
BeFaaS: An Application-Centric Benchmarking
Framework for FaaS Platforms

Martin Grambow, Tobias Pfandzelter, Luk Burchard, Carsten Schubert, Max Zhao, David Bermbach
TU Berlin & Einstein Center Digital Future

Mobile Cloud Computing Research Group
Berlin, Germany

{mg, tp, lubu, casc, mazh, db}@mcc.tu-berlin.de

Abstract—Following the increasing interest and adoption of
FaaS systems, benchmarking frameworks for determining non-
functional properties have also emerged. While existing (mi-
crobenchmark) frameworks only evaluate single aspects of FaaS
platforms, a more holistic, application-driven approach is still
missing.

In this paper, we design and present BeFaaS, an extensible
application-centric benchmarking framework for FaaS environ-
ments that focuses on the evaluation of FaaS platforms through
realistic and typical examples of FaaS applications. BeFaaS
includes a built-in e-commerce benchmark, is extensible for new
workload profiles and new platforms, supports federated bench-
mark runs in which the benchmark application is distributed over
multiple providers, and supports a fine-grained result analysis.

Our evaluation compares three major FaaS providers in single
cloud provider setups and shows that BeFaaS is capable of run-
ning each benchmark automatically with minimal configuration
effort and providing detailed insights for each interaction.

Index Terms—FaaS, Benchmarking, Fog Computing, Infras-
tructure Automation

I. INTRODUCTION

All major cloud providers offer Function-as-a-Service
(FaaS) solutions where users only have to take care of their
source code (functions) while the underlying infrastructure
and environment is abstracted away by the provider. FaaS-
based applications are split by their business functionality into
individual functions which are deployed on a FaaS platform
which, e.g., handles the execution and automatic scaling. The
developer does not have any direct control over the infrastruc-
ture and can only define high-level parameters, such as the
region in which the function should run. This complicates an
already challenging comparison of cloud providers [1], [2], as
the cloud variability is further compounded by an additional,
unknown infrastructure component.

Existing work dealing with benchmarking of FaaS platforms
focuses on the execution of small, so-called microbenchmarks
which deploy and call a simple function (e.g., a matrix mul-
tiplication [3] or a random number generator [4]). While mi-
crobenchmarks are useful for studying and comparing specific
characteristics, they can give only focused and limited insights
into the platform behavior that applications can expect [5].
An application-centric benchmark, in contrast, mimics the
behavior of a realistic application while closely observing
the platform behavior. This allows developers to better com-
pare different service options, a strategy also taken by the

TPC benchmarks1. To the best of our knowledge, such an
application-centric benchmark for FaaS platforms does not
exist yet.

To address this gap, we here propose BeFaaS, an extensi-
ble framework for executing application-centric benchmarks
against FaaS platforms that includes a realistic e-commerce
example benchmark. BeFaaS is also the first benchmarking
framework with out-of-the-box support for federated cloud [6]
setups which allows us to evaluate complex configurations
in which an application is distributed over multiple FaaS
platforms running on a mixture of cloud, edge, and fog nodes.
Beyond this, BeFaaS is focused on ease-of-use and collects
fine-grained measurements which can be used for a detailed
post-experiment drill-down analysis, e.g., to identify cold starts
or other request-level effects.

In this regard, we make the following contributions:

• We derive requirements for an application-centric FaaS
benchmarking framework.

• We propose BeFaaS, an extensible framework for the
execution of application-centric FaaS benchmarks and
describe our example benchmark.

• We present our proof-of-concept prototype which is avail-
able as open source and currently supports six FaaS
platforms.

• We run a number of experiments and use them to compare
three public FaaS offerings.

This paper is structured as follows: After outlining the
related work in Section II and deriving the requirements for an
application-centric FaaS benchmark in Section III, we present
the design, architecture, and features of BeFaaS in Section IV.
Next, we describe our implementation of BeFaaS including the
built-in e-commerce benchmark in Section V which we then
use to evaluate three FaaS platforms (Section VI). Finally, we
discuss the current limitations and future work in Section VII
before concluding in Section VIII.

II. RELATED WORK

Existing research on benchmarking of FaaS environments
has so far focused on microbenchmarks. Application-centric
benchmarks that consider the overall performance of multiple
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functions, the interaction with external services, and the effects
of different application load profiles are mostly still missing.

Microbenchmarks call single functions repeatedly and eval-
uate the resulting metrics. These functions are often designed
for a specific purpose, e.g., to stress the CPU of the test
system or to evaluate the test system with a disk-intensive
workload. Multiple performance evaluation studies are based
on microbenchmarks which compare FaaS vendors, e.g., [3],
[4], [7]–[12]. Besides scaling of functions, cold start latency,
and instance lifetimes, the studies also evaluate metrics such
as CPU utilization, network throughput, and costs. Almost all
experiments, however, focus on single isolated aspects and
do not create comparability of platforms for FaaS application
developers.

Some studies also consider more complex applications
such as image processing [13], analyze chained functions, or
deploy real world applications on serverless platforms [11].
While these papers also use application-centric workloads for
experiments, their goal was not to propose a comprehen-
sive framework for the execution of application-centric FaaS
benchmarks.

PanOpticon [14] uses a deployment, workload, and metrics
module to evaluate chained functions and a simple chat server
on two different FaaS vendors. Although PanOpticon has
similar goals as BeFaaS, it neither supports detailed drill-
down analysis nor federated multi-provider setups. Also, van
Eyk et al. [15] developed a high-level architecture and stated
requirements for serverless benchmarking. While their project
has a similar goal as BeFaaS, it unfortunately seems to still be
in a vision state. Existing preliminary source code components
are, according to the paper, not available online, whereas we
publish BeFaaS as an open-source research prototype.

Beyond FaaS, there are a number of application-centric
benchmarking frameworks in other domains, e.g., for database
and storage systems [16], [17] or for virtual machines [18].
These can, however, not easily be adapted to FaaS platforms.

III. REQUIREMENTS

While microbenchmarks are highly useful for studying
individual features of a system-under-test (SUT), application-
centric benchmarks support end-to-end comparison of different
platforms and configurations. Aside from standard benchmark-
ing requirements such as portability or fairness [5], [16], [19]–
[21], an application-centric FaaS benchmarking framework
needs to fulfill a number of specific requirements which we
describe in this section.

R1 – Realistic Benchmark Application: The performance of
a FaaS platform depends on the application that is deployed
on it. For instance, an application that frequently causes cold
starts through a growing request rate will be better off on
AWS Lambda while an application that frequently causes cold
starts through short temporary load spikes will be better off
on Apache OpenWhisk due to their different request queuing
mechanisms [22]. This means that the benchmark application
should be as close as possible to the real application for which

the analysis is made [5], e.g., in line with the findings of [23].
A key requirement is, hence, that a FaaS benchmark should
mimic real applications as closely as possible.

R2 – Extensibility for New Workloads: FaaS platforms
are highly flexible and can be used for a wide variety of
applications, so the world of FaaS applications is evolving
rapidly. As such, any set of “typical” FaaS applications –
and thus the workload profile for a FaaS platform – can
only be considered a snapshot in time. Likewise, the load
profiles of existing FaaS applications, i.e., the amount and type
of requests that the application handles, are likely to evolve
over time. Therefore, we argue that a FaaS benchmarking
framework should be easily extensible in terms of adding new
benchmark applications and updating load profiles for existing
benchmarks.

R3 – Support for Modern Deployments: FaaS is often used
as the “glue” between cloud services, web APIs, and legacy
systems. Thus, a benchmarking framework must also consider
these links and support external services. Furthermore, today’s
applications are often distributed over cloud, edge, and fog
resources [24]–[26]. Here, for example, hybrid clouds can keep
sensitive functions on premises while non-critical functions are
hosted in a public cloud; similar setups exist for edge and fog
computing use cases [27]–[29]. As such, assuming a single-
cloud deployment is unrealistic for benchmarks aiming to be as
similar as possible to realistic applications. A benchmarking
framework needs to support external services and federated
setups in which application functions are deployed on one or
more FaaS platforms distributed across cloud, edge, and fog.

R4 – Extensibility for New Platforms: Today, all major cloud
service providers offer FaaS platforms and there is a growing
range of open-source FaaS systems, for example, systems
that specifically target the edge [30], [31]. As interfaces are
constantly evolving and new platforms are introduced, a cross-
platform benchmarking framework needs to be extensible to
support future FaaS platforms.

R5 – Support for Drill-down Analysis: An application-
centric FaaS benchmark can help to evaluate the suitability
of different sets and configurations of FaaS platforms for
a specific application. What it can usually not provide are
explanations for its finding, e.g., the different cold start man-
agement behavior of AWS Lambda and Apache OpenWhisk
mentioned above [22]. To facilitate root cause analysis and
help evaluators explain the patterns they see in the benchmark
results, we argue that an application-centric FaaS benchmark-
ing framework should support drill-down analysis by logging
fine-grained measurement results including typical metrics of
microbenchmarks.

R6 – Minimum Required Configuration Overhead: An
application-centric FaaS benchmarking framework should be
easy to use and provide reproducible results. This includes
configuration, deployment, execution, as well as collection and
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Fig. 1. High-level overview of the BeFaaS architecture.

analysis of results, e.g., based on infrastructure automation.
Hence, a FaaS benchmarking framework should be designed
to require as little manual effort as possible.

IV. DESIGN

In this section, we give an overview of the BeFaaS design,
starting with an overview of the BeFaaS architecture and
components (Section IV-A) before describing the key features
of BeFaaS (Sections IV-B to IV-E).

A. Architecture and Components

In BeFaaS, the execution of functions of a benchmark
application is the workload that actually benchmarks the FaaS
platform, i.e., executing a function creates stress on the SUT.
Since functions do not “self-start” executing, we need an
additional load generator that invokes the FaaS functions of
our benchmark application; see also Figure 1 for a high-level
architecture overview.

For a benchmark run, BeFaaS requires three inputs: (i) the
source code of the FaaS functions forming the benchmark
application, (ii) a load profile for the load generator, and
(iii) a deployment configuration that describes the environment
configuration for each function and FaaS platform (the SUTs).

For a benchmark run, application code and deployment
configuration are initially converted into deployment artifacts
by the Deployment Compiler. The Deployment Compiler
instruments and wraps each function’s code with BeFaaS
library calls and injects vendor-specific instructions defined in
deployment adapters which enables request tracing and fine-
grained metrics. The resulting deployment artifacts are passed
to the Benchmark Manager.

The Benchmark Manager orchestrates the experiment: First,
it sets up the SUT by deploying each function based on the
information in the respective artifact. If there are external ser-
vices, these can either be deployed by the Benchmark Manager
as well or linked to the SUT using environment variables. In
the second step, it initializes the Load Generator with the
workload information described in a load profile. Then, the
benchmark run is triggered and the Load Generator invokes
the functions of the benchmark application which log every
request in detail including timestamps, origin function, and
called functions (if applicable). Finally, once the benchmark
run is completed, the Benchmark Manager collects the log
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Fig. 2. The Deployment Compiler transforms application code into individual
deployment artifacts based on a deployment configuration. These are then
deployed and benchmarked by the Load Generator. Finally, the Benchmark
Manager aggregates and reports fine-grained results.

files from all FaaS platforms used, aggregates them into a
joint results file, and destroys all provisioned resources; see
Figure 2 for an overview of the components in the BeFaaS
framework and their interactions.

B. Realistic Benchmarks

To provide a relevant and realistic application-centric bench-
mark (R1), BeFaaS already comes with one built-in bench-
mark which mimics an e-commerce scenario and represents
a typical use case for FaaS applications (this application is
explained in further detail in Section V). Our benchmark
adheres to the empirical findings of Shahrad et al. [23], is
composed of several functions that interact with each other
to form function chains, and uses external services such as a
database system for persistence. The benchmark application
comes with a default load profile that covers all relevant
aspects as well as several further load profiles to emphasize
selected stress situations, e.g., to provoke more cold starts.
In combination, the benchmark represents a complete FaaS
application: load balancing at the provider endpoint(s), inter-
connected calls of several functions, calls to external services
such as database systems, and multiple load profiles which,
e.g., provoke scaling of resources.

The modular design of BeFaaS, however, also allows us to
easily add further benchmark applications and load profiles or
to adapt existing ones to the concrete needs of the developer
(R2). For adding a new benchmark, the respective application
only needs to use the BeFaaS library (described in Section V)
for function calls and to have unique function names.

C. Benchmark Portability and Federated FaaS Deployments

To support portability of benchmarks and federated deploy-
ments, BeFaaS relies on unique function names, individual
deployment artifacts for every function, and a single end-
point for every deployed function (R3): With globally unique



function names, the endpoints of the deployed functions are
already known during the compilation phase. The Deployment
Compiler maps these endpoints to the canonical function
names (defined in the application) and compiles them into the
source code. Moreover, the compiler also injects endpoints to
external services such as database systems using environment
variables which were set in the respective setup script or
defined manually. This decouples the ability of a function to
call another function or a platform service from its deployment
location and enables BeFaaS to support arbitrarily complex
deployments: it is indeed possible to run every function on a
different FaaS platform.

Each FaaS platform offers a different interface for life-
cycle and configuration management of functions. As the
smallest common interface, BeFaaS requires that each plat-
form provides API-based access to (i) deploying functions,
(ii) retrieving log entries from the standard logging interface,
and (iii) removing functions. The Deployment Compiler wraps
this functionality using an adapter mechanism and selects
the appropriate instructions for the target platform specified
in the deployment configuration. Additional FaaS platforms
that fulfill this minimal interface can easily be added by
implementing a corresponding adapter (R4).

D. Detailed Request Tracing

To enable a detailed drill-down analysis of experiment
results (R5), the Deployment Compiler injects and wraps code
that collects detailed measurements during the benchmark run:
The compiler adds timestamping to determine start, end, and
latency of calls to functions and external services.

Besides these timestamps, the compiler also injects code
that generates context IDs and pair IDs to assign individual
calls to their respective context later on. Here, a context ID
is generated once for each function chain (the first function
call) which is propagated to every subsequent call to other
functions. To link the individual calls of a function chain, the
compiler injects source code to create pair IDs of randomly
generated keys that link calling and called function. Thus, it is
possible to trace every single request through the benchmark
application and to generate call trees for every context and
function chain.

Finally, to independently and reliably detect cold starts, the
Deployment Compiler also injects code that evaluates a local
environment variable on the executor at the provider side. If
this variable is not present, the function runs on a new executor
(cold start), the variable is created, filled with a randomly
generated key, and the cold start is logged.

All data that enable fine-grained results (timestamps, con-
text IDs, pair IDs, and executor keys) are recorded on the
console using the standard logging interface of the respective
FaaS vendor. Initial experiments with Amazon Web Services
(AWS), Google Cloud Platform (GCP), and Microsoft Azure
(Azure) have shown that the cost of logging is at most in the
microsecond range.

E. Automated Experiment Orchestration

The BeFaaS framework requires only the application code, a
deployment configuration, and a load profile to automatically
perform the benchmark experiment (R6). First, all business
logic, dependencies, and BeFaaS instrumentation logic are
bundled into a single deployment artifact by the Deployment
Compiler. Next, the Benchmark Manager orchestrates the
experiment and provides a simple interface for starting the
benchmark run, monitoring its process, and collecting fine-
grained results for further analysis.

V. IMPLEMENTATION

Our open-source prototype implementation of BeFaaS2 in-
cludes (i) the BeFaaS library, (ii) six deployment adapters,
(iii) the Deployment Compiler, (iv) the Benchmark Manager,
(v) one realistic benchmark application, and (vi) several load
profiles for the benchmark application (see Figure 2).

The BeFaaS library is written in JavaScript and handles
calls to other functions depending on their canonical name,
generates tracing IDs, and takes timestamps. BeFaaS deploy-
ment adapters are implemented using Terraform3 commands.
Currently, BeFaaS thus supports three major cloud offerings
(AWS Lambda, Google Cloud Functions, and Azure Func-
tions) as well as the three open-source systems tinyFaaS [31],
OpenFaaS, and OpenWhisk [32] which support the deploy-
ment of functions on private infrastructure, including edge
or fog nodes. The Deployment Compiler is a shell script
that uses several tools to build the deployment adapters for
the respective platforms, parses and injects information from
the Deployment Configuration, and generates the deployment
artifacts from the application code. The Benchmark Manager
uses Terraform to create the infrastructure based on these
artifacts, collect the logs, and later remove provisioned re-
sources. The implemented benchmark application is written
in JavaScript and includes calls to external services such as
a Redis4 instance. The Load Generator uses Artillery5 to call
the benchmark application. New load profiles can easily be
added by specifying new Artillery load descriptions (YAML6

configuration files).

E-Commerce Application (Webshop)
Our e-commerce benchmark implements a webshop as

a FaaS application based on Google’s microservice demo
application7. Our corresponding benchmark implementation
follows a typical request-response invocation style, comprises
17 functions, and uses a Redis instance as an external service
to persist state (see Figure 3). Besides functions that provide
recommendations and advertising, customers can log in, set
their preferred currency, view products, fill a virtual shopping
cart, check out orders, and finally observe the shipping. Each

2https://github.com/Be-FaaS
3https://www.terraform.io/
4https://redis.io/
5https://artillery.io/
6https://yaml.org/
7https://github.com/GoogleCloudPlatform/microservices-demo
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https://github.com/GoogleCloudPlatform/microservices-demo
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Fig. 3. The e-commerce application implements a webshop in 17 functions.
The frontend serves as a single entry point and an external database is used
to store state.

task is implemented in a separate function (in the figure,
we grouped some functions to increase legibility) and all
requests arrive at a single function, the frontend, which takes
the customer calls and routes them to the respective backend
functions. There are blocking synchronous calls to other
functions as well as asynchronous call blocks that idle until
all functions returned.

The Load Generator for the benchmark application uses
Artillery running in a Docker container that can be deployed
on an arbitrary instance. It either executes a realistic de-
fault load profile that stresses all relevant aspects of the
application or specific additional load profiles that emphasize
stress situations, e.g., to provoke more cold starts. The default
load profile simulates four different customer workflows and
constant traffic for 15 minutes. The benchmark also includes
alternative load profiles for a growth workload which linearly
ramps up the load to 20 workflows per second over 15 minutes
and a spike workload which suddenly increases the load from
3.5 to 20 workflows per second after five minutes, retains the
high load for ten minutes, and finally continues with the lower
load (3.5 workflows per second) for five minutes.

Our e-commerce benchmark is particularly well suited for
comparing different cloud providers but can also be used to
explore federated cloud deployments, e.g., for scenarios in
which the application is running on multiple cloud platforms.

VI. EVALUATION

We evaluate BeFaaS in two different ways. We start by
presenting the results of several experiments in which we

Provider 
(AWS, Azure, or GCP)

E-Commerce Application 
(Web Shop)

DB

Load 
Generator

Fig. 4. As part of the FaaS application, the database instance is deployed in
the same region and on the same provider as the rest of the webshop.

use BeFaaS to stress different FaaS platforms (Section VI-A).
Afterwards, in Section VI-B, we discuss to which degree
BeFaaS fulfills our requirements from Section III.

A. Experiments

To show how BeFaaS can be used to evaluate cloud FaaS
platforms, we deploy BeFaaS in single cloud provider setups
in which all functions of the respective benchmark application
are deployed on a single provider. Here, we deploy the e-
commerce benchmark on three major cloud providers (namely
AWS, Azure, and GCP) and use the default load profile to
compare them.

1) Setup: Figure 4 shows the basic setup of our cloud
experiments: We deploy the Load Generator on a (vastly over-
provisioned) virtual machine (2 vCPUs and 4 GB RAM)
and let it execute the default load profile against the e-
commerce application deployed in either eu-west-1 for AWS,
westeurope for Azure, or europe-west1 for GCP. Moreover, the
Redis database system used by the webshop also runs on an
over-provisioned virtual machine (2 vCPUs and 4 GB RAM;
ta3.medium at AWS, Standard B2S in Azure, and e2-medium
at GCP) at the respective provider site. This ensures that the
database instance and Load Generator will not be a bottleneck
during the experiment [5]. During each experiment, the Load
Generator executes 18, 000 workflows, which each consist of
1 to 9 requests, over a time span of 15 minutes. Since the
focus of this paper is on BeFaaS and its features and not on
providing an in-depth performance analysis of different cloud
providers, we decided not to repeat the experiment several
times.

2) Results: Figure 5 shows the execution duration of four
selected functions which are called from the frontend function
(as boxplots, boxes represent quartiles, whiskers show the
minimum and maximum values without outliers beyond 1.5
times the Inter Quartile Range). For the four functions exam-
ined in more detail, the overall picture is similar for all three
providers: As expected, simpler functions that only read or
write a single value have a lower execution duration than more
complex ones such as the getCart() or checkout() function. In
our experiment, Azure provided the fastest environment for
this single run while AWS was notably slower with higher
variance.

In a further fine-grained analysis, we investigate the distribu-
tion of computing, network transmission, and database query
latency for a synchronous and blocking section which involves
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Fig. 5. A detailed analysis of four functions called from the frontend shows
that Azure provides the best performance and that the execution duration has
the highest variance on AWS.

Computing Network Transmission DB Round Trip

10
0

10
1

10
2

D
ur

at
io

n 
(m

s)

AWS
Azure
GCP

Fig. 6. A drill-down analysis of a function sequence reveals that the network
transmission time is the most relevant driver of execution time on all providers.

two functions and database operations when an item is put
into the shopping cart. For this evaluation, we consider the (i)
computation part as function runtime without the duration of
outgoing network calls, (ii) network latency as the duration
of outgoing calls to other function without the runtime of the
called function itself, and (iii) query latency as the duration
of calls to the external database. The detailed timestamp
mechanisms of BeFaaS allow us to easily separate these times,
which are shown in Figure 6. Even though the results are
based on only one benchmark run, it is noticeable that for
all providers time is mostly spent on network transmission
followed by the database round-trip time while the actual
computing time is relatively low. In addition, AWS showed
the fastest compute and database times for the experiment run
compared to the other providers Azure and GCP, while also
incurring significantly more time for network transmission.

B. Discussion of Requirements

In Section III, we had identified six requirements for
application-centric FaaS benchmarking frameworks. We now
discuss to which degree BeFaaS fulfills these requirements.

BeFaaS already comes with one standard benchmark that
covers a representative FaaS application scenario, namely
standard web applications, and can be easily extended by
implementing more FaaS application scenarios using the Be-
FaaS library. We, hence, believe that BeFaaS fulfills the
requirements R1 (Realistic Benchmark Application) and R2
(Extensibility for New Workloads).

In BeFaaS, benchmark users can define arbitrarily complex
deployment mappings of functions to target FaaS platforms in-
cluding federated multi-cloud setups or mixed cloud/edge/fog
deployments. In fact, each function could run on a different
platform. To achieve this, BeFaaS transforms the benchmark
application into deployment artifacts fitted to the target plat-
form. Adding another target platform is also straightforward
and only requires the benchmark user to implement an adapter
component for the respective FaaS platform or to copy and
adapt an existing adapter component. Based on this, we argue
that BeFaaS fulfills the requirements R3 (Support for Modern
Deployments) and R4 (Extensibility for New Platforms).

At runtime, BeFaaS collects fine-grained measurements
and traces individual requests similar to what Dapper [33]
does for microservice applications. This offers the necessary
information basis for drill-down analysis. Beyond this, BeFaaS
also offers visualization capabilities for select standard mea-
surements to further support analysis needs. Overall, we hence
conclude that BeFaaS addresses requirement R5 (Support for
Drill-down Analysis).

Finally, we believe that BeFaaS is easy to use due to its
experiment automation features and requires only very few
configuration files (requirement R6 – Minimum Required Con-
figuration Overhead). Nevertheless, this is a highly subjective
matter that depends on the respective individual. Therefore, we
invite all researchers to use our proof-of-concept prototype8

and to try it out themselves.

VII. DISCUSSION

BeFaaS is a powerful, modern application-centric FaaS
benchmarking framework. There are, however, also some
points to consider and limits when using BeFaaS.

Tracing token generates constant network overhead. Be-
FaaS supports a detailed tracing of requests by injecting a
small token in each call. On the one hand, this supports the
clear mapping of different calls to function chains, yet on
the other hand, it also causes an additional network overhead.
This token, however, is mostly constant in size (depending on
the length of the respective function name), so the overhead
can be easily determined and considered in results analysis.
Furthermore, this will only matter if the goal of the benchmark

8https://github.com/Be-FaaS

https://github.com/Be-FaaS


is to find the optimal deployment for an existing application
which is then instrumented to be used as a BeFaaS benchmark.

No detailed measurements for external services. Currently,
BeFaaS handles external services and components as a black-
box and only measures end-to-end latency of such service
calls. In future work, however, we plan to implement a small
BeFaaS sidecar proxy that can be deployed on external service
instances to forward calls to the respective service and to inject
the BeFaaS tracing token there as well.

External services can affect the comparability and fairness.
The included benchmark uses an external database system to
persist state but further benchmarks and use cases may also
require external services such as pub/sub message brokers or
web APIs. Although the modular design of BeFaaS supports
this, there are also some pitfalls in terms of fairness and
comparability: In our experiments, we placed the database
instance in the same region and deployed it at the same
provider to minimize latency between functions and database.
A function calling the external service and awaiting the
response will not idle for a long time and the execution
environment at the provider side will soon be available again
for the next request. On the other hand, a function calling
an external service in another region with larger latency will
block the environment and (may) cause a cold start for the
next incoming request. Thus, when using external services,
these should be located and deployed with similar latency for
all alternatives. Moreover, as cloud environments are virtually
infinitely scalable, it has to be assured that the external
service does not become a performance bottleneck during the
experiment. Otherwise, the benchmark would benchmark the
compute resources of the external service instead of the FaaS
environment.

Provider-specific features can affect portability. Competing
FaaS vendors are constantly developing new and exclusive
features that simplify development and deployment for cus-
tomers. These features, however, can also affect the portability
of the BeFaaS framework if a (future) benchmark uses exclu-
sive features that are not available at all vendors. Thus, we
strongly recommend not to use exclusive features of individual
providers when developing new BeFaaS benchmarks. BeFaaS
can, however, help to determine the impact of new features
within a provider or across multiple providers by adjusting
and configuring the respective deployment adapter.

Clock synchronization is required for some drill-down
analysis tasks. The drill-down analysis features of BeFaaS
require approximately synchronized clocks. Although this will
usually be provided by the provider with sufficient accuracy,
a user should assert this before running experiments as this
will affect the reliability of tracing insights. Nevertheless, such
detailed insights may often not be needed and the tracing
of BeFaaS also offers something to counteract this: If the
call follows a request-response pattern, BeFaaS measures the
total round trip time at the calling function and knows the

computing duration at the called function. Thus, it is possible
to approximate the network transmission latency under the
assumptions that both directions took comparably long. For
event-based calls that do not return a message to the sender,
however, this is not possible. In our experience, though, this is
not a problem in the cloud and for self-hosted FaaS platforms,
where the user has direct control over clock synchronization.

VIII. CONCLUSION

FaaS platforms are a popular cloud compute paradigm
and have also been proposed for edge environments. For
comparing and choosing different FaaS platforms in terms
of performance, developers usually rely on benchmarking.
Existing FaaS benchmarks, however, tend to fall into the mi-
crobenchmark category – an application-centric FaaS bench-
marking framework is still missing.

In this paper, we presented BeFaaS, an extensible frame-
work for executing application-centric benchmarks against
FaaS platforms which comes with a realistic e-commerce
benchmark. BeFaaS is also the first benchmarking framework
with out-of-the-box support for federated cloud setups which
allows us to also evaluate complex configurations in which
an application is distributed over multiple FaaS platforms
running on a mixture of cloud, edge, and fog nodes. We
plan to use this feature of BeFaaS in future work to evaluate
the feasibility of such infrastructure. Beyond this, BeFaaS is
focused on ease-of-use through automation and collects fine-
grained measurements which can be used for a detailed post-
experiment drill-down analysis, e.g., to identify cold starts
or other request-level effects; it can easily be extended with
additional benchmarks or adapters for further FaaS platforms.

With BeFaaS, we provide developers with the necessary
tool to explore, compare, and analyze FaaS platforms for their
suitability for application scenarios. We also offer researchers
the ability to study the performance effects of different FaaS
deployment options across cloud, edge, and fog through ex-
periments.
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