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Abstract—EdgeAl (Edge computing based Artificial Intelli-
gence) has been most actively researched for the last few years to
handle variety of massively distributed AI applications to meet
up the strict latency requirements. Meanwhile, many companies
have released edge devices with smaller form factors (low power
consumption and limited resources) like the popular Raspberry
Pi and Nvidia’s Jetson Nano for acting as compute nodes at
the edge computing environments. Although the edge devices are
limited in terms of computing power and hardware resources,
they are powered by accelerators to enhance their performance
behavior. Therefore, it is interesting to see how Al-based Deep
Neural Networks perform on such devices with limited resources.

In this work, we present and compare the performance in
terms of inference time and power consumption of the four SoCs:
Asus Tinker Edge R, Raspberry Pi 4, Google Coral Dev Board,
Nvidia Jetson Nano, and one microcontroller: Arduino Nano 33
BLE, on different deep learning models and frameworks. We also
provide a method for measuring power consumption, inference
time and accuracy for the devices, which can be easily extended
to other devices. Our results showcase that, for Tensorflow based
quantized model, the Google Coral Dev Board delivers the best
performance, both for inference time and power consumption.
For a low fraction of inference computation time, i.e. less than
29.3% of the time for MobileNetV2, the Jetson Nano performs
faster than the other devices.

Index Terms—edge computing, deep learning, performance
benchmark, edge devices, power consumption, inference time,
power prediction

I. INTRODUCTION

Advances in computing devices and high-speed mobile net-
working provide today’s applications to be distributed globally.
Such applications are thus deployed on cloud service platforms
to benefit from on demand provisioning, unlimited resource
pooling, and dynamic scalability. Modern deep learning tech-
niques serve a key component in various real-time applica-
tions, like speech recognition [1]], recommendation systems [2]]
and video classification [3]]. However, deep learning-based
approaches require a large volume of high-quality data to train
and are very expensive in terms of computation, memory and
power consumption [4]. Moreover, existing cloud computing
is unable to manage these massively distributed applications
and analyze their data due to: i) challenges posed on the
network capacity when tasks are deployed to the cloud [3]; ii)
many applications, for example, autonomous driving [6]], have

strict latency requirements that the cloud would have difficulty
meeting since it may be far away from the users [7].

The concept of Edge Computing has been recently proposed
to complement cloud computing to resolve these problems by
performing certain tasks at the edge of the network [8]. The
idea is to distribute parts of processing and communication to
the “edge” of the network, i.e closer to the location where it is
needed. As a result, the server needs less computing resources,
the network is less strained and latencies is decreased.

Edge Devices can come in a variety of forms ranging from
large servers to low-powered System on a chip (SoC) devices
like the popular Raspberry Pi or any other ARM based devices.
Deep Neural Networks (DNNs) may occupy big amounts of
storage and computing resources [9], [10]. Although the edge
devices are limited in terms of computing power and hardware
resources, they are powered by accelerators to enhance their
performance at the edge computing environments.

In the context of Edge Computing, it is rather interesting
to see how devices with smaller form factors (low power con-
sumption and limited resources) can handle DNN evaluation.
There are a considerable number of articles on the benchmark
of edge devices [[11]-[|15]]. However, some of the articles are
already outdated and others miss benchmarks on the major lat-
est edge devices, thus lacking a thorough comparison between
the edge devices concerning the DNN applications. Unlike
other works, this article focuses on evaluating the performance
of recent edge device for DNN models inferencing. The key
contributions of this work are as follows:

« We present a comparative analysis on recent accelerator-
based edge devices specialized for the DNN application
domain. We choose following devices as our target edge
devices to assess their performance behavior and capa-
bilities for DNN applications:

— ASUS Tinker Edge R [16]

— Raspberry Pi 4 [17]

Google Coral Dev Board [18]]
NVIDIA Jetson Nano [19]
Arduino Nano 33 BLE [20]

o Our evaluation perspectives include inference speed for
a fixed number of images, power consumption during
(accelerated) DNN inference, and models accuracies with



and without optimization for the respective device.

e We used four different deep learning inference frame-
works for the evaluation: Tensorflow, TensorRT, Tensor-
flow Lite and RKNN-Toolkit.

o We also provide a method for measuring power consump-
tion, inference time and accuracy for the devices, which
can be easily extended to other devices. We open source
the collected data and the developed method for further
researchl|

The rest of this paper is organized as follows. §I gives
an overview of the target edge devices, model frameworks
and formats used in this work for the evaluation. In the
overall evaluation setup and methodology are described.
provides the experimental configurations details. In §V] our
performance evaluation results are presented along with the
discussion of those results. Finally, §VI| concludes the paper
and presents a future outlook.

II. TARGET EDGE DEVICES, FRAMEWORKS AND MODEL
FORMATS

In this section, we compare different edge device architec-
tures and present their hardware overview, and also briefly
describe the characteristics of different DNN models and
frameworks used in this work for benchmarking the edge
devices.

A. Target Edge Devices

We have considered the following five edge devices sum-
marized in Table [

1) Nvidia Jetson Nano: The Jetson Nano is one of the
offerings from Nvidia for edge computing [19]. With the
Jetson product line, Nvidia deploys their Graphics Processing
Unit (GPU) modules to the Edge with accelerated Al per-
formance. The Jetson Nano’s GPU is based on the Maxwell
microarchitecture (GM20B) and comes with one streaming
multiprocessor (SM) with 128 CUDA cores, which allows
to run multiple neural networks in parallel [19]. The Jetson
Nano is the lowest-end version of the product line with a
peak performance of 472 Giga Floating Operations Per Second
(GFLOPS) [21]]. It comes with either 2GB or 4GB Random
Access Memory (RAM) version wherefore we’re testing the
4GB version. The Nano can be operated in two power modes,
5W and 10W. We used in our experiment an Nvidia Jetson
Nano with 4 GB RAM and 10 W to maximize performance.
Compared to the other target edge devices in this work, the
Jetson Nano stands out with a fully utilizable GPU.

2) Google Coral Dev Board: Coral is a platform by Google
for building Al applications on edge devices [22]. The Google
Coral Dev Board is one of the offerings which features the
“edge” version of the TPU (tensor processing unit) [23]], an
application specific integrated circuit (ASIC) designed for
accelerating neural network machine learning, particularly
using the TensorFlow framework [24]]. The Edge TPU operates
as a co-processor in an edge device and allows for an efficient
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aggregation of tens of thousands of ALUs (arithmetic logic
units) and faster data transfer rate between the TPU and the
memory. However, the Edge TPU is fine-tuned for matrix
operations which are very frequent in neural network machine
learning.

The Google Coral Dev Board comes with either 1GB or
4GB of RAM. The SoC integrates the Google Edge TPU with
the performance of 4 trillion operations (tera-operations) per
second (TOPS) or 2 Tera Operations Per Second (TOPS) per
watt [25]. To make use of the dedicated unit, models in a
supported format can be converted to work with the PyCoral
and Tensorflow Lite framework [26].

3) Asus Tinker Edge R: Currently, ASUS offers six devices
under the Tinker Board brand [27]]. Two of them, the Tinker
Edge R [16] and Tinker Edge T [28] are specifically made for
Al applications. While the Tinker Edge T is supported by a
Google Edge TPU, the Tinker Edge R uses Rockchip Neural
Processing Unit (NPU) (RK3399Pro), a Machine Learning
(ML) accelerator that speeds up processing efficiency, and
lowers power demands. With this integrated Machine Learning
(ML) accelerator, the Tinker Edge R is capable of perform-
ing 3 tera-operations per second (TOPS), using low power
consumption. And it’s optimized for Neural Network (NN)
architecture, which means Tinker Edge R can support multiple
Machine Learning (ML) frameworks and common Machine
Learning (ML) models can be easily compiled and run on
the Tinker Edge R. Rockchip, the manufacturer of the chip,
provides the RKNN-Toolkit as a library to convert and run
models from different frameworks. As operating system, Asus
offers a Debian Stretch and Android 9 variant of its so called
Tinker Operating System (OS) to power the board. Compared
to the other devices, the board offers additional interfaces
for expanding connectivity (mPCle, M.2, serial camera, serial
display), especially interesting for IoT applications.

4) Raspberry Pi 4: The devices from the Raspberry Pi
series are among the most popular SoCs and represent go-
to products for people who are interested in IoT [29]. In June
2019, the Raspberry Pi 4 was released, featuring a variety
of RAM options and a better processor. The Raspberry Pi
4 comes with Gigabit Ethernet, along with onboard wireless
networking and Bluetooth. The Rasbperry Pi is commonly
used with Raspbian, a 32 Bit OS based on Debian. As the
Raspberry Pi 4 is capable of running a 64 Bit OS. We're
instead going to use the available 64 Bit Raspbian version
(aarch64 architecture) to provide the same testing conditions
as the other devices. This actually makes a difference in per-
formance, as a blog post [30] on benchmarking the Raspberry
Pi from 2020 suggests. In contrary to it’s predecessors, the
4th generation is available in multiple variants with different
RAM sizes (2, 4 and 8GB). For this work we’re testing the
4GB variant.

While all other devices in this work (excluding the Arduino)
include GPUs or co-processors for neural computation, the
Raspberry Pi lacks such a dedicated unit, but stands out with
its low price and availability compared to the other products.
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TABLE I: Overview on different target edge devices specifications

Tinker Edge R | Raspberry Pi 4 | Google Coral Dev | NVIDIA Jetson Nano | Arduino Nano 33
(2019) [16] (2019) [17] Board (2020) [18] (2019) [19] BLE (2019) [20]

CPU RK3399Pro, Dual-core | BCM2711, Quad-core | NXP i.MX 8M, Cortex AS57 | nRF52840, Cortex M4
Cortex A72 @1.8GHz, Cortex A72 @1.5GHz Quad-core Cortex A53 @1.43GHz @64MHz
Quad-core Cortex A53 | (ARMVSA) @1.5GHz (ARMVS8A) (ARMV7E-M)
@1.4GHz (ARMvV8A)
(ARMv8A)

. Rockchip NPU - Google Edge TPU 128-core Maxwell | -

Artificial GPU

Intelligence

(AI) Unit

Memory LPDDR4 4GB, | LPDDR4 4GB | LPDDR4 1GB | LPDDR4 4GB | 256KB SRAM
LPDDR3 2GB (NPU) @3200MHz @1600MHz @1600MHz (nRF52840)

Storage 16GB eMMC, Micro | Micro SD 8GB eMMC, Micro | Micro SD IMB Flash Memory
SD SD

First Party OSs | TinkerOS, Android Raspbian Mendel Linux Ubuntu MBed OS

Optimized TensorFlow 1, Tensor- | - TensorFlow Lite TensorFlow, TensorRT, | TensorFlow Lite Micro

Frameworks flow Lite, Caffe, Kaldi, NVCaffe, Kaldi,
MXNet, ONNX MXNet, DIGITS,

PyTorch

5) Arduino Nano 33 BLE: Besides the main A-Profile
architecture family from Arm Ltd. company used in SoCs,
the M-Profile for microcontrollers is meant to provide “low-
latency, highly deterministic operation for deeply embedded
systems” [31]. In their latest revision Armv8.1-M, a new M-
Profile Vector Extension (MVE) is included to accelerate Ma-
chine Learning (ML) algorithms. The Cortex Armv7-M is the
latest architecture used in currently available microcontrollers
like Arduinos. Additionally, TinyML is a foundation aiming
to bring ML inference to ultra-low-power devices, i.e. micro-
controllers [32]. Inference frameworks like Tensorflow Lite
already implement this approach by enabling Deep Learning
(DL) models to be inferenced on products like the Arduino
Nano 33 BLE or ESP-32 [33].

Therefore, the Arduino Nano 33 BLE is also considered as
target edge device to represent this category of edge devices.
It features the nRF52840, a 32-bit ARM Cortex™-M4 CPU
running at 64 MHz from Nordic Semiconductors [20]. It is
officially supported by the Tensorflow Lite Micro DL frame-
work and counts to the “larger” microcontroller systems [33].
With a Flash Memory size of 1MB, it’s therefore capable of
running networks with up to S00KB in size [20].

B. Inference frameworks and conversion between them

All devices share Tensorflow (TF) as common framework
to provide optimized model inference, though only being
compatible with certain models and Tensorflow variants. The
Tensor Processing Unit (TPU) of the Google Coral Dev
Board is only available for use with optimized Tensorflow
Lite models, RKNN-Toolkit for Tinker Edge R only supports
conversion of models in Frozen Graph format and Tensorflow
Lite models and TensorRT for the Nvidia Jetson Nano doesn’t
support Tensorflow Lite. Besides, there are further restrictions
for converting models from Tensorflow to be optimized for the
respective device.

To make use of the devices’ NPUs, TPUs and GPUs,
dedicated Python Application Programming Interfaces (APIs)s

are provided to convert and inference models from one or more
frameworks. In this subsection we describe four such methods.

1) Tensorflow: TensorFlow [24] is an open-source software
library for numerical computation using data flow graphs.
Nodes in the graph represent mathematical operations, while
the graph edges represent the multidimensional data arrays
(tensors) that flow between them. This flexible architecture
deploys computation to one or more CPUs or GPUs without
rewriting code. Tensorflow is the main framework we used
for exporting pretrained models for inferencing on the edge
devices. As a framework, it is already optimized for systems
with Nvidia graphics cards in combination with their neural
network library CUDNN. Nvidia’s Jetson Nano is therefore
capable of running networks on its integrated GPU, giving it
an advantage over the other devices that perform inference
solely on the Central Processing Unit (CPU).

2) TensorRT: NVIDIA TensorRT [36] is a C++ library that
facilitates high performance inferencing on NVIDIA graphics
processing units (GPUs). TensorRT takes a trained network,
which consists of a network definition and a set of trained
parameters, and produces a highly optimized runtime engine
which performs inference for that network. TensorRT applies
graph optimizations, layer fusion, among other optimizations,
while also finding the fastest implementation of that model
leveraging a diverse collection of highly optimized kernels.
TensorRT supports parsing models in ONNX, Caffe and UFF
format. To convert a model from Tensorflow or other frame-
works, external tools like the #2onnx command line tool or
uff library have to be used [37]].

Additionally, models can be optimized with TensorFlow
with TensorRT (TF-TRT) optimization, which is included in
the Tensorflow Python APIL

3) Tensorflow Lite: TensorFlow Lite was developed to
run machine learning models on microcontrollers and other
Internet of Things (IoT) devices with only few kilobytes of
memory [33]. Hence, runtime environments are offered for
various platforms covering i0OS, Android, embedded Linux and
microcontrollers with API support for Java, Swift, Objective-



TABLE II: Optimization compatibility for pretrained Tensorflow models on various edge devices [34], [35]

Asus Tinker Edge R Google Coral Dev Board Nvidia Jetson Nano Arduino Nano 33

APIL RKNN Toolkit PyCoral/ TF Lite Tensor-RT TF-TRT TF Lite micro
TF 1 (frozen graph) 6] L 6] 4] -

TF 1 (saved model) L] L) L& (@] -

TF 2 (saved model) L ip (6} (6] -

TF Lite L&} L] L&} . -

TF Lite quant. (8-bit (4] L&} . . (4]
quantized model)

C, C++, and Python [38]. TensorFlow Lite uses FlatBuffers as
the data serialization format for network models, eschewing
the Protocol Buffers format used by standard TensorFlow mod-
els. After building a model in the main Tensorflow framework,
it can be converted to TFLite format with the inbuilt converter,
supposing all operations used by the model are supported.
Unsupported operations can be manually implemented [39].

During the conversion process, it is also possible to quantize

the model, which is needed for deploying to micro-controllers
or devices utilizing the Google Edge TPU. To do that a
Tensorflow Lite model must be “compiled” to be compatible
with the Google Edge TPU, e.g. with the Edge TPU Compiler
command line tool by Coral [40]. In addition to being fully
8-bit quantized, only supported operations must be included
in the model and the Tensor sizes must be constant at
compile-time while only being 1, 2 or 3-dimensional (further
dimensions are allowed as long as only the three innermost
dimensions have a size greater than one) [26].
For the model to be used in the C++ API, which is required
by the Arudino Nano 33 BLE, the TFLite model must be
converted to a C array. This is done by using a hexdump tool,
e.g. using the ”xxd -i” Unix command.

4) RKNN-Toolkit: Rockchip offers its RKNN-Toolkit
framework for running optimized inference on their Al ac-
celerated processors [34]. It allows conversion from various
frameworks (as seen in Table|[I) to its own ”.rknn” format. The
resulting models can then be run using the same framework.

C. Model formats

Pretrained Tensorflow models can come in a variety of
different formats [41]. The main ones used for deploying
are SavedModel, TF1 Hub format, Frozen Graph and TFLite
format [41[]. Additionally, TF-TRT and RKNN-Toolkit use
other formats to run an accelerated inference on the dedicated
unit.

1) SavedModel Format: 1t is the recommended format for
exporting models [42]. It contains information on the complete
Tensorflow program, including trained parameter values and
operations. Loading and saving a model can be done via
one command without further knowledge about its internal
structure. By default, a saved model cannot be trained any
further after saving it.

2) TF1 Hub Format: The TF1 Hub format is a custom
serialization format used in by TF Hub library [42]. The TF1
Hub format is similar to the SavedModel format of TensorFlow
1 on a syntactic level (same file names and protocol mes-
sages) but semantically different to allow for module reuse,

composition and re-training (e.g., different storage of resource
initializers, different tagging conventions for metagraphs). To
support loading a model in this format in the TF 2 Python
API, an additional module has to be imported [42], [43].

3) Frozen Graph Format: Frozen Graph format is the
deprecated format. In contrary to the TFI Hub format, it
saves the parameters as constants, bound to their respective
operations. A Frozen Graph can’t be trained after it’s loaded,
though converting it to T7F1 Hub format is possible (yet still
not trainable) [44].

4) TFLite Format: TFLite (.tflite”) is used to deploy
models and make them available on devices with limited
resources [38]. A model must hence be converted from a TF
model with one of the previous formats. Before converting,
it must be considered that the TFLite runtime platform
for performing the inference has only limited support for
Tensorflow operations. Unsupported operations can therefore
be explicitly implemented as custom operations in the runtime
framework. During conversion, the model can be quantized
to reduce model size and inference speed.

Table [[I] provides a summary of the optimization compati-
bility for various pre-trained Tensorflow models on different
devices. By looking at it, we can conclude that for a com-
parison using every device’s full potential, a model must be
available in Tensorflow Lite (and 8-bit quantized) and one of
the other Tensorflow formats. The Raspberry Pi is not included
in this overview as it doesn’t have a dedicated unit for which
a model can be optimized for. As we’re focusing on IoT
devices, we want to pick models that are commonly used in
this category i.e. for image classification. The Tensorflow 1
Detection Zoo and the Tensorflow Model Garden therefore
provide a variety of image classification models with different
sizes and formats [10].

III. METHODOLOGY

NTP Clu?nt NTP sync., dataset file access
SFTP Client over SFTP (over Ethernet)

test.py
SoC edge device

| Tinker Edge R || Raspberry Pi |

NTP Server
SFTP Server ‘ erial_reader.py
Monitoring device

Coral Dev Board‘ ‘ Jetson Nano ‘

HM310P Power Supply

DC Power Power measurement

data (over Serial USB)

Fig. 1: High-level overview of the testing setup showcasing
the workflow between each of its components.



For measuring time, power consumption and accuracy, we
developed a python framework containing two main scripts:
i) test.py for running the models on the devices and getting
inference data, and ii) serial_readerpy for getting power
measurement data to be run on the monitoring device (a system
used for collecting monitoring data from all the edge devices)
as depicted in Figure [I]

Power measurement and inference are performed on sep-
arate devices to avoid consumption of computing resources
on the test device, therefore the clocks are coordinated. To
accomplish this, we use the systemd [45] implementation of
the Network Time Protocol, which is able to achieve better
than 1ms deviation in local networks [46]. The monitoring
device therefore runs a Network Time Protocol (NTP) server,
for which the edge device is configured to request the current
time from. For higher accuracy, the devices are directly
connected via Ethernet as shown in Figure [I}

In the following subsections we describe the three important
tasks conducted by the two developed python modules in more
details.

A. Inference time calculation using test.py

The test.py script runs on the edge device under test, evalu-
ates a model in a chosen framework and generates timestamps
during the process. The test.py script allows inference of any
platform-compatible model trained on the ImageNet [47] or
COCO [48]] dataset. On some of the devices, the ImageNet
dataset occupies more memory than available. The directory
containing the images are therefore saved on the monitor-
ing device and accessed over Secure File Transfer Protocol
(SFTP). Inference platforms include Tensorflow, Tensorflow
Lite, RKNN-tookit, TensorRT with ONNX so the script can
be run on every device up for testing. The resulting output
tensors are saved into a list for each image batch. Model
accuracy is calculated after the last inference is performed. The
program also supports defining the batch size, input datatype,
image dimensions and number of inferences that should be
performed. Besides measuring the model performance for each
device, which is the time a device took for each inference,
we also generate inference-timestamps indicating the current
workload of the device (i.e. when an inference starts and ends).
This is necessary for knowing exactly what process we are
monitoring while calculating performance and watts per time
later on.

Labeled timestamps (e.g. inf_start_batch_i denoting the
start time and inf_end_batch_i denoting the end time) are
generated just before and after a loop in which the inference
function is called a given amount of times. Thus, the measured
time only includes the inference performed by the framework,
excluding image pre-processing and evaluation of the results.

Overall inference time t;,, average inference time fj,; and
overall time spent on the testing program for N images teg
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Fig. 2: Power consumption (watts) over time (seconds) and
labels during 1000 x 5 images inference on the Nvidia Jetson
Nano with MobilenetV2 in Tensorflow

can then be calculated from the generated file as following:

N
tinf = E tinf_end_batch_i — Linf_start_batch_i

i=1
- ting (1)
tinf = W

ttest = ttest_end - ttest_staxt
B. Power consumption calculation using serial_reader.py

During the inference, the serial_readerpy script runs on
a monitoring device to collect power consumption data. To
measure power consumption, we calculate how much energy is
consumed during the idle state, inference time and during the
entire testing program. Knowing the exact value at any point
in time during the process is mandatory to get a meaningful
result. Therefore measuring with a wattmeter and reading the
results by hand won’t suffice. Instead, we measure voltage and
current via a laboratory power supply with an integrated high
precision power meter, the HM310P by Hammatek. It provides
a serial Modbus USB interface over which the registers
containing configuration and status of the power supply can
be read and set. While no official software and documentation
are available until now, a user-contributed documentation [49]
shows an overview of the modbus accessible registers in the
HM310P. This made it possible to implement a python library
hm310p.py in the testing program, providing functions to
control the device.

In a given interval, the serial_reader.py monitors the power
consumption by requesting power, voltage and current from
a given path to the HM310P device. Optionally, the script
creates a live plot of the incoming data and/or saves the
data with respective timestamps to a given path. Afterwards,
the generated inference-timestamps by the fest.py can be
summarized and plotted with the same script as shown in
Figure [2] for Nvidia Jetson Nano when performing inference
on 1000 x 5 images with MobilnetV2 in Tensorflow.

Overall energy consumption wmips (in wattminutes) and
average poOwer Wiy, (in watts) during inference are evaluated
for an inference-timestamps file and power-timestamps file
containing a list of tuples 7. Each tuple contains time in
seconds, current in amps, voltage in volts and power in watts.
Firstly, a list of power data can be extracted for each batch
i, for which W; = {w|(¢, a,v,w) € T, tint_start_barch_i < t <



0.000 | O: tench, Tinca tinca

0.539 | 66: sea snake
: goldfish, Carassius auratus 0.085 | 55: hognose snake, puff adder, sand viper
: great white shark, ...

3: tiger shark, Galeocerdo cuvieri

— 0.081 | 63: rock python, rock snake, Python sebae
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Fig. 3: Interpreting the result of an image detection model

Linf_end_batch_i ;- The respective values can then be calculated
with

W — Z’LUGWi w
' 14
N
Do s — > im1 Wi (2)
inf N
Linf

WMinf = Winf X ——.
60

C. Model accuracy calculation using test.py

The accuracy of models can change after being converted
and optimized to work on a specific platform. Therefore it
is important to include it into the comparison. For common
tasks like image classification and object detection, there are
metrics to measure how good an algorithm performs for a
given dataset.

We use two metrics to indicate the accuracy of a model,
Top-1 and Top-5 accuracy. For Top-1 accuracy, only the most
probable class is compared with ground truth, whereas for Top-
5 accuracy, the correct class just has to be among the top five
guesses. We then consider the relation of correctly detected
images to all images using the following equation:

correct results

Top = all results ®)
During evaluation in the fest.py script, we calculate this value
by labeling the resulting tensor values with their indices
and then sorting them by weight as shown in Figure 3] If
the ground truth value for the image equals the first value
or is among the first five values, the amount of correct
results is incremented respectively for Top-1 and Top-5
accuracy. With a significant amount of samples, we get an
approximation for the accuracy of a model. The ImageNet
dataset ILSVRC2012 [47] therefore provides 50,000 images
for validation with ground-truth data, from which we’re going
to use 5,000 samples for each run.

The described methodology allows testing any device
supporting the respective Python libraries of the fest.py script.
This is not the case for the Arudino Nano 33 BLE, so power
consumption and inference time plus accuracy is measured
separately. For measuring inference time, a C++ script is
provided to be run on the arduino, implementing the TFLite
C++ library. The script sets up the MobileNetV1 network
and waits for the input image to be received over serial USB,
which are then put into the placeholders of the input tensor.
Inference time is measured on the arduino and sent back over
serial USB afterwards, together with the output tensor after
the inference is complete. Transmission and evaluation of the

dataset data is handled by the test.py script, which is run on
the monitoring device this time.

IV. EXPERIMENTAL CONFIGURATIONS

The previously described methodology is used with dif-
ferent configurations (model, edge device, framework, given
amount of images from the ImageNet data) combinations for
evaluations. For more precise results, one test run with 5,000
images for a decent model accuracy approximation and one
with 5 images repetitively inferenced 1,000 times to further
counteract inaccuracies due to possible delays when reading
power measurement data from the power supply are conducted.

During all measurements, unnecessary processes like graph-
ical user interfaces as well as internal devices like wireless
Local Area Network (LAN) modules are disabled to minimize
power consumption and processing power.

It may also be possible that an inference, performed solely
on the CPU may be more energy-efficient than with using the
dedicated unit. We therefore also test the devices using the
“native” Tensorflow and Tensorflow Lite framework without
optimizations for a dedicated unit.

In the results section, the main focus will be on the following
collected data:

o Average time spent on inference of one of 5,000 images

o Total time spent on inference of 5,000 images

o Power during idle state (LAN on and off)

o Average power during inference of 1,000 x 5 images

« Total power consumption during inference of 1,000 x 5
images

o Accuracy for each platform-device combination

A. Models for evaluation

We pick models that can be optimized for as many devices
as possible. For an extensive comparison, four model config-
urations are considered. The most limiting factor for finding a
common model is for the network to fit on the Arudino Nano
33 BLE with only 1MB of RAM. The only image classification
network from the Tensorflow Model Garden that is within that
range is the 8-bit quantized "MobileNet_v1_0.25", available in
TFLite and TF1 Hub format (MobileNetV1 Quant. Lite) [50].

Ergo, the quantized TFLite model can also be deployed to
the Asus Tinker Edge R, the Google Coral Dev Board and the
Raspberry Pi. Though being capable of running on the Arudino
Nano 33 BLE, its small size may lead to less accurate results
on the other devices. An inference for one image takes less
than 2ms on the Google Coral Dev Board. With an offset of up
to 1ms between power measurement timestamps and inference
timestamps, up to 50% of the collected power consumption
data may not be assignable to the current workload and
therefore be invalid.

Selecting a bigger size model that takes longer for the evalu-
ation does increases the accuracy of measuring inference time,
since the relation of the actual inference to unintentionally
included function calls (like time()) increases. Hence, we also
use a larger MobileNetV2 model with 12x as many parameters,
also available on the Tensorflow Model Garden.



Ascribed to the incompatibility of non-quantized models on
the Google Coral Dev Board and quantized models on the
Nvidia Jetson Nano, there are two main test runs for the model.
The first one includes the “float_v2_1.4_224" Frozen Graph
to be evaluated on the Asus Tinker Edge R, the Raspberry
Pi and the Nvidia Jetson Nano (MobileNetV2). The second,
includes the model’s corresponding 8-bit quantized version to
be run on the Google Coral Dev Board instead of the Nvidia
Jetson Nano (MobileNetV2 Quant. Lite).

We also consider the non-quantized version to see the
impact of quantization and use of TFLite (MobileNetV2 Lite).

All previously discussed image classification models are
trained on the ImageNet ILSVRC2012 dataset [47].

V. RESULTS

After performing the experiments, we get an insight into
the strengths and weaknesses of each device. In the following
subsections, we discuss how the devices compare in respect
to the evaluation scenarios.

A. Inference performance

Figure [4] shows the time taken for performing inference
on various devices when using only CPU, as well as when
utilizing the dedicated Al unit across different models.

First, we will take a look at the inference performance
without utilization of the dedicated Al units. Although this
information may be irrelevant for actual use cases with those
devices, it may be useful when comparing other devices
utilizing the same CPUs that do not include an Al unit.
Additionally, it gives a hint on the performance difference for
Tensorflow and Tensorflow Lite framework and by how much
the performance increases when using the respective dedicated
units.

1) Inference performance without utilization of the dedi-
cated Al units: For MobileNetV2, Nvidia Jetson Nano outper-
forms its competition in terms of inference performance with
685.490 seconds (~0.137 seconds per inference) followed
by Rasphberry Pi 4 with 1037.7 seconds (~0.21 seconds
per inference), then Coral Dev board with 1389.4 seconds
(~0.28 seconds per inference), and lastly Asus Tinker Edge
R with 1652.1 seconds (~0.33 seconds per inference). It
shows that, Nvidia Jetson Nano is almost 2.5x faster than the
Asus Tinker Edge R.

Besides determining the best performing devices, running
the same model in Tensorflow and Tensorflow Lite Runtime
seemingly makes a significant difference (MobileNetV2 vs
MobileNetV2 Lite). From the Figure [ we can see that,
although in case of MobileNetV2 Lite Nvidia Jetson Nano
performs best with 905 .1 seconds (~0.181 seconds per in-
ference) followed by Asus Tinker Edge R with 938 . 6 seconds
(~0.187 seconds per inference), then Raspberry Pi 4 with
965.1 seconds (~0.193 seconds per inference), and lastly
Coral Dev board with 1780.6 seconds (~0.356 seconds
per inference), but when compared with MobileNetV2 model,
The Tinker Edge R (43% reduction in time) and Raspberry Pi
(7% reduction in time) perform better with Tensorflow Lite,

while the Coral Dev Board (32% increase in time) and Jetson
Nano (28% increase in time) perform worse.

In case of the quantized TFLite models (MobileNetV2
Quant. Lite and MobileNetVI Quant. Lite), the Asus Tinker
Edge R has the best performance (584 .9 seconds for Mo-
bileNetV2 Quant. Lite and 22 .2 seconds for MobileNetV1
Quant. Lite), although performing the inference for Mo-
bileNetV1 on its NPU (24.0 seconds) is actually slower
than on its CPU. The most probable reason for this behavior
is the small size of the model, considering that the Tinker
Edge R performed significantly better for the other models
when utilizing its NPU. It is followed by Rasphberry Pi 4
with 640 .0 seconds for MobileNetV2 Quant. Lite and 22 . 2
seconds for MobileNetV1 Quant. Lite which is the same as that
of Asus Tinker Edge R, then Nvidia Jetson Nano with 657 .7
seconds for MobileNetV2 Quant. Lite and 23 .0 seconds for
MobileNetVI1 Quant. Lite and lastly, Coral Dev board with
1081.3 seconds for MobileNetV2 Quant. Lite and 37.6
seconds for MobileNetV1 Quant. Lite. One can conclude that
Asus Tinker Edge R is almost 1.8x faster for MobileNetV2
Quant. Lite and 1.7x faster for MobileNetVI Quant. Lite than
Coral Dev board.

Additionally, when comparing MobileNetV2 Lite with Mo-
bileNetV2 Quant. Lite, shows that model quantization results
in performance increment for all the devices. From the Fig-
ure[d] we can see that, for inference, there is a 27 . 3% reduction
in inference time for Jetson Nano, while 37.6% for Asus
Tinker Edge R, 39. 3% for Coral Dev board, and 33.7% for
Raspberry Pi 4. Coral Dev board saw the most improvement
in performance by model quantization.

Lastly, the Arduino lacks behind with its microcontroller
processor, taking 57534.297 seconds to inference 5000
images (~11.509 seconds per inference). This may seem
like an enormous drawback compared to the other SoCs, but
is actually quite acceptable for actual use cases when also
taking power consumption during inference and idle state into
account.

2) Inference performance with utilization of the dedicated
Al units: Based on the optimization compatibility of Al units
for various pre-trained Tensorflow models on different devices
listed in the Table [[I} the results are shown in Figure ] By
looking at the performance, the respective devices naturally
perform significantly better when optimized with their respec-
tive API (except for Tinker Edge R with MobileNetV1).

The Google Coral Dev Board delivers the best performance
for MobileNetV2 (using MobileNetV2 Quant. Lite) with the
inference time of 20.788 seconds (~0.004 seconds per
inference). Though it must be considered that the Nvidia
Jetson Nano doesn’t have the advantage of running the quan-
tized version of the model. If that is taken into account, the
Jetson Nano outperforms the other devices when it comes
to inference the non-quantized version in Tensorflow (shown
under MobileNetV2 in Figure [). This is the case for both
the Tensorflow-TensorRT optimized model with the inference
time of 103.142 seconds (~0.020 seconds per inference),
as well as the TensorRT framework with the inference time
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TABLE III: Power consumption during idle state (in Watts) for various devices.

Coral Dev Board

Nvidia Jetson Nano

Arduino Nano 33

Asus Tinker Edge R

Raspberry Pi 4

Idle (LAN)

4.932

2.643

3.081

1.391

x

Idle (no LAN)

4.776

2.100

2.757

0.903

0.036

of 118.737 seconds (~0.023 seconds per inference), using
the model in ONNX format.

We also see the conversion from Tensorflow to Tensorflow
Lite (shown under MobileNetV2 and MobileNetV2 Lite in Fig-
ure EI) keeps the structure of the model, since the MobileNetV2
model in Frozen Graph format ( taking 760.7 seconds)
and TFLite format ( taking 760 .6 seconds) perform similar
to each other when ported to the RKNN-Toolkit for Asus
Tinker Edge R. This indicates that the previously mentioned
performance deviations between the two frameworks are due
to their implementation, rather than potential changes to the
model during conversion.

B. Power consumption

Next, we illustrate how energy efficient the devices are when
continuously performing the computations. Figure [5] shows the
power consumption by various devices during inference when

using only CPU, and the dedicated AI unit across different
models. Additionally, for many use cases, deployed edge
devices will not perform explicit computations continuously.
Rather, a predefined number of maximum Frames per Second
(FPS) (or minute) might be anticipated to reduce energy
use. Therefore it is worth looking at the power draw by the
devices during their idle state i.e. while the device is not
performing explicit computations. The Table [ITI] shows the
power consumption during idle state (in Watts) for various
devices. In idle state, the Arduino Nano 33 BLE consumes
the least energy of 0.036 Watts. This is only around 0.04%
of the energy consumed by the most energy-efficient device
evaluated here, the Jetson Nano (with LAN disabled).

1) Power consumption without utilization of the dedicated
AI units: From Figure [3] in overall, when using only CPU,
the Jetson Nano consumes the least power for all models
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(61 .8 wattminutes for MobileNetV2, 52 .3 wattminutes for
MobileNetV2 Lite, 33 .5 wattminutes for MobileNetV2 Quant.
Lite and 1.1 wattminutes for MobileNetV1 Quant. Lite),
followed by the Raspberry Pi (82.7 wattminutes for Mo-
bileNetV2, 61 .9 wattminutes for MobileNet V2 Lite, 37.6
wattminutes for MobileNetV2 Quant. Lite and 1.3 wattmin-
utes for MobileNetV1 Quant. Lite) as shown in Figure [5] The
trend we see here is very similar to the average power drawn
by the devices in idle state (from Table [[T). However for the
MobileNetV2 Lite and MobileNetV2 Quant. Lite models, the
Asus Tinker Edge R consumed less power (109.5 wattmin-
utes and 64 .0 wattminutes respectively ) as compared to
Coral Dev Board (109 .5 wattminutes and 64 . 0 wattminutes
respectively) which is the opposite to their idle power con-
sumption trend (Asus Tinker Edge R consuming more power
than Coral Dev Board), as the Tinker Edge R’s performance
in Tensorflow Lite on the CPU is sufficient to compensate for
its higher power draw in idle state.

Lastly, the Arduino falls behind by consuming approxi-
mately 61.879 watthours of power since it needs a longer
time for doing inference.

2) Power consumption with utilization of the dedicated Al
units: Analogously to inference performance, the devices are
more energy efficient when using their Al unit (except for
the Tinker Edge R with MobileNetVI). From Figure [3] the
Coral Dev Board consumes the least power with just 1.543
wattminutes when considering across all MobileNetV2 models
and 0.254 wattminutes for the MobileNetVl Quant. Lite
model. Across all MobileNetV2 models, the Tinker Edge R is
the second best option with 9. 619 wattminutes (shown under
MobileNetV2 Quant. Lite in Figure [5)), although the Jetson
Nano is not far behind with 13.630 wattminutes (shown
under MobileNetV2 in Figure [5). In this regard, the Jetson
Nano once again has the lowest value when looking at the non-
quantized version only. For the Jetson Nano, it is also observed
that, although it is faster to perform inference with the TF-
TRT optimized model, but it consumes less power using
the TensorRT framework (30.645 vs. 13.640 wattminutes,
shown under MobileNetV2 in Figure [5).

3) Power consumption prediction: Based on the data on
energy consumption during the inference, we can now broadly
predict the devices power consumption at different inference

rates for different models as shown in Figure [6] The indicated
values in the graphs shows the the maximum number of
inferences that can be performed in one minute and power
consumption (in wattminutes) during those inferences by the
respective devices. Since power draw during initialization of
the network, pre-processing and evaluation of the results are
ignored, the actual power consumption is expected to be higher
in a real-world scenario. For calculating the values, the best
score in terms of power efficiency were taken for each model.
As the SoCs had an Ethernet connection during testing, the
respective values for idle power with LAN are used.

The Raspberry Pi is observably more energy efficient
than the Coral Dev Board when performing inference using
the MobileNetV2 Quant. Lite model (second sub-figure in
Figure [) at a inference rate of under 238 inferences per
minute (50 . 65% of the time spent on Al computation). When
also taking the Jetson Nano’s results for the non-quantized
Tensorflow version (MobileNetV2 in Figure [6) into account, it
outperforms the other devices for an inference rate of under
853 inferences per minute (less than 29 . 3% of the time spent
on Al computation).

From all the results until now, the Arduino Nano 33 BLE did
not hold up against the other devices. However, under differ-
ent circumstances, the microcontroller performs significantly
better i.e when inferences are performed in larger intervals.
As seen from third sub-figure of Figure [6), at 5 frames per
minute, the Arduino approximately consumes only 0.063
wattminutes which is considerably less than any other devices.
This inference rate is also the maximum number of inferences
that the device can perform in one minute for MobileNetV1.

C. Accuracy

We now review the accuracy of the models, which may
differ as a result of model conversion and optimization. There
are no explicit details about the accuracy of the quantized
versions of the models, though expected to be similar to the
non-quantized versions [50]. Table [V|shows the models accu-
racy’s (top-1 and top-5) in different frameworks for different
devices.

Since only 5,000 out of 50,000 validation images were used,
the claimed accuracy deviates from the test run in the native
Tensorflow framework, which we can see in the Raspberry Pi’s
column of Table No significant changes are observed when
porting the models to the other frameworks, though results
differ slightly when using RKNN-Toolkit, Tensorflow Lite
Micro and when using the Edge TPU in Tensorflow Lite. More
noticeable is the effect of quantization of the MobileNetV2
model. Due to less precise weights, accuracy decreases by
about 0. 6% for Top-1 and 0.4% for Top-5 accuracy.

D. Performance on larger models

Until now, the models used for testing were comparably
small. To demonstrate how model size affects the perfor-
mance difference, the Raspberry Pi and Jetson Nano were
additionally tested with an object detection model trained on
the COCO [48| dataset from the Tensorflow Detection Zoo.



TABLE IV: Models accuracy’s (top-1 and top-5) in different frameworks for different devices (1 x 5000 images).

Claimed Asus Raspberry Google Nvidia Jetson Nano Arduino
Accuracy Tinker Edge Pi 4 Coral Dev Nano 33
R Board BLE
RKNN None/ TF PyCoral/ TF-TRT TensorRT TFLite
Toolkit TFLite Micro
MobileNetV2 0.75, 0.925 0.734, 0.907 0.733, 0.908 x 0.733, 0.908 0.733, 0.908 %
MobileNetV?2 Lite 0.75, 0.925 0.734, 0.908 0.733, 0.908 x % x %
MobileNetV2 Quant. Lite 0.75, 0.925 0.726, 0.904 0.727, 0.904 0.727, 0.904 % x E3
MobileNetV1 Quant. Lite 0.395, 0.644 0.364, 0.613 0.361, 0.611 0.359, 0.612 % x 0.361, 0.612

SSD MobilenetV2 COCO has more than 17M parameters,
compared to 6.06M on MobilenetV2.

Despite having no acceleration unit, the Raspberry Pi
(taking 433.331 seconds for inference) now has similar
performance to the Jetson Nano using the acceleration unit
(taking 416.745 seconds for inference).
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Fig. 7: Memory occupation (in GiB) over time (seconds)
during 1 x 1000 images inference with SSD MobilenetV2
COCO in Tensorflow for two devices.

This can be attributed to the fact that, memory on the Jetson
Nano is shared between GPU and CPU. Figure /| shows the
memory occupation over time for both the devices during 1
x 1000 images inference with SSD MobilenetV2 COCO in
Tensorflow. From Figure [7a} we can observe that the internal
RAM for Jetson Nano does not suffice to load the model into
memory during initialization inference. As a result, the swap
space on the much slower SD card is additionally used, making
an inference using the GPU slower than when solely using the
CPU as is the case with Raspberry Pi (shown in Figure [7b).

VI. CONCLUSION

In this work, we present and compare the performances in
terms of inference time and power consumption of the four
SoCs: Asus Tinker Edge R, Raspberry Pi 4, Google Coral
Dev Board, Nvidia Jetson Nano, and one microcontroller:
Arduino Nano 33 BLE for different models and frameworks.
We also provide a method for measuring power consumption,
inference time and accuracy for the devices, which can be
easily extended to other devices.

Noticeably, the results for each model turn out to be quite
different, depending on model size (In terms of operations and
parameters), quantization, framework and anticipated number
of inferences per time. Nevertheless we can draw some major
conclusions for the following two main applications:

o Best performing device for continuous AI computa-

tion: The main factor here are the overall wattminutes

consumed for inference a given number of images. For
a Tensorflow model that can be quantized and con-
verted to TFLite format, the Google Coral Dev Board
delivers the best performance, both for inference time
and power consumption. Not all models are developed
to only include TFLite-compatible operations though.
Therefore the Jetson Nano can run accelerated inference
for Tensorflow models on its GPU. And as the entire
Tensorflow framework can utilize the GPU, models can
also be trained. While it might not be worth training a
model on a single low-power Edge Device, distributed
inference is already discussed by some recent papers [51]].

o Best performing device for sporadic AI computation:
When just sporadically performing Al computations,
power efficiency is mostly dependent on power draw
during idle. For small enough models, the Arduino Nano
33 BLE is by far the most power efficient option, though
respectively low inference rates might affect usability.
On the SoC side it depends on the model and the
anticipated number of inferences per time. The Jetson
Nano presumably outperforms the other devices for a low
fraction of Al computation time (less than 29.3% of the
time for MobileNetV2). Otherwise, the Google Coral Dev
Board is the most power efficient.

Extending the work to include other SoCs and evaluating
using larger CNN models is prospective future work.
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