
Evaluation of Load Prediction Techniques for
Distributed Stream Processing
Kordian Gontarska∗†, Morgan Geldenhuys†, Dominik Scheinert†,

Philipp Wiesner†, Andreas Polze∗, and Lauritz Thamsen†
∗Hasso Plattner Institute, University of Potsdam, Germany, {firstname.lastname}@hpi.de

†Technische Universität Berlin, Germany, {firstname.lastname}@tu-berlin.de

Abstract—Distributed Stream Processing (DSP) systems enable
processing large streams of continuous data to produce results
in near to real time. They are an essential part of many
data-intensive applications and analytics platforms. The rate
at which events arrive at DSP systems can vary considerably
over time, which may be due to trends, cyclic, and seasonal
patterns within the data streams. A priori knowledge of incoming
workloads enables proactive approaches to resource management
and optimization tasks such as dynamic scaling, live migration
of resources, and the tuning of configuration parameters during
run-times, thus leading to a potentially better Quality of Service.

In this paper we conduct a comprehensive evaluation of
different load prediction techniques for DSP jobs. We identify
three use-cases and formulate requirements for making load
predictions specific to DSP jobs. Automatically optimized classical
and Deep Learning methods are being evaluated on nine different
datasets from typical DSP domains, i.e. the IoT, Web 2.0, and
cluster monitoring. We compare model performance with respect
to overall accuracy and training duration. Our results show
that the Deep Learning methods provide the most accurate load
predictions for the majority of the evaluated datasets.

Index Terms—Distributed Stream Processing, Resource Man-
agement and Optimization, Load Prediction, Time Series Fore-
casting, Machine Learning

I. INTRODUCTION

Distributed Stream Processing (DSP) systems are respon-
sible for extracting valuable insights from large streams of
real-time data. Application areas include IoT data processing,
click stream analysis, network monitoring, fraud detection,
spam filtering, and news processing [1], [2]. These jobs require
high throughput rates and low end-to-end processing latencies
to support time-sensitive decisions. Input streams, however,
are dynamic in nature and processing loads, therefore, have
the potential to change significantly over time. Consequently,
DSP systems like Heron [3], Spark [4] and Flink [5] are able to
scale horizontally across a cluster of commodity nodes in order
to accommodate different processing loads. With this potential
for workloads to fluctuate over time and the ability of systems
to dynamically adjust configurations at runtime, research into
approaches for the adaptive management of resources has
grown in popularity in recent times.

Prominent applications within this domain include: the
automated dynamic scaling of resources which aims to reduce
over- and under-provisioning, minimizing operating costs and
preventing possible reductions in the service quality [6]–[9];
The live migration of functionality/state across the network

where cluster metrics are collected, processed, and scanned
for anomalies which might reveal performance degradations
and/or signs of component failure [10]–[12]; and the automatic
system tuning where dynamic runtime adjustment of system
configurations are performed in order to improve overall
system availability and reliability [13]–[15]. The majority of
these approaches rely on coarse-grained metrics to reactively
make remediation decisions. In some cases these metrics are
also system specific and/or require a customized version of
the system. Interestingly, an increasing number of approaches
use Time Series Forecasting (TSF), a more generalizable and
proactive basis for making good decisions.

Through forecasting what is to come we are better able to
anticipate and plan for the future. While the use of TSF is not
new in the context of DSP systems, in most cases it requires
experts to pick the appropriate method and configure it to the
situation at hand. Moreover, to the best of our knowledge,
no comprehensive comparison has been conducted thus far
where previous attempts at comparing these methods were
inconclusive and present results obtained from a small number
of datasets [16].

In this paper we evaluate seven methods which meet the
requirements for performing TSF for DSP jobs across nine
different streaming datasets. We select various classical TSF
methods as well as two Deep Learning (DL) methods. The
datasets were sampled across various application domains,
including: IoT, Web 2.0, and cluster monitoring. Each consists
of a single value representing the number of events arriving
at the DSP system every second and thus represents the load
upon the system. Based on the three main use cases: dynamic
scaling, live migrations, and system tuning; we investigate
three sampling rates: the first for more shorter term higher
granularity predictions, the second for mid-range predictions;
and the third for more longer term lower granularity predic-
tions. Critically, we provide implementations for automatically
optimizing the hyperparameters of the prediction models thus
removing the necessity for configuring them by hand.

The remainder of the paper is structured as follows: Section
II identifies the use cases and requirements for performing
TSF for DSP systems. Section III presents the TSF methods,
experimental design, evaluation metrics, time series datasets,
and the experimental setup. Section IV presents and discusses
our results. Section V describes the related work on TSF for
load prediction, while Section VI concludes the paper.

1

ar
X

iv
:2

10
8.

04
74

9v
1

 [
cs

.D
C

]
 1

0
A

ug
 2

02
1

II. PROBLEM ANALYSIS

In this section we first motivate the use of TSF for DSP
systems by exploring different use cases and then explain the
requirements for TSF for such tasks.

A. Use Cases

We identified three use cases where accurate load prediction
would be quite useful for efficiently running DSP jobs despite
varying input rates.

1) Dynamic Scaling: The scalability of DSP systems is
achieved by partitioning the entire data streams among data-
parallel task instances that are deployed across clusters of
computers. Streaming jobs are by nature long-running and
streaming workloads often change over time. Many DSP
systems have the ability to scale dynamically, yet the difficult
task of deciding by how much and when is typically still left
up to the user with off-the-shelf DSP systems. Furthermore,
the current research on this problem relies on coarse-grained
metrics such as CPU utilization, throughput, and backpressure
which tend to show incorrect provisioning, oscillations, and
long convergence times [8]. There is, therefore, a promising
opportunity to combine TSF with performance modeling in
order to scale parallelism and resource usage proactively based
on predicted loads. For this use case a shorter prediction time
horizon is important, i.e. 5 minutes.

2) Timing of Live Migrations: As DSP systems approach
even greater scales, the number of things that can go wrong
increase as well. Live migrations allow administrators to trans-
parently tune the performance of computing infrastructures
when performance degradations in cluster nodes are detected,
migrating system functionality and state over the network.
Much of the research in this area is focused on the methods for
detecting these anomalies, however, the question of when these
preemptive actions should take place is likewise an important
question to answer. Here TSF can provide a way to automate
this process by predicting periods of low utilization where
changes to the cluster will have potentially less of an impact on
overall performance. For this use case a mid-range prediction
time horizon, i.e. 15 minutes, is important.

3) Automatic System Tuning: Self-tuning systems are those
which are capable of optimizing their own internal config-
uration parameters in order to maximize or minimize the
fulfilment of one or more objective functions. If done cor-
rectly, this can yield systems which are more performant, cost
effective, reliable, and power efficient. In order to achieve this,
approaches within this domain commonly conduct profiling
runs and/or use historical data in order to model performance
behaviors. TSF, when combined with these models, not only
allows the system to determine which configurations need
tuning and by how much, but critically also the timings
of these updates. As workloads change over time, delaying
configuration updates can greatly improve the effectiveness of
optimizations. For this use case, longer-term forecasts with
hourly time horizons are most useful.

B. Requirements

DSP systems come with their own specific requirements
which need to be taken into consideration while designing
approaches to load prediction. In this section we define these
requirements and present them as follows:

1) Minimal Configuration: Solutions should follow a plug-
and-play approach. User configuration requirements for tuning
model hyperparameters should be kept to an absolute mini-
mum. As input data streams and infrastructures deviate greatly,
solutions should provide automatic optimization mechanisms
to quickly adapt to a wide range of deployments.

2) Limited Model Inputs: Inputs consist of the ingress rate
values, i.e. the sum of the events entering the source operators
of the DSP job per second. As this is a scalar value, the focus
should be on univariate time series prediction. Concerning the
amount of data that is used for initial training, this depends
on how long the DSP job has been running and availability
of metrics data. The default retention periods of time series
databases such as InfluxDB1 and Prometheus2 commonly used
for storing such data is 7 and 15 days respectively. Thus, a
limited amount of training data should be expected.

3) Frequent Model Updates: As new observations are con-
tinually being produced, models should consider these for
their forecasts such that the quality of the predictions does
not degrade. This can be achieved by periodically retraining
the models or updating them before each new prediction with
the latest observations produced since the last prediction was
made. The parameters in classical methods need to be updated
to the most recent observations to capture the changes in the
time series. Opposed to that ML models inherently incorporate
the most recent observations to perform inference, making
updates to the model weights not as urgent.

4) Variable Forecasting Length: Models which support
multi-step time series forecasting are required. Understanding
how expected workloads change over time is an important
aspect to consider when designing strategies for the use cases
which we have previously defined. Solutions should have the
ability to incorporate various sample rates to match desired
time horizons.

III. METHODOLOGY

In this section we present our experiment methodology by
introducing TSF methods we investigate, time series datasets
upon which we base our comparison, the evaluation metrics
by which we measure the performance of our models, and
the setup of our experiments. The code and datasets for our
experiments can be found in the associated github repository3.

A. TSF Methods

The following are methods commonly used in the domain
of TSF. One of the targets of our investigation is to validate
whether or not these methods are suitable considering the

1https://www.influxdata.com/, accessed 2020-04-12
2https://prometheus.io/, accessed 2020-04-12
3Available at https://github.com/dos-group/load-prediction-dsp

2

https://www.influxdata.com/
https://prometheus.io/
https://github.com/dos-group/load-prediction-dsp

requirements defined and presented in the previous section.
These methods are as follows:

1) Baselines - Last Observation and Last Day Observation:
The two performance baseline models are established by
taking either the last observation or the observation from
before 24 hours, and projecting it forwards for the length of
the forecast.

2) SES: Single Exponential Smoothing (SES) introduces
exponentially decreasing weights, allowing to prioritize more
recent observations and thus capture latest trends [17], [18].

3) TES: Holt and Winters [17], [18] extended SES and
developed Triple Exponential Smoothing (TES) which allows
incorporating trend and seasonality.

4) ARIMA: Auto Regressive Integrated Moving Average
(ARIMA) is a widely used approach for time series forecast-
ing [19].

5) SARIMA: Due to the seasonal nature of the datasets,
we included Seasonal Auto Regressive Integrated Moving
Average (SARIMA) models, which add seasonality to ARIMA
models [19].

6) Prophet: Prophet [20] is a popular open source time
series forecasting library developed by Facebook. It aims at
making time-series data analysis available to non-expert users.

7) CNN: Convolutional Neural Network (CNN) architec-
tures have been used successfully for time series prediction
on multiple occasions [21], [22], as they allow for increased
training speed and deep architectures due to shared filters.

8) GRU: Recurrent Neural Networks (RNNs) allow for the
memorization of past observations which makes them suitable
for applications on time series [23], [24]. We design a gated
recurrent unit (GRU) [25].

B. Evaluation Metrics

Our main objective is the Symmetric Mean Absolute Per-
centage Error (SMAPE), which is commonly used for fore-
casting problems when dealing with data sources of varying
value scales [26]–[28]. SMAPE is defined as

SMAPE =
100%

n

n∑
t=1

|Y t − Ŷ t|
|Y t|+ |Ŷ t|

(1)

and delivers an error value between 0% and 100%. It is
furthermore utilized as the loss function for our chosen DL
methods as it is invariant to absolute errors. We also investigate
another commonly used metric in regression tasks, the Root
Mean Square Error (RMSE), which is defined as

RMSE =

√√√√ 1

n

n∑
t=1

(Y t − Ŷ t)2 (2)

and allows us to assess the goodness of our predictions in
terms of actual similarity to the true values.

C. Time Series Datasets

We selected 9 heterogeneous and univariate datasets to
investigate the applicability of our chosen methods on varying
data. These datasets represent the expected load in a DSP

system. The time series describe the sum of the events entering
the source operators of a DSP job per second.

1) IoT Traffic: A synthetic dataset created using the
SUMO [29] traffic simulator and the TAPAS cologne4 sim-
ulation scenario. The data represents the number of vehicles
on the streets per second over time.

2) NYC Taxi: A dataset from the NYC Taxi & Limousine
Commission5 on taxi rides in New York City. We aggregated
the number of taxi rides of all providers during every five
minutes over a three week period in January 2020.

3) Alibaba Cluster Traces: Production data originating
from an Alibaba cluster6 in 2018. We extract the start time
of batch tasks over a 7-day period and aggregate them.

4) Google Cluster Traces: Workload traces recorded from
eight different Google Borg cells during the month of May
20197. From this trace we extracted information about instance
events over a randomly selected period of 21 days.

5) Wikipedia Pageviews: We used the Wikipedia API8 to
extract the number of page views per hour for a period of three
weeks in July 2019. Subsequently, we interpolate between the
values to derive different sampling rates. The procedure is
conducted both for the German and English Wikipedia, and
thus results in two different datasets.

6) Avazu: This dataset is created by using a click-through
rate prediction dataset from Kaggle9, aggregating the clicks
per hour over time, and linearly interpolating between the
aggregated values to obtain different sampling rates.

7) Hortonworks: Clickstream events taken from a tutorial
on visualizing clickstream data provided by Hortonworks10.
We extracted the event timestamps on a per second granularity
and aggregate them to the respective granularities.

8) Retail Rocket: E-commerce data containing events of
the Retail Rocket recommender system11. We construct our
dataset by aggregating behaviour data, such as click events,
over a three week period.

D. Dataset Adjustements

All datasets have been adjusted to resemble realistic event
rates in DSP jobs. Following from the use cases described in
Section II-A, we resampled the datasets to sampling rates of
5 minutes, 15 minutes, and 1 hour.

We assume normally distributed noise in the datasets. In
order to estimate the expected relative error from the datasets
with original granularity of only 1 hour, we made use of
the aforementioned datasets with 5-minute granularity. First,
we used their resampled variant with sampling rate of 1

4https://sumo.dlr.de/docs/Data/Scenarios/TAPASCologne.html, accessed
2020-04-12

5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, accessed
2020-04-12

6https://github.com/alibaba/clusterdata, accessed 2020-04-12
7https://github.com/google/cluster-data, accessed 2020-04-12
8https://wikimedia.org/api/rest v1, accessed 2020-04-12
9https://www.kaggle.com/c/avazu-ctr-prediction, accessed 2020-04-12
10https://www.cloudera.com/tutorials/visualize-website-clickstream-data.

html, accessed 2020-04-12
11https://www.kaggle.com/retailrocket/ecommerce-dataset, accessed 2020-

04-12

3

https://sumo.dlr.de/docs/Data/Scenarios/TAPASCologne.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/alibaba/clusterdata
https://github.com/google/cluster-data
https://wikimedia.org/api/rest_v1
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.cloudera.com/tutorials/visualize-website-clickstream-data.html
https://www.cloudera.com/tutorials/visualize-website-clickstream-data.html
https://www.kaggle.com/retailrocket/ecommerce-dataset

0 3 6 9 12 15 18 21

IoT Traffic

0 3 6 9 12 15 18 21

NYC Taxi

0 1 2 3 4 5 6 7

Alibaba Cluster Traces

0 3 6 9 12 15 18 21

Google Cluster Traces

0 3 6 9 12 15 18 21

English Wikipedia

0 3 6 9 12 15 18 21

German Wikipedia

0 1 2 3 4 5 6 7 8 9 10

Avazu

0 3 6 9 12 15

Hortonworks

0 3 6 9 12 15 18 21

Retail Rocket

number of days

m
es

sa
ge

s
pe

r s
ec

on
d

Fig. 1: All datasets with hourly sampling rate highlighted as train (white), validation (gray), and test (red) data.

hour and resampled it to a 5-minute sampling rate. Next, we
interpolated the missing observations using a second order
spline function and calculated the standard deviation of the
differences between the interpolated 5-minute sampling rate
dataset and the original 5-minute granularity dataset. The
expected relative error is σe ≈ 1%.

Subsequently, we selected the datasets with original granu-
larity of 1 hour and resampled them to a sampling rate of 5
minutes. The missing observations were interpolated. To simu-
late the aforementioned normally distributed noise we sampled
i relative errors from a normal distribution N ∼ (0, σe), where
i is the amount of observations in the respective dataset. These
sampled errors were then multiplied with the corresponding
observations and added to them. Finally, we resampled these
new datasets also to a sampling rate of 15 minutes.

Additionally, we scaled and shifted all datasets to have a
mean message/second rate of µ ≈ 108 000, and a standard
deviation of σ ≈ 12 000. These lie mostly within a range of
approximately 90 000 – 150 000. This was done to make abso-
lute metrics comparable across the datasets. These adjustments
result in the final datasets at three different sampling rates.

E. Experimental Setup

The training of the models as well as inference was
conducted on a dedicated machine equipped with a GPU.
Specifications and software versions can be found in Table I.

1) Experiment Execution: Each of our experiments exam-
ines the forecasting capabilities of a certain method on a spe-
cific dataset. We conduct 189 experiments overall, exploring
seven methods on nine datasets with three different sampling
rates. For each sampling rate, we define a different forecast
horizon: For the 5 minute interval, we aim at predicting only
the next value, the 15 minute interval comes with a horizon

TABLE I: Specifications

Resource Details

CPU, vCores Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz, 8
Memory 45 GB RAM

GPU 1 x NVIDIA Quadro RTX 5000 (16 GB memory)
Software PyTorch 1.7.0, PyTorch Ignite 0.4.2

Ray Tune 1.1.0, Optuna 2.3.0
pmdarima 1.8.0, statsmodels 0.12.2, fbprophet 0.7.1

of four values, and the one hour interval is associated with
a prediction horizon of twelve. This reflects our different use
cases and the corresponding prediction capabilities.

For the DL methods, i.e. CNN and GRU, we split each
dataset along the time domain into training, validation, and test
subset (60%, 20%, 20%). The validation subset is used during
hyperparameter optimization to abort unpromising trials and
to determine the best trial. All other methods conduct a split
into training and test subset (80%, 20%) and thus effectively
train on more data. This is illustrated in Figure 1.

2) Training and Model Configuration: We fit the level
smoothing factor α of SES models based on their achieved
Akaike information criterion (AIC). For TES models, we
additionally fit β and γ, the smoothing factors for trend and
seasonality. Furthermore, we examine the effect of assuming
an additive or multiplicative seasonality.

For training ARIMA models, we perform a hyperparameter
search on p and q, and test the order of first-differencing
with d = [0, 1]. For fitting SARIMA models, the additional
seasonal hyperparameters P , D, and Q are integrated into
the hyperparameter search. We set boundaries for P and
Q, and additionally search explicitly the space defined by
d×D = [0, 1]× [0, 1]. In the process, we assume a seasonal
period of 24 hours. For both ARIMA and SARIMA, the AIC

4

estimator is used to determine the best hyperparameters.
For Prophet, the hyperparameter optimization and fitting is

handled entirely by the library.
For the machine learning models we search for optimal

configurations of a variety of different hyperparameters such
as number of layers, number of neurons, learning rate, and
dropout rate. For both CNN and GRU, we are moreover
especially interested in the optimal length of input sequences
extracted from the training data. The details of the spanned
hyperparameter searchspaces are described in our repository,
along with further technical details.

IV. EXPERIMENT RESULTS

A. Limitations

Since Prophet is primarily designed to detect long term
seasonality, it appears to struggle with short sampling rates.
When fitting it to data with 5 minute or 15 minute sampling
rate, the library only predicts hourly data and interpolates
between these data points during prediction. We thus decided
to only include the hourly sampling rate model into our
evaluation.

The coefficients for the SARIMA models are being com-
puted analytically. At a sampling rate of 5 minutes and a daily
seasonality, one seasonal period consists of 288 observations,
which renders the computation infeasible in our scenario.
Hence, we excluded the evaluation of SARIMA on the 5
minute sampling rate datasets.

B. Performance

The condensed results plots in Figure 2 together with the
detailed insights given in Table II allow for a comprehensive
discussion of the model performances.

From Figure 2a, we can infer that across all datasets and
sampling rates, the DL methods are the best or among the
best performing methods with a stable prediction performance.
The stability aspect also holds true for TES, whereas all
other classical methods are either experiencing difficulties for
certain sampling rates, or are even not applicable to them. The
reported SMAPE results are also confirmed by the reported
RMSE results in Figure 2b. We have ensured to make the
RMSE a valid metric by adjusting the datasets to be in the
same range with a similar mean and standard deviation.

Summarizing Figure 2, we identify that the DL methods
performed best across all use cases, with no universal alter-
native from the classical methods. We note that on average,
TES outperforms our installed baselines across all sampling
rates, while being comparably fast to train and stable in
prediction performance. Meanwhile, ARIMA shows good pre-
diction capabilities on the 5 minute and 15 minute sampling
rate datasets, yet fails to capture seasonal patterns present in
datasets with hourly sampling rate.

Complementing the averaged scores in Figure 2, we present
detailed results with Table II. They indicate that the DL meth-
ods exhibit a similarly good performance over all experiments.
In the rare cases of inferior performance to our baselines, the

performance degradation affects both models in the majority of
situations, leading to the assumption that patterns found in the
test data were not present in the training data. In fact, for two
datasets, namely the Google and Hortonworks datasets with a
sampling rate of 15 minutes, there is not a single model that
is able to outperform the baseline, confirming our previous
interpretation of certain results.

On the other hand, for 5-minute sampling rate, several
models can be identified, each of which outperforms the
baselines across all corresponding datasets. Figure 3 shows
an example of the different model behavior for the hourly
sampled test data from Retail Rocket. It can be seen that the
DL models as well as Prophet fit the seasonal pattern well,
while the remaining classical models are more responsive to
noise. Additionally, we note that methods which do not capture
seasonality in their models perform poorly on the task to
forecast the approaching 12 hours given hourly sampled data.
Interestingly, Prophet performed rather poorly in this task as
well, failing to beat the baseline models in most cases.

The results further reveal that for hourly sampling and
forecast horizon of 12 observations, CNN is among the best
predictors with the exception of two outliers. SARIMA works
well on hourly data as it has short seasonal patterns and
thus states a good alternative from the classical methods, but
struggles with long-term seasonality as present in the data
sampled at 15 minutes. GRU are the best performing models
for the use case of 15 minute sampling and a forecast horizon
of four samples, and are closely followed by the CNNs.
ARIMA and TES perform reasonably similar and make for
good alternatives from the classical methods. While the GRU
models perform best on predicting observations with a forecast
horizon of 1 at a sampling rate of 5 minutes, ARIMA performs
almost as well across all datasets.

In conclusion, we find the DL methods as well as TES to be
the most universal predictors, achieving good prediction results
on the various datasets, sampling rates and hereby dataset
sizes.

C. Duration

We measured the time needed to find optimal hyperparam-
eters and fit the respective models, as well as the average
time it takes a model to predict the next observations and
possibly fine-tune it to the most recent observation. The results
are visualized in Figure 4. As expected, the required time for
training and fine-tuning depends on the amount of available
training data, which is shown by the differences between the
various sampling rates.

It can be observed that there are significant differences in the
time needed for initial fitting of the models. While the methods
based on exponential smoothing are superior to the ARIMA
variants, it can also be seen that the more complex variants
of the respective methods (i.e. TES and SARIMA) require
more time due to the extended hyperparameter search space.
In comparison, Prophet is slightly more time-demanding than
exponential smoothing, yet notably faster than the ARIMA

5

0

1

2

3

4

5

1h

0

1

2

3

15
m

in

Last
observed

Last
day

SES TES ARIMA SARIMA Prophet GRU CNN
0

1

2

3

5m
in

(a) Mean SMAPE results across all datasets.

0

2500

5000

7500

10000

12500

1h

0

2000

4000

6000

8000

10000

15
m

in

Last
observed

Last
day

SES TES ARIMA SARIMA Prophet GRU CNN
0

2500

5000

7500

10000

12500

5m
in

(b) Mean RMSE results across all datasets.

Fig. 2: Performance of methods evaluated by the SMAPE and RMSE metrics.

TABLE II: SMAPE of all models on the different datasets and sampling rates.

Last Last
obs. day SES TES ARIMA SARIMA Prophet GRU CNN

1
ho

ur

IoT Traffic 4.21 1.44 4.21 2.21 3.53 1.81 2.76 1.75 1.02
NYC Taxi 5.18 1.46 5.18 1.27 3.65 1.15 2.49 1.21 0.83
Alibaba 2.66 2.29 2.69 2.23 2.24 1.88 2.46 3.08 3.21
Google 5.44 3.19 5.56 2.65 4.46 2.61 2.89 2.46 2.89
Wikipedia EN 4.86 1.39 4.86 1.10 3.36 1.18 1.34 1.10 1.33
Wikipedia DE 6.14 1.28 6.14 1.39 3.97 1.23 1.39 1.11 0.65
Avazu 3.53 2.61 3.53 2.35 3.53 2.16 1.82 1.77 1.87
Hortonworks 3.25 4.43 3.41 3.51 2.94 3.84 3.84 3.38 5.27
Retail Rocket 5.79 2.07 5.80 1.64 3.63 2.06 2.46 1.72 1.51

15
m

in
ut

es

IoT Traffic 1.27 1.46 1.27 1.14 0.83 0.70 - 0.47 0.54
NYC Taxi 1.16 1.40 1.17 0.49 0.74 0.40 - 0.44 0.52
Alibaba 2.81 2.92 2.85 2.42 2.63 2.21 - 2.72 2.69
Google 3.01 4.30 3.19 3.06 3.27 3.46 - 3.02 3.31
Wikipedia EN 1.08 1.71 1.11 0.70 0.90 0.91 - 0.75 0.78
Wikipedia DE 1.31 1.48 1.31 0.69 0.85 0.78 - 0.63 0.83
Avazu 1.11 2.53 1.11 1.35 1.02 1.49 - 1.13 1.17
Hortonworks 1.09 4.48 1.11 1.36 1.18 1.83 - 1.38 1.44
Retail Rocket 1.39 2.30 1.49 1.12 1.39 2.34 - 1.09 1.21

5
m

in
ut

es

IoT Traffic 0.21 1.46 0.21 0.15 0.07 - - 0.13 0.10
NYC Taxi 0.34 1.40 0.34 0.26 0.31 - - 0.28 0.28
Alibaba 3.47 3.30 2.92 3.19 2.53 - - 2.16 2.37
Google 2.91 4.96 2.82 2.96 2.77 - - 2.56 2.69
Wikipedia EN 1.19 1.96 0.97 0.93 0.94 - - 0.93 0.96
Wikipedia DE 1.10 1.73 0.96 1.00 0.90 - - 0.89 0.87
Avazu 1.12 2.71 0.99 1.02 0.98 - - 1.00 1.02
Hortonworks 0.90 4.54 0.80 0.93 0.82 - - 0.86 0.87
Retail Rocket 1.65 2.70 1.39 1.45 1.40 - - 1.38 1.38

For each line, the best performing result is highlighted in blue. Results highlighted in grey beat both baseline models.

6

2015-07-04 2015-07-06 2015-07-08

90000

100000

110000

120000

130000

140000

m
es

sa
ge

s
pe

r s
ec

on
d

Observed
ARIMA

TES
SARIMA

SES
GRU

Prophet
CNN

Fig. 3: All model forecasts for the hourly sampled test data
from Retail Rocket. Seasonality is captured to varying degrees.

SES TES ARIMA SARIMA Prophet GRU CNN
1 ms

10 ms

100 ms

1 s

10 s

1 min

15 min

1 h

fit
tin

g
du

ra
tio

n

sampling rate
1h
15min
5min

SES TES ARIMA SARIMA Prophet GRU CNN

100 µs

1 ms

10 ms

100 ms

1 s

10 s

tu
ni

ng
 &

 p
re

di
ct

io
n

du
ra

tio
n

sampling rate
1h
15min
5min

Fig. 4: Duration of fitting the methods and performing predic-
tions. Classical and DL methods are not directly comparable
due to the different hardware used, hence the different back-
ground coloration.

methods. Although the DL methods are not directly com-
parable due to the utilization of different hardware, it is
worth-mentioning that the training in general takes relatively
long. Here, the training duration depends not only on the
hyperparameter searchspace alone, but also on the specified
configuration in terms of parallelism, maximum execution
time, and preemptive termination of trials, as well as the total
number of trials to investigate.

When using the trained models for prediction, it can be ob-
served that all classical methods are significantly slower than
the DL methods. The main reason for this is that the classical

models need to be updated to the most recent observations
to adapt to changes in the timeseries. This also explains the
differences in time needed for the individual sample rates. This
is in contrast to our DL methods, where the model parameters
after the initial training are preserved and used for prediction,
and the models only need to be supplied the most recent
observations as input data for the context update.

In summary, the DL methods require a notable amount of
time for initial training but are fast when doing prediction,
whereas the classical methods are faster to fit while requiring
time-consuming updates constantly over time.

V. RELATED WORK

TSF for load prediction is used by energy providers and
electricity grid operators to plan ahead and meet demand and
supply [30]. Nevertheless, it has also long been used in areas
such as communication networks and cloud infrastructures.
Understanding future load requirements for communication
networks gives providers the ability to optimize resources
allowing for better quality of service [31]–[33]. In cloud
services, load prediction is used to balance resources within a
data center as well as for scheduling live migrations [10], [11],
[34]. Throughout all of these works, classical and DL methods
have been used repeatedly. However, none has been directly
compared under our defined requirements for performing TSF
in DSP systems, such as minimal configuration and limited
model inputs. In the context of DSP, TSF methods have been
used in diverse forms and for varying reasons [9], [35]–[38].
While previous works successfully apply a selected method to
a concrete problem, to the best of our knowledge, there is no
related work that compares multiple TSF methods for DSP.
Additionally, this paper formulates requirements for TSF for
DSP and performs an evaluation on multiple real-world and
one synthetic datasets from different domains.

VI. CONCLUSION

This paper presented an evaluation of TSF methods for
DSP systems. The methods we assessed include multiple
classical and two DL models: SES, TES, ARIMA, SARIMA,
Prophet, GRU, and CNN. The methods were evaluated across
nine datasets from the IoT, Web 2.0, and cluster monitoring
domains. The results show that both CNN and GRU had the
best prediction performance across the majority of the datasets,
while requiring more time for initial model training. However,
depending on the use case we found that there is always at
least one classical model performing similarly well as the DL
models, while being relatively fast to train. In general, the best
performing models demonstrate to cope well even though the
amount of training data was limited. In terms of configuration,
it is more straightforward to optimally configure the diverse
classical methods.

Based on our results, we deem both TES and the DL meth-
ods, and even a combination of these classes of approaches
promising for use in the domain of DSP. Depending on the
available resources and the use case at hand, one method might
be preferable over the others.

7

ACKNOWLEDGMENTS

This work has been supported through grants by the German
Federal Ministry for Economic Affairs and Energy (BMWi)
as Telemed5000 (funding mark 01MD19014C), and by the
German Federal Ministry of Education and Research (BMBF)
as BIFOLD (funding mark 01IS18025A) and WaterGridSense
4.0 (funding mark 02WIK1475D).

REFERENCES

[1] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. H. Zulkernine, and
S. Khan, “A survey of distributed data stream processing frameworks,”
IEEE Access, vol. 7, pp. 154 300–154 316, 2019.

[2] H. Nasiri, S. Nasehi, and M. Goudarzi, “Evaluation of distributed stream
processing frameworks for iot applications in smart cities,” J. Big Data,
vol. 6, p. 52, 2019.

[3] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream pro-
cessing at scale,” Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 2015.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in 2nd USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA,
June 22, 2010, E. M. Nahum and D. Xu, Eds. USENIX Association,
2010.

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink™: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, 2015.

[6] B. Gedik, S. Schneider, M. Hirzel, and K. Wu, “Elastic scaling for data
stream processing,” IEEE Trans. Parallel Distributed Syst., vol. 25, no. 6,
pp. 1447–1463, 2014.

[7] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy,
“Dhalion: Self-regulating stream processing in heron,” Proc. VLDB
Endow., vol. 10, no. 12, pp. 1825–1836, 2017.

[8] V. Kalavri, J. Liagouris, M. Hoffmann, D. C. Dimitrova, M. Forshaw,
and T. Roscoe, “Three steps is all you need: fast, accurate, automatic
scaling decisions for distributed streaming dataflows,” in 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, A. C. Arpaci-Dusseau
and G. Voelker, Eds. USENIX Association, 2018, pp. 783–798.

[9] Z. Hu, H. Kang, and M. Zheng, “Stream data load prediction for resource
scaling using online support vector regression,” Algorithms, vol. 12,
no. 2, p. 37, 2019.

[10] Y. Liu, B. Gong, C. Xing, and Y. Jian, “A virtual machine migration
strategy based on time series workload prediction using cloud model,”
Mathematical Problems in Engineering, vol. 2014, 2014.

[11] M. Masdari and H. Khezri, “Efficient VM migrations using forecasting
techniques in cloud computing: a comprehensive review,” Clust. Com-
put., vol. 23, no. 4, pp. 2629–2658, 2020.

[12] K. Chakrabarti, K. Majumder, S. Sarkar, M. Sing, and S. Chatterjee, A
Comparative Analysis of Live Migration Techniques for Load Manage-
ment in Cloud. Singapore: Springer Singapore, 2020, pp. 249–255.

[13] M. K. Geldenhuys, L. Thamsen, K. K. Gontarska, F. Lorenz, and
O. Kao, “Effectively testing system configurations of critical iot analytics
pipelines,” 2019 IEEE International Conference on Big Data (Big Data),
pp. 4157–4162, 2019.

[14] S. Jayasekara, A. Harwood, and S. Karunasekera, “A utilization model
for optimization of checkpoint intervals in distributed stream processing
systems,” ArXiv, vol. abs/1911.11915, 2020.

[15] M. K. Geldenhuys, L. Thamsen, and O. Kao, “Chiron: Optimizing fault
tolerance in qos-aware distributed stream processing jobs,” 2020 IEEE
International Conference on Big Data (Big Data), pp. 434–440, 2020.

[16] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey, “Empirical evaluation
of workload forecasting techniques for predictive cloud resource scal-
ing,” in 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), 2016, pp. 1–10.

[17] C. Holt, “Forecasting seasonals and trends by exponentially weighted
moving averages,” International Journal of Forecasting, vol. 20, pp. 5–
10, 2004.

[18] P. R. Winters, “Forecasting sales by exponentially weighted moving
averages,” Management science, vol. 6, no. 3, pp. 324–342, 1960.

[19] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

[20] S. J. Taylor and B. Letham, “Forecasting at scale,” The American
Statistician, vol. 72, no. 1, pp. 37–45, 2018.

[21] K. Wang, K. Li, L. Zhou, Y. Hu, Z. Cheng, J. Liu, and C. Chen,
“Multiple convolutional neural networks for multivariate time series
prediction,” Neurocomputing, vol. 360, pp. 107–119, 2019.

[22] I. Koprinska, D. Wu, and Z. Wang, “Convolutional neural networks for
energy time series forecasting,” in 2018 International Joint Conference
on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13,
2018. IEEE, 2018, pp. 1–8.

[23] R. Fu, Z. Zhang, and L. Li, “Using lstm and gru neural network
methods for traffic flow prediction,” in 2016 31st Youth Academic Annual
Conference of Chinese Association of Automation (YAC). IEEE, 2016,
pp. 324–328.

[24] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep learning
with long short-term memory for time series prediction,” IEEE Commun.
Mag., vol. 57, no. 6, pp. 114–119, 2019.

[25] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014.

[26] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A.
Janovsky, V. A. Kamaev et al., “A survey of forecast error measures,”
World Applied Sciences Journal, vol. 24, no. 24, pp. 171–176, 2013.

[27] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International journal of forecasting, vol. 22, no. 4, pp. 679–
688, 2006.

[28] V. Kreinovich, H. T. Nguyen, and R. Ouncharoen, “How to estimate
forecasting quality: a system-motivated derivation of symmetric mean
absolute percentage error (smape) and other similar characteristics,”
2014.

[29] P. Á. López, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. WieBner,
“Microscopic traffic simulation using SUMO,” in 21st International
Conference on Intelligent Transportation Systems, ITSC 2018, Maui, HI,
USA, November 4-7, 2018, W. Zhang, A. M. Bayen, J. J. S. Medina,
and M. J. Barth, Eds. IEEE, 2018, pp. 2575–2582.

[30] I. K. Nti, M. Teimeh, O. Nyarko-Boateng, and A. F. Adekoya, “Electric-
ity load forecasting: a systematic review,” Journal of Electrical Systems
and Information Technology, vol. 7, no. 1, p. 13, Sep 2020.

[31] N. K. Ahmed, A. F. Atiya, N. E. Gayar, and H. El-Shishiny, “An empiri-
cal comparison of machine learning models for time series forecasting,”
Econometric Reviews, vol. 29, no. 5-6, pp. 594–621, 2010.

[32] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Multi-scale internet traffic
forecasting using neural networks and time series methods,” Expert Syst.
J. Knowl. Eng., vol. 29, no. 2, pp. 143–155, 2012.

[33] N. Jiang, Y. Deng, O. Simeone, and A. Nallanathan, “Online supervised
learning for traffic load prediction in framed-aloha networks,” IEEE
Commun. Lett., vol. 23, no. 10, pp. 1778–1782, 2019.

[34] W. Zhong, Y. Zhuang, J. Sun, and J. Gu, “A load prediction model
for cloud computing using pso-based weighted wavelet support vector
machine,” Appl. Intell., vol. 48, no. 11, pp. 4072–4083, 2018.

[35] W. Mu, Z. Jin, F. Liu, W. Zhu, and W. Wang, “Omopredictor: An online
multi-step operator performance prediction framework in distributed
streaming processing,” in 2019 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking,
ISPA/BDCloud/SocialCom/SustainCom 2019, Xiamen, China, December
16-18, 2019. IEEE, 2019, pp. 951–958.

[36] F. Kalim, T. Cooper, H. Wu, Y. Li, N. Wang, N. Lu, M. Fu, X. Qian,
H. Luo, D. Cheng, Y. Wang, F. Dai, M. Ghosh, and B. Wang, “Caladrius:
A performance modelling service for distributed stream processing
systems,” in 35th IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019. IEEE, 2019, pp. 1886–
1897.

[37] Y. Wu, R. Rao, P. Hong, and J. Ma, “Fas: A flow aware scaling
mechanism for stream processing platform service based on lms,” in
Proceedings of the 2017 International Conference on Management
Engineering, Software Engineering and Service Sciences, 2017, pp. 280–
284.

[38] T. D. Matteis and G. Mencagli, “Proactive elasticity and energy aware-
ness in data stream processing,” J. Syst. Softw., vol. 127, pp. 302–319,
2017.

8

	I Introduction
	II Problem Analysis
	II-A Use Cases
	II-A1 Dynamic Scaling
	II-A2 Timing of Live Migrations
	II-A3 Automatic System Tuning

	II-B Requirements
	II-B1 Minimal Configuration
	II-B2 Limited Model Inputs
	II-B3 Frequent Model Updates
	II-B4 Variable Forecasting Length

	III Methodology
	III-A TSF Methods
	III-A1 Baselines - Last Observation and Last Day Observation
	III-A2 SES
	III-A3 TES
	III-A4 ARIMA
	III-A5 SARIMA
	III-A6 Prophet
	III-A7 CNN
	III-A8 GRU

	III-B Evaluation Metrics
	III-C Time Series Datasets
	III-C1 IoT Traffic
	III-C2 NYC Taxi
	III-C3 Alibaba Cluster Traces
	III-C4 Google Cluster Traces
	III-C5 Wikipedia Pageviews
	III-C6 Avazu
	III-C7 Hortonworks
	III-C8 Retail Rocket

	III-D Dataset Adjustements
	III-E Experimental Setup
	III-E1 Experiment Execution
	III-E2 Training and Model Configuration

	IV Experiment Results
	IV-A Limitations
	IV-B Performance
	IV-C Duration

	V Related Work
	VI Conclusion
	References

