminates for at least two servers 

in each remote site; (b) sjk then transmits propose((r, go), k) 
to each server in the local site k to indicate that (r, go) is now 
globally stable. 

Since a TCP connection is reliable, any operative 
destination will receive propose((r, go), k) so long as sjk is 
operative until its TCP transmission completes. When sjk 
executes step 1.2(b), an operative remote site is guaranteed 
to have one correct server having already received 
propose((r, go), k) even if another server in that site crashes 
soon after receiving  propose((r, go), k) from sjk. Steps 1.3-
1.5 below ensure that (r, go) gets stable at any operative 
remote site. Note also that if sjk crashes or if site k suffers an 
outage before sjk can complete step 1.2(a), propose((r, go), k) 
from sjk will not be sent within site k. 

Optimization: A server sjk executes Steps 1.1 and 1.2 only 
when a timeout of random duration expires, and only for 
those requests r that sjk locally-ordered (using Mencius) 
during the timeout duration and for which a propose((r, go), 
k) has not been received from another server in the local site. 
This arrangement reduces the likelihood of more than one 
server attempting to globally stabilize the same (r, go). 
Timeout durations may be exponentially distributed with 
mean = 3 times the upper bound estimates of intra-site 
transmission delays observed, as Mencius takes at most 3 
sequential intra-site communication to order a local request. 
(Mencius maintains an estimate of the upper bound on delays 

due to its P assumption). 
A server sjk executes the following steps to globally 

stabilize (r, go) proposed from a remote site k’:  
Step 1.3: When sjk receives propose((r, go), k’) from a 

server of (remote) site k’, it forwards the proposal to all other 
servers in the local site.  

Step 1.4: When sj’k receives propose((r, go), k’) from a 
server of local site, it forwards the proposal to all other 
servers in the local site, if it has not already done so. 

Step 1.5: A server of site k concludes that (r, go) of site 
k’ is stabilized in the local site (and also globally), if it (i) has 
sent propose((r, go), k’) within the local site and (ii) has 
received  a propose((r, go), k’) from another local server.  

Observations: When a request r is locally ordered in site 
k, the assignment of go to r and the global-stabilization of (r, 
go) are not affected by how fast or how slow the requests are 
being submitted in other sites. More specifically, a server sjk 
does not have to await any acknowledgement (above the 
TCP level) from the remote servers for the propose((r, go), 
k) it transmitted in step 1.1. 

Similarly, entering a globally stabilized (r, go) into GS 
depends only on whether earlier local requests have been 
globally stabilized (see Activity 2). However, processing a 
local request does depend on how fast/slow remote requests 
being globally stabilized (see Activity 3).  

2) Dealing with idle or non-busy sites. 
When sjk receives propose((r’, go’), k’) from a server of 

(remote) site k’ for a non-null r’, the desirable situation 
would be that sjk or some other local server has already 
assigned (r, go) or is likely to do so shortly such that go ≥ 
go’ – k’ + k, i.e., go –k ≥ go’– k’. Let omx denote the largest 
Mencius instance initiated within site k at the time when sjk 
receives propose((r’, go’), k’). For the desirable situation to 



prevail we should have omx ≥ (go’ – k’)/3, given that o is 
related to go in site k as go = (3×o+k). 

Recall that server sjk maintains counter Cjk to hold the 
instance number to be used next in Mencius ordering (see 
subsection IIIA); also that Cjk is incremented by 3. To ensure 
that omx ≥ (go’ – k’)/3, sjk should have (Cjk -3) ≥ (go’ – k’)/3; 
if it does not, it initiates new instances using null requests 
until Cjk  ≥ (go’ – k’)/3)+3.  

3) Dealing with an outage detection. 

It consists of 5 steps: (i) flushing all proposals received 

directly from the detected site, say, k’, for stabilization at 

the local site; (ii) estimating the largest go of all propose((r, 

go), k’) which might have been considered as globally 

stable within k’ just before outage; (iii) agreeing on the 

estimates of (ii) and isolating k’; (iv) continued isolation of  

k’, if necessary, and (v) re-admitting k’ after recovery. 
Step 2.1: When server sjk detects an outage of site k’, it acts 
on any propose((r, go), k’) that it has received directly from 
site k’, but has not yet handled as per Step 1.3. After having 
handled all such propose((r, go), k’), sjk sends a ‘flush’ 
message to other local servers. Step 2.1 ends when sjk (i) has 
sent its flush message and received one from another local 
server, and (ii) knows that all propose((r, go), k’) that it 
received directly from k’ are stable in site k. (Step 1.5 
stipulates how sjk can deduce whether a propose((r, go), k’) 
is stable in site k; also, recall that whenever another server in 
site k, say, sj’k receives a propose((r, go), k’) from sjk, it deals 
with the received proposal as per Step 1.4. ) 

Remark 1: Suppose that the assignment (r, go) was 
generated at site k’ and was regarded to be globally stable by 
servers of k’ prior to site outage. Due to Step 1.2, at least two 
servers in site k or at least one correct server if site k has a 
crashed server would have received propose((r, go), k’) prior 
to outage detection as the latter is assumed to be perfect. Step 
2.1 is not completed until sjk receives a flush message from 
another server in site k; therefore, if sjk has not received 
propose((r, go), k’) directly from site k’, it must receive that 
proposal from a local server while awaiting to receive a flush 
message. When sjk receives the proposal for the first time 
from a local server, it executes Step 1.4 and also deduces that 
propose((r, go), k’) is stable in site k.  
Step 2.2: Server sjk generates a special request called 
site_revoke, denoted as, SR. The request has two fields 
SR.site and SR.G which are respectively set to k’ and the 
largest (r’, go) from site k’ which sjk knows to be stable in 
site k. sjk then initiates a Mencius instance to order SR. 

Remark 2: If a server of site k’ has transmitted 
propose((r, go), k’), say, to just one server in one remote site, 
say, k, prior to the outage of site k’, then no server in site k’ 
would have regarded (r, go) as globally stable and this fact 
cannot be deduced accurately by remote servers.  When site 
k has three operative servers, they may deduce the (local) 
stabilization of propose((r, go), k’) either before or after 
forming their respective SR. Hence, SR.G of two servers may 
not be the same and the difference refers to the proposals not 
considered as globally stable in the failed site. Each of these 
proposals can either be treated as null or be made globally 
stable and processed prior to isolating site k’; but the 

decision needs to be the same for all servers which is 
accomplished by intra-site ordering of SR requests. 
Step 2.3: Server sjk waits until its GSjk has at least two SR 
entries from each of the two operative sites. Let SR

1
1 and 

SR
1

2 be the first two entries in GSjk originating from one 
given site and entered in that order; similarly, let SR

2
1 and 

SR
2

2 be the first two entries from the other site.  
Gjk = maximum of {SR

1
1, SR

1
2, SR

2
1, SR

2
2}; all requests from 

site k’ in GSjk are regarded to be null for all go  [Gjk+3, 
Gjk+w], where w is a predefined window length.  
Step 2.4: When (r, go > Gjk+w) is globally stabilized, steps 
2.2 and 2.3 are repeated with SR.site=k’ and SR.G=Gjk+w, if 
site k’ has not yet recovered and the service state of its 
servers not been updated until then. 
Step 2.5: When server sjk learns that site k’ has recovered and 
the service state of its servers has been updated, it generates 
a special request called site_admit, denoted as SA, with fields 
SA.site and SA.G set to k’ and the current value of Gjk, 
respectively;  steps 2.2 and 2.3 are executed with SA (instead 
of SR) and Gjk computed at the end of step 2.3 is the first go 
to be used by the servers of the re-instated site k’.  

IV. PERFORMANCE COMPARISON 

We compare the performance of 2-Stage ordering and of 
Mencius in the default approach when site outages and 
crashes do not occur. The comparison metrics are 3-fold: 

Throughput determines the average number of requests 
ordered by a server per second. (Note: ordering refers to 
global ordering in the 2-Stage approach.) Recall that all 
servers order all requests irrespective of the submission site. 
Hence, the ideal throughput value should be the sum of the 
average rates at which requests are being submitted in each 
site.  A shortfall indicates server saturation.  

Minimum latency denotes the time elapsed between the 
instance when a request is submitted and the instance when 
the first server orders that request; similarly, maximum 
latency refers to the duration required for the last operative 
server in the system to order that request. Note that the first 
and last servers could be different for different requests. 

To conduct experiments, both protocols are implemented 
in Java and each server is a 1.86 GHz Intel Core (TM) 2 PC 
with 2.0 GB memory running Fedora 12. The default 
approach used 3 machines as in Fig 1; and in 2-stage 
ordering, a group of 3 machines forms a site as in Fig 2. All 
the machines were part of a single cluster (connected by a 
LAN) and the inter-site communication was both simulated 
and emulated, leading to three classes of experiments.  

Class I – In this class of experiments, a LAN that 
physically connects all servers and hence LAN is the 
Internet. Class I experiments attribute the smallest possible 
values (approximately 3 milliseconds) to communication 
delays, thus exposing how much a protocol can gain in 
performance due to short delays over the ‘Internet’. 

Class II – Internet delays are simulated using 
DummyNet [16]. They were fixed at 25 milliseconds (ms), 
50 ms and 100 ms. 

Class III – Internet delays are emulated using the traces 
taken in a real experiment [5, 11]; magnitudes and variations 
of delays between different sites are different.  



TABLE II.  THROUGHPUT IN CLASS III EXPERIMENTS. 

 
Request Arrivals: In all our experiments, all three sites 

are equally loaded; the inter-arrival intervals between 
successive requests at a given site are uniformly distributed 
with a mean that is referred to as the average inter-arrival 

interval per site and is denoted as (1/); the overall request 

submission rate is therefore 3, considering all 3 sites.  

1/ is varied from 20ms (heavier load), 38ms, 75ms, 150, 
1000 ms and 10000ms (lighter load). For these values, the 
system (of 3 sites) receives requests at the rate of 150, 80, 
40, 20, 3 and 0.3 requests per second, respectively.  

An experiment consists of 30000 requests being 
submitted at each site, with an exception of only 10000 

requests when 1/ = 10000 ms.  In the 2-stage ordering, 
requests at a given site are equally distributed to the three 

servers. An experiment was repeated 3 times when 1/ = 

10000ms, and 5 times for all other 1/; the results we report 
next are the averages over these experiments.  

Finally, it would be useful to view the following results 
together with the rationale behind conducting the three 
classes of experiments: Class I represents an extreme case, 
perhaps a futuristic scenario, where the Internet traffic 
becomes as fast as today’s LANs. Class III represents the 
most practical scenario in which the Internet delays observed 
are being used. Class II results aim to show the trend in 
throughput and latencies as the internet delays are varied. 

A. Results 

1) Throughput 
Table II shows throughputs for each protocol in Class III 

experiments. For 1/ = 20 ms, the throughput observed is 
below the ideal (150 per second), and the drop is larger for 

the default approach. This indicates that 1/=20 is the 

smallest we could have used. As 1/ increases, the 
throughput approaches to the ideal value. This trend is 
present in all experiments we carried out and hence we show 
the relative performance of the protocols in Table III. 

We define Gain in throughput, Gain_T, as: (T2S - TD)/TD, 
where T2S and TD are the throughput values observed in 2-
stage ordering and in the default approach, respectively. 
Table III presents Gain_T (in %) all of which are non-
negative, indicating that T2S ≥ TD.  This is not surprising as 
there are 3 servers per site in 2-Stage ordering. On the other 
hand, it also shows the advantages that these extra servers 
bring. Further, referring to Table II, the default approach 

starts saturating for 1/ = 150 ms which amounts to the 

overall submission rate of just 20 requests per second, where 
as the 2-stage ordering shows a similar trend at 40 requests 
per second. We also observe that gain in Class I and Class III 
experiments are similar, indicating that the delays over the 
Internet do not affect the throughput much.  

TABLE III.  GAIN_T VERSUS 1/. 

Gain_T 

in % 

 

1/ms 

Class I 

 

Class II   Class 

III 

 
25ms 50ms 100ms 

20 13 12 12 11 15 

38 7 7 7 6 9 

75 3 3 3 3 5 

150 5 5 5 5 5 

1000 0 0 0 0 0 

10000 0 0 0 0 0 

2) Latency 

TABLE IV.  MAXIMUM AND MINIMUM LATENCIES (CLASS III) 

1/ ms 

2-Stage 
Latency in ms 

max (min) 

Default 
Latency in ms 

max (min) 

20 1614 (1012) 2697 (2191) 

38 1412 (874) 2429 (2050) 

75 1210 (781) 2060 (1660) 

150 1036 (641) 1870 (1550) 

1000 820 (376) 1569 (1065) 

10000 925 (374) 1400 (1038) 
 
Latencies observed in Class III experiments (see Table 

IV) lead to two interesting observations. The maximum 
latencies in 2-Stage ordering are smaller than the minimum 
latencies in the default approach. This shows that the 
traditional order protocols that involve multiple, sequential 
inter-site communications tend to yield large latencies for 
inter-cloud replication. Secondly, the differences between 
maximum and minimum latencies in 2-Stage ordering are 

larger and are more pronounced for larger 1/ values (i.e., at 
lower submission rates). This is attributed to the 
phenomenon whereby when a local request r is locally 
ordered by Mencius, every earlier r’< r is either globally 
stabilized already or well in the process of becoming 
stabilized. This reduces the ordering delay for such r.  

Similar to Gain_T, we define Gain_L for latencies to 
compare the two approaches. Gain_L, as: (L2S - LD)/LD, 
where L2S and LD are the latency values observed in 2-Stage 
ordering and in the default approach, respectively. 
Gain_L_max and Gain_L_min denote Gain_L when 
maximum and minimum latencies are considered.  They are 
presented in Tables V and VI.  Note that a negative Gain 
indicates that the 2-Stage ordering produces smaller latencies 

Throughput  

1/ ms 2-Stage  Default 

20 138 120 

38 76 70 

75 39 37 

150 20 19 

1000 3 3 

10000 0.3 0.3 



and hence performs faster; also that the 2_stage ordering gets 
faster as the delays over the Internet increase. 

TABLE V.  GAIN_L_MAX VERSUS 1/. 

%GainL_ 

max 

------------ 

1/ 

Class I 

 

Class II     Class 

III 

 
25ms 50ms 100ms 

20 32 -19 -38 -53 -40 

38 23 -19 -41 -55 -42 

75 22 -27 -43 -56 -41 

150 26 -24 -47 -54 -45 

1000 24 -14 -38 -48 -48 

10000 17 -11 -41 -47 -34 

TABLE VI.  GAIN_L_MIN VERSUS 1/. 

%GainL_ 

min 

------------ 

1/ 

Class I 

 

Class II     Class III 

 

25ms 50ms 100ms 

20 30 -26 -42 -48 -54 

38 21 -32 -43 -60 -57 

75 16 -33 -45 -57 -53 

150 39 -33 -48 -56 -59 

1000 60 -13 -31 -48 -65 

10000 69 -20 -37 -51 -64 

 

V. CONCLUSIONS 

We have proposed an approach for replicating a critical 
service on N, N=3, outage-independent clouds to tolerate a 
single cloud outage. It involves replicating the service not 
only across clouds but also within each cloud.  For intra-
cloud replication, we have chosen to use state machine 
replication and explained the rationale behind this choice.  In 
this form of replication, service responsiveness is 
predominantly dependent on the overhead imposed by the 
order protocol. We have addressed this concern by proposing 
a two-stage ordering protocol and compared its overhead 
with that of Mencius [13] using which, as we have described 
earlier, an outage-tolerant replication can be readily 
implemented as well. Experiments carried out confirm that 
the proposed approach makes the best use of shorter intra-
cloud communication delays, leading to substantial 
throughput gains and reduced latencies. Finally, we note that 
our approach can also work for N=2 (with a minimum of 6 
servers), while the default approach requires N≥3. 

 
 

VI. REFERENCES 

[1] Amazon.com, “Summary of the Amazon EC2 and Amazon RDS 
service interruption in the US East Region”, 
http://aws.amazon.com/message/65648/,  April 2011.  

[2] C. Basescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti, M. Vukolic, and 
I. Zachevsky, “Robust data sharing with key-value stores”,   Proc. 
42nd IEEE/IFIP International Conf. Dependable Systems and 
Networks (DSN2012), IEEE Press, June 2012.   

[3] M.Biely, Z. Milosevic, N.Santos and A. Schiper, “S-Paxos: 
Offloading the leader for high throughput state machine replication”, 
in IEEE Symp. on Reliable Distributed Systems (SRDS), Oct 2012.  

[4] T.D. Chandra and S. Toueg, “Unreliable failure detectors for reliable 
distributed systems”, in JACM, 43(2), pp.225-267, March 1996. 

[5] Y. Chen, A.Romanovsky, A. Gorbenko, V. Kharchenko, S. Mamutov, 
O. Tarasyuk, “Benchmarking Dependability of a System Biology 
Application”, Proc. 14th IEEE Conference on Engineering of 
Complex Computer Systems, pp.146-153, 2009.  

[6] G. Ferro, “Complex Systems Have Complex Failures. That’s Cloud 
Computing”, in Ethereal Mind, http://etherealmind.com/complex-
systems-complex-failures-cloud-computing/, April 2011.  

[7] M.J. Fischer and N.A.Lynch, “A lower bound for the time to assure 
interactive consistency”, Information Processing Letters, 14(4): 183-
186, June 1982.  

[8] Gmailblog, “More on Today’s Today’s Gmail Issue”, 
http://gmailblog.blogspot.com/2009/09/more-on-todays-gmail-
issue.html , Sept 2009.  

[9] Gmailblog, “Update on today’s Gmail Outage”, 
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-
outage.html , Feb 2009.  

[10] Google. “Post-mortem for February 24th, 2010 Outage”, 
https://groups.google.com/forum/?fromgroups#!topic/google-
appengine/p2QKJ0OSLc8,  Feb 2010.  

[11] A. Gorbenko, V. Kharchenko, S. Mamutov, Y. Chen, O. Tarasyuk 
and A.Romanovsky, “Exploring Uncertainty of Delays as a Factor in 
End-to-End Cloud Response Time”,  Proc. 9th European Dependable 
Computing Conference, pp. 185-190, May 2012. 

[12]  H.S. Gunawi, T. Do, J.M. Hellerstein, I. Stoica, D. Borthakur and J. 
Robbins, “Failure as a Service (FaaS): A Cloud Service for Large-
Scale, Online Failure Drills”, Technical Report, Univ. of Califorina at 
Berkeley, http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-
2011-87.html, July 2011. 

[13] Y. Mao, F.P. Janqueira and K Marzullo, “Mencius: Building Efficient 
Replicated State Machines for WANs”, in OSDI, 2008, pp. 369-384. 
http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf  

[14] P. Marandi, M. Primi and F. Pedone, “High Performance State 
Machine Replication”, Proc. IEEE International Conference on 
Dependable Systems and Networks (DSN), 2011, pp. 454-465.  

[15] PayPal. “Details on PayPal Site Outage Today”, 
https://www.thepaypalblog.com/2010/10/details-on-paypals-site-
outage-today/, October 2010.  

[16] L. Rizzo. “Dummynet: a simple approach to the evaluation of 
network protocols”. In SIGCOMM Computer Communications 
Review, 27(1):31– 41, 1997.  

[17] F.B. Schneider. “Implementing fault-tolerant services using the state 
machine approach: A tutorial”, in ACM Computing Surveys, 22(4) pp. 
299–319, Dec. 1990.  

[18] F.B. Schneider. “Replication management using the state-machine 
approach”. In Distributed Systems (ed. S. Mullender), ACM Press, 
pp. 169–197, 1993.  

[19] Skype.com. “CIO Update: Post-mortem On the Skype Outage”, 
http://blogs.skype.com/en/2010/12/cio_update.html, 2010.  

[20] Wikimedia.com. “Wikimedia Technical blog: Global outage”, 
http://blog.wikimedia.org/2010/03/24/global-outage-cooling-failure-
and-dns/, March 2010.   

 

http://aws.amazon.com/message/65648/
http://etherealmind.com/complex-systems-complex-failures-cloud-computing/
http://etherealmind.com/complex-systems-complex-failures-cloud-computing/
http://gmailblog.blogspot.com/2009/09/more-on-todays-gmail-issue.html
http://gmailblog.blogspot.com/2009/09/more-on-todays-gmail-issue.html
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-87.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-87.html
http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf
https://www.thepaypalblog.com/2010/10/details-on-paypals-site-outage-today/
https://www.thepaypalblog.com/2010/10/details-on-paypals-site-outage-today/
http://blogs.skype.com/en/2010/12/cio_update.html
http://blog.wikimedia.org/2010/03/24/global-outage-cooling-failure-and-dns/
http://blog.wikimedia.org/2010/03/24/global-outage-cooling-failure-and-dns/

