
1

Quantifying and Improving Performance of
Distributed Deep Learning with Cloud Storage

Nicholas Krichevsky∗, Renee St Louis†, Tian Guo‡
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA, USA
∗njkrichevsky@wpi.edu, †rstlouis@wpi.edu, ‡tian@wpi.edu

Abstract—Cloud computing provides a powerful yet low-cost
environment for distributed deep learning workloads. However,
training complex deep learning models often requires accessing
large amounts of data, which can easily exceed the capacity of
local disks. Prior research often overlooks this training data
problem by implicitly assuming that data is available locally
or via low latency network-based data storage. Such implicit
assumptions often do not hold in a cloud-based training en-
vironment, where deep learning practitioners create and tear
down dedicated GPU clusters on demand, or do not have
the luxury of local storage, such as in serverless workloads.
In this work, we investigate the performance of distributed
training that leverages training data residing entirely inside
cloud storage buckets. These buckets promise low storage costs,
but come with inherent bandwidth limitations that make them
seem unsuitable for an efficient training solution. To account for
these bandwidth limitations, we propose the use of two classical
techniques, namely caching and pre-fetching, to mitigate the
training performance degradation. We implement a prototype,
DELI, based on the popular deep learning framework PyTorch
by building on its data loading abstractions. We then evaluate
the training performance of two deep learning workloads using
Google Cloud’s NVIDIA K80 GPU servers and show that we
can reduce the time that the training loop is waiting for data
by 85.6%–93.5% compared to loading directly from a storage
bucket—thus achieving comparable performance to loading data
directly from disk—while only storing a fraction of the data
locally at a time. In addition, DELI has the potential of lowering
the cost of running a training workload, especially on models with
long per-epoch training times.

Index Terms—distributed deep learning; cloud-based perfor-
mance; training data loading

I. INTRODUCTION

Cloud computing is a promising low-cost frontier for dis-
tributed deep learning. However, as deep learning practitioners
explore more complicated problems that require increasingly
large datasets, the choice of where to store this training data
can drastically affect both training time and training cost.
For example, when using SGD-based algorithms to train a
deep learning model, each GPU worker in the cluster needs
access to a subset of the training data. Prior research often
overlooks the problem of where to store the large amount
of training data by implicitly assuming that data is available
locally or via low latency network-based data storage [1], [2].
Such implicit assumptions often do not hold in a cloud-based
training environment, where deep learning practitioners create

and tear down dedicated GPU clusters on demand. Further-
more, in emerging training scenarios such as serverless-based
training [3] (where workers only have access to ephemeral
storage) or online learning [4] (where training data is collected
in real-time), centralized storage such as cloud bucket storage
remains the only option. However, leveraging cloud bucket
storage requires additional mechanisms to handle its inherent
bandwidth constraints and to ensure a minimal performance
penalty compared to training from disk.

Distributed deep learning requires that each node be able to
access the training data, which can be accomplished through
storing it locally ahead of time or accessing it from a remote
store. In the latter case, workers may end up waiting a non-
negligible amount of time for samples to download before
they can continue training. While storing all training data
locally ahead of time may seem an obvious solution, this is not
always feasible. Storing the entire dataset on each node may
be prohibitively expensive; the cost of doing so is proportional
to the number of nodes it is stored on, while bucket storage
requires only paying for storage once. Additionally, doing so
may not be compatible with certain architectures. Serverless
environments, for instance, may necessitate using bucket stor-
age because they have limited, ephemeral storage, rather than
large amounts of persistent storage [3], [5]–[8]. Additionally,
online learning can require large amounts of real-time data,
making storage buckets an apt choice for cost-effectiveness
and upload speed [4], [9]–[11].

In cases like these, bucket-based object storage is advanta-
geous for providing a globally accessible location for storing
large quantities of data, but loading these samples during
training can become a bottleneck that slows the process. A
system that can address this problem could reduce data loading
time, which in turn would maximize the usefulness of cloud
resources. This could make serverless and online learning
architectures more viable, and it would have the potential to
cut costs in cloud-based distributed deep learning.

In this work, we set out to investigate the feasibility of and
improve the performance of loading training data from storage
buckets for distributed deep learning. In general, certain data
storage strategies dramatically increase data loading time, and
ergo, total training time. As such, our research concentrates
on the data loading process: the pipeline of loading training
data from a storage medium and preparing it for training.

© 2021 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

ar
X

iv
:2

10
8.

06
32

2v
1

 [
cs

.D
C

]
 1

3
A

ug
 2

02
1

We begin our analysis of this problem by showing why it is
not an acceptable solution to naı̈vely read data from a storage
bucket when the training worker needs it. Our empirical mea-
surement demonstrates that the training performance degrades
significantly when using cloud buckets. As such, we design a
system called DELI that leverages two classical approaches—
caching and pre-fetching—to improve the data loading time
in a cloud-based distributed training setting. We evaluate the
distributed training performance using DELI on top of Google
Cloud Platform, showing significant data loading speedup and
potential cost saving. To summarize, we make the following
main contributions:

• We design a configurable caching and pre-fetching sys-
tem, called DELI, for loading training data from cloud
bucket-based storage. DELI requires only a fraction of
the training data to be stored on the local disk at a time.
DELI’s source code and our raw experimental data can
be found at https://github.com/cake-lab/DELI.

• We find an extremely effective configuration of our sys-
tem DELI, which we experimentally observed to speed
up data loading by 85.6% to 93.5% compared to loading
from a storage bucket. This configuration works by pre-
fetching training data as soon as half of the cache has
been trained on.

• We develop a simple cost model based on Google Cloud
Platform’s pricing scheme and our empirical measure-
ments, and we show that DELI could potentially save
money in certain situations.

While many researchers have explored optimizing coordina-
tion (e.g. gradient synchronization [12], [13]) little work has
been done to measure and enhance data loading, and what
work has been done usually does not focus on cloud environ-
ments [1], [2]. That said, Cirrus, a serverless framework for
machine learning, is a closely related work to ours. Cirrus’
focus, however, is on overall training performance, rather than
data loading time, which is this paper’s focus [3].

II. BACKGROUND

A. Distributed Deep Learning
Distributed deep learning amplifies the power of machine

learning by using multiple nodes to train complicated models.
Just like its single-node counterpart, training is completed
by feeding samples of data through a neural network and
computing gradients of model output. The parameters of the
model are then updated using these gradients. To improve
efficiency, the set of samples is often broken into mini-
batches (small, disjoint subsets of the dataset), and training
over each mini-batch once constitutes an epoch. Distributed
deep learning builds on top of this by allowing training to be
split across multiple nodes. This can allow for model parallel
training, wherein each node contains only a subset of the
whole model, and data parallel training, wherein each node
trains on a subset of the data rather than the whole dataset,
should either be useful.

While many possible architectures may suit the needs
of this research, we have chosen to use a distributed data

parallel architecture, wherein each node uses the full model
but only a subset of the data. To synchronize the model
between workers, each worker periodically communicates with
one worker that is designated as the master. This master
worker will accumulate all of the gradients, and then com-
municate them back to the other workers, using a process
known as AllReduce [2]. Specifically, we used PyTorch’s
DistributedDataParallel package due to its battle-
tested implementation. We rely on this package’s resilience on
gradient communication so that we may focus our energy on
data loading. Ultimately, our choice of architecture should not
affect our findings noticeably because the system we imple-
ment is agnostic of its surrounding architecture. A parameter
server architecture, wherein nodes periodically synchronize
parameters with a centralized server rather than in a ring,
should work just as well.

In the distributed data parallel architecture we have chosen
to study, there are two components of communication: gradient
synchronization and data loading. In short, the gradient syn-
chronization step is used to ensure that the model is updated
using the calculations made by each worker, maintaining
mathematical accuracy. The data loading step ensures that each
worker has some kind of data to train on [2].

For each step of the training process, each node will receive
a single mini-batch to train on. While this data may be
loaded onto each node ahead of time if the resource budget
and architecture allow it, this is not always possible. If the
dataset is exceedingly large, or if the system is constrained by
other technical factors, this data has to be stored elsewhere,
and mini-batches must be downloaded by each node during
training. Downloading this data takes time, and if the transfer
of training data for the next step is not completed before
the current step’s computation completes, the next step’s
computation will be forced to wait.

B. Problems with Data Loading

When training a large model in a distributed fashion, it is not
uncommon to have access to a high performance computing
(HPC) cluster. These clusters can be configured such that
nodes have uninterrupted high-bandwidth connections with
each other [14]. This level of control allows those who use
HPC clusters to efficiently retrieve their training data from a
single networked file system (e.g. NFS) [15]. Unfortunately,
configuring such a cluster requires a significant up-front invest-
ment, making a cloud-based solution much more preferable.

In general, reading training data directly from disk is quite
fast—on the order of 100 MB/s for a spinning magnetic
drive. However, using them in the cloud requires paying for
storage on each node. Using cloud object storage sidesteps
this problem, but performance is orders of magnitude lower,
and sometimes unpredictable. To make matters worse, cloud
providers, such as Google Cloud Platform (GCP), do not allow
the ability to download multiple files at once, but rather one at
a time [16], which further hurts performance. To demonstrate
this, we use one of the VMs described in Section V to
read each image from the MNIST dataset into memory. We

https://github.com/cake-lab/DELI

TABLE I: Speed of reading the MNIST dataset into memory, both
sequentially and in parallel.

Data Source Transfer Speed Std. Dev.
Disk 18.63 MB/s 0.19 MB/s
Object Storage (Sequential) 49.80 kB/s 3.85 kB/s
Object Storage (Parallel) 281.73 kB/s 4.29 kB/s

tested two setups: (i) reading sequentially from both object
storage and disk, and (ii) reading with 16 threads performing
fetches from object storage. The averaged results are shown
in Table I. Note that the disk speed is a fraction of the
previously mentioned speed; reading many small files carries
more overhead than a sustained sequential read.

The difference in speeds between object storage and disk
is realized when one attempts to train a model with a bucket
as the training data store, as shown later in Figure 3. More
details can be found in Section V-A but briefly, by measuring
the time the training worker spends loading training data, we
notice a dramatic increase in loading time.

III. DESIGN AND CONSIDERATIONS

In general, we want to find ways to lower the amount of time
that cloud-based workers spend waiting to load training data
from a storage bucket. In this section, we describe our design
considerations for achieving this in DELI, which employs
two classical techniques: caching and pre-fetching of training
data. We also develop a cost model to better understand the
monetary implications of using DELI.

A. Caching

As discussed in Section II-B, the time needed to load data
from object storage significantly increases the training time
of the model. The most obvious way to reduce this time is
by storing as much of the data locally as we can—thereby
reducing time-consuming network traffic. As such, we add a
caching layer to each training worker, which will store each
sample after the worker requests it. In its simplest form, this
can store samples as they are trained on, or samples can be
cached ahead of time.

In designing our caching approach, we decided on three
main constraints. First, even though networked caches are
traditionally stored in-memory, memory is far more expensive
than storage in cloud environments [17], [18]. As such, we
wanted to make sure that our database was disk-based. Sec-
ond, to minimize the total number of network requests, thus
maximizing the speed advantage of caching, we decided that
the caches would be placed on each node. This way, when
a node wants to retrieve cached data, it would only need to
wait for the database and not for the data to travel across the
network. Last, we wanted to keep our API simple-to-use and
non-invasive, so we decided to encapsulate as much of our
implementation within PyTorch’s abstractions as possible.

B. Pre-fetching

Our goal in pre-fetching is to minimize network traffic
and to overlap communication and computation as much as

possible. With this in mind, we chose to let each node manage
its own local cache independently. Each node independently
determines which samples it wants, then requests them from
the storage bucket while training on other data.

To implement pre-fetching, we created a service that would
fetch the samples from the bucket ahead of when they would
be needed for the training loop, and load them into the cache.
Each node hosts its own instance of this service, removing
concerns of network delays. The training loop will periodically
inform this service of which samples it plans to train on.
The number of samples that the training loop requests is
configurable, hereby referred to as the fetch size. In typical
usage, the fetch size is only a fraction of the actual dataset
size, but as Section V-D demonstrates, the larger the value
of the fetch size, the better. Upon receiving this request, the
pre-fetch service then caches these samples asynchronously
while training continues. The training loop has no knowledge
of the fetch’s completion; it will simply attempt to retrieve the
samples from the cache if possible, or fall back to the bucket
if needed.

In the default configuration, the training loop will train on
all fetched samples before requesting another fetch from the
pre-fetch service. In order to ensure more data is ready ahead
of time, we introduce a new parameter: the pre-fetch threshold.
This parameter adds a buffer of sorts—a minimum number of
samples that have been fetched but not trained on. Once the
training loop crosses this threshold, another fetch is made,
earning this number the name of pre-fetch threshold.

C. Cost Analysis

To ensure our system would be cost-effective, we analyze
the cost of using buckets as a storage medium for distributed
training. First, we must consider the components of running
the training VMs that incur a cost: storage space s, number of
nodes n, and runtime t. Storage can be broken down into two
main components: the space to store the operating system and
all necessary dependencies sr, and the space needed to store
the training data (i.e. the size of the dataset) st. Similarly,
runtime can be broken down into the time needed to perform
computations tc, and the time needed for training data to load
td.1 The amount of time to load data can vary depending on
available bandwidth, dataset used, or model used2; therefore,
we recommended that td be measured empirically, either by
performing a full training run and measuring the time spent
loading data, or by loading a couple of batches of data, and
multiplying out how long it would take to load all batches of
data. However, tc can be estimated theoretically using a model
to estimate training time [19]–[23].

Second, we must take into consideration how our cloud
platform of choice, GCP, bills these charges. Google charges

1It is assumed that both of these are non-overlapping. In other words, td is
the amount of time that the training loop spends waiting to perform further
computations.

2The model is a factor here because the overlapping computation and
communication time mean that given a long-running model, the training loop
may be waiting for data for less time.

a fixed hourly rate cc for running each virtual machine, and
a fixed monthly rate cd for storage on each virtual machine.
We can use this information to express the expected cost of
running a training workload as follows:

n× (cd × (st + sr) + τ) (1)

where

τ = cc × (tc + td) (2)

To expand this approach to incorporate cloud storage buck-
ets, we must consider two factors: the cost of storing the
data in the bucket cb and the cost of retrieving data from
the bucket. Though within a region, data transfer is free,
Google charges a separate rate for API requests, based on the
type of request: Class A (which includes listing the bucket),
and Class B (which includes fetching data from the bucket).
Specifically, Class A requests cost $0.05 per 10,000 requests
and Class B requests $0.002 per 10,000 requests [24], but we
will symbolically refer to the per-request respective rates as cA
and cB . In order to determine the number of Class A requests,
we must consider the number of samples, m, and the number
of samples returned by each listing request. We call this the
page size, p. The number of Class B requests, however, only
depends on the number of samples, m. Both of these must be
multiplied by the number of epochs, e, as they are repeated
each epoch.

In addition, we must consider the number of samples in
each node’s local cache, mc. For the baseline that pulls from
the storage bucket, this quantity is zero, as there is no cache
to take up space.

Bringing this together yields this expression:

cb × st + n×
(
cd × (sr +

st
m
×mc) + τ

)
(3)

+ 10−4eα

where

α = n× dm
p
e × cA +m× cB (4)

Last, we wish to account for the pre-fetching component of
our system, DELI. To do this, we must multiply the number
of listing requests by the number of fetches, as each call to
the pre-fetcher requires listing the entire bucket.3 The factor
by which our requests are multiplied is nothing more than the
ceiling of the ratio between the number of samples, m and the
fetch size, f . To account for this, we must simply change α
to the following:

α = n× dm
p
e × dm

f
e × cA +m× cB (5)

3The prototype we ran experiments on naı̈vely does this listing on every
request. This is not necessarily required. In Section VI we discuss a possible
future modification to our system that could further reduce costs by reducing
the number of listing to one per node rather than one per fetch.

IV. IMPLEMENTATION

We implement a prototype of DELI, in accordance with
the designs described in the previous section. This prototype
is built on top of PyTorch, which was chosen due to its
modularity and simplicity. Further, DELI is currently inte-
grated with the popular Google Cloud Platform environment
for training [25] but can be extended to support other cloud
platforms such as Amazon Web Services. DELI runs workers
on GCP’s virtual machines and holds their samples in cost-
efficient storage buckets [17], [24].

A. PyTorch’s Mechanisms for Data Loading

In order to find a place for our improvements in the data
flow, we must first dissect PyTorch’s data loading mechanisms.
PyTorch’s flow is highly modular, which gives us ample
space to make our improvements. The most important pieces
of this design that we can manipulate are the Dataset,
the Sampler, and the DataLoader. The Dataset in-
dexes samples and manages their lookup. The Sampler is a
generator that selects samples strategically (e.g. sequentially,
randomly, or based on node partitioning) and returns their
indices for use in the Dataset. Finally, the DataLoader
combines the Sampler and Dataset and, when iterated
over, produces mini-batches to train on [26].

Our implementation of both caching and pre-fetching are
implemented using these primitives, and serve as drop-in
replacements for their PyTorch counterparts. As the following
sections describe, our implementations serve as wrappers for
the user’s existing Dataset and Sampler.

B. Caching

As mentioned in Section III-A, our three primary consider-
ations when designing the cache were that it must be on-disk,
and must be available on each node. As such, we selected
MongoDB as our cache-store due to its ease of use, its built-
in eviction abilities, and its disk-based nature. The cache is
structured as a size-limited collection (a “capped collection”
in MongoDB parlance [27]) of entries, holding the sample
itself, its index in the dataset, and a unique ID for the current
training session. These two identifiers are placed in a multi-
key index to speed up lookup times.

To ensure we met our goal of producing a simple API,
we wanted to integrate with PyTorch’s existing data pipeline
(see Section IV-A). With this in mind, we designed a custom
Dataset that wraps the user’s Dataset (which will be
hereby referred to as the sub-Dataset), and caches samples
as they are requested from the Dataset. For instance, if the
42nd sample is requested from the cache Dataset, it will
check MongoDB to see if the 42nd sample has been cached
this training session. If it has, it will be returned to the caller. If
not, the Dataset will retrieve the 42nd sample from the sub-
Dataset, then cache it in MongoDB (if desired) and return
it to the caller. If the cache is full before the sample is added,
then existing samples are evicted following a first-in-first-out
policy.

Fig. 1: A visualization of the pre-fetching and caching mechanism.
The numbered lines show the order of data flow. Notably, steps 3A
and 3B are asynchronous and may happen any time after step 3.

C. Pre-fetching

To better overlap computation and communication, we
decided to decouple the fetching process from the training
loop as much as possible by using a separate service to pre-
fetch the data. This service retrieves samples from the bucket
in parallel, and once they are all ready, they are cached in
parallel. Figure 1 outlines this system.

We subclass the Sampler to integrate with PyTorch’s
API more easily. Our Sampler serves as a wrapper for
another Sampler—the sub-Sampler. The sub-Sampler
can be any user-provided Sampler; the use of our wrapped
Sampler does not require altering the order in which samples
are read. During its operation, the Sampler requests one
fetch size worth of samples from the sub-Sampler and
returns these to the DataLoader transparently. Internally,
this is simply a queue of the next indices that the sampler will
provide.

When the Sampler requests new samples from the sub-
Sampler, it also sends a request to the pre-fetch service.
Upon receiving this request, the pre-fetch service immediately
sends a response and spins up a subprocess to cache the
samples from the storage bucket in the background. This not
only prevents the training loop from waiting for the samples
to be cached, it also enables the service to always be ready
for new requests from the Sampler without having to wait
for a cache operation to complete. Additionally, to side-
step the inability to perform batch-downloads mentioned in
Section II-B, we simulate a batch download by downloading
multiple files in parallel. After the training loop consumes
enough samples from the queue, the pre-fetch threshold will be
reached, at which point the pre-fetch service requests another
round of samples. The number of samples fetched is still the
fetch size, no matter the number of indices remaining in the
queue.

Figure 2 shows a sequence diagram for one possible sce-
nario in which the samples requested are all cached before they
are requested by the training loop. There is no guarantee that
this will be the case, though. Just as easily, the caching could
have completed after the training loop asked for those samples,
in which case the Dataset would retrieve the samples from
the GCP bucket. To ensure time is not wasted, we choose to not

Fig. 2: A sequence diagram showing the flow of data during pre-
fetching. This shows one possible scenario, in which the training
loop requests samples after all of them have been cached.

have the worker perform a cache insert in this case, as the pre-
fetch service will eventually perform this insert operation. Our
choice to leave the DataLoader in the dark about the status
of the pre-fetching can leave the system vulnerable to repeated
cache misses if the pre-fetch service falls behind the training
loop. In exchange, however, by not adding more points of
communication, we allow more overlap between data loading
and training.

V. RESULTS

A. Experiment Methodology

These results quantify the training time efficiency of our
caching and pre-fetching training workflow for a cloud-based
training environment.

Setup. Since this research concentrates on exploring data
parallel distributed deep learning, the experiments use a three-
node distributed data parallel setup, all in Google’s us-east-
1c data center. Evaluations were only done in this three-node
configuration, as each node in DELI operates independently
during the data loading phase. Indeed, our preliminary testing
demonstrated that a three-node setup spent less time loading
data than a single-node setup, solidifying our decision to focus
on this configuration.

Each node consists of a Google Compute Engine VM
configured with 2 Intel Haswell vCPUs, 13 GB of memory,
and one NVIDIA Tesla K80. The K80s were selected for
three reasons. First, they are a popular choice among other
researchers [28], [29]. Second, our evaluation is strictly con-
cerned with the amount of time spent getting data loaded for
the GPU to use, not the actual time spent training; this makes
the choice of GPU not of material concern. Last, K80 GPUs
are one of the cheapest options available on Google Cloud
Platform [30], which made them a fitting choice given the
lower importance of our GPU choice.

These nodes train with two workloads: CIFAR-10 on
ResNet-50, and MNIST on a CNN with two convolutional
layers and a single fully-connected layer. To implement data
parallelism, each model is trained on an evenly-sized partition
of the data generated by PyTorch’s DistributedSampler
to produce a random subset every epoch. This was selected
due to its recommendation by the PyTorch documentation as

a sampler for distributed data parallel workloads [26], but by
no means is our methodology limited to such a partitioning
scheme.

Metrics. We choose two metrics, data loading time and
cache miss rate and measure both of these for the first and
second epochs. Specifically, the miss rate is calculated as a
proportion of the number of samples the worker did not find
in the cache out of the number of samples requested in the
epoch. In addition, the data loading time is the time taken
to load an epoch’s samples from a given storage medium,
whether it’s the cache, disk, object storage, or a combination
thereof. These results include measurements for only the first
two epochs because preliminary experimentation revealed that
using this paper’s approach, the second epoch approximates
the performance of every subsequent epoch in terms of data
loading time and cache miss rate. This mirrors other research
that indicates that per-epoch training time remains relatively
consistent after an initial warm-up period [28], [31]. We report
average data loading time and cache miss rate over three nodes
and then over three trials.

Referring back to the data flow shown in Figure 1, data
loading time includes all time spent between the Dataset
and the cache, and the sub-Dataset and the data store (steps
4 and 5 on the diagram respectively). This is the time taken to
attempt to load a sample from the cache and to load it from
the bucket as a fallback.

Data Loading Baselines. We compare our prototype that
uses caching and pre-fetching for cloud bucket-based training
against a set of baselines, each of which uses our three-node
distributed data parallel setup. The first baseline trains the
model by pulling training data from disk, without relying on
external services. The second baseline fetches all samples from
GCP buckets without any caching or pre-fetching (i.e. skipping
steps 2-4 in Figure 1). This helps measure the total amount of
training time that our system saves compared to naı̈vely as-
suming the network will be fast enough to retrieve the training
data. The third baseline fetches data from GCP buckets, but
introduces the cache layer without the pre-fetching layer. We
repeat this at various cache sizes to quantify how much of the
system’s benefit comes from caching and how much comes
from pre-fetching.

B. Summary of Key Findings

Our evaluation demonstrates that DELI achieves significant
speedup of data loading time compared to naı̈vely loading data
from object storage, for both training workloads. Specifically,
we observed that, compared to reading from GCP buckets
directly, the 50/50 approach (described shortly) reduced data
loading time by 85.6% and 93.5% for MNIST and CIFAR-10,
respectively. Figure 3 summarizes the data loading time using
different approaches. Measuring the amount of time that the
training loop spends waiting for data reveals that loading data
from object storage results in an increase in loading times
between 8 and 16 times when compared to loading data from
disk. In our testing, this penalty ended up being a significant

Fig. 3: Data loading time comparison. We show that DELI, when
configured properly (i.e. 50/50 approach), can achieve near-disk data
loading time.

Fig. 4: The linear relationship between miss rate and data loading
time for both MNIST and CIFAR-10 trials.

portion of the time spent, as our models spent an average
of 14.7 s and 147.2 s training on MNIST and CIFAR-10
respectively: a figure that is dwarfed by the several-hundred
second data loading time. One might wonder why the GCP
loading time is lower for CIFAR-10. This is simply because
in our testing, there were fewer samples in the partition for
CIFAR-10 than for MNIST. By plotting the results of our
individual trials in Figure 4, we can see that data loading time
changes linearly with miss rate.4 As such, this allows us to
account for this difference in dataset size by comparing miss
rates, rather than absolute times.

Adding a cache can net some improvement once the data is
cached, but there still is a time penalty associated with getting
the data into the cache to begin with. Dramatic gains arise
once the pre-fetching solution is added to the mix, cutting
loading times to be just double of the disk loading time; this
can be lowered even further with some adjustments to fetch
thresholds. These observations will be discussed in more detail
in their respective sections.

The most interesting and practical takeaways from our
results are how they allow users to achieve performance much

4It is worth noting that this plot only includes trials that used both pre-
fetching and caching, as the trend is more easily seen on a smaller plot.
However, this trend does hold for higher miss rates than 0.5.

Fig. 5: The effect of cache size on miss rate for both CIFAR-10
and MNIST for an unlimited cache against three proportions of the
partition size.

closer to that of loading training data from disk than that of
loading data from a central data store alone, while still not
persistently storing the training data on disk. We have found
that it is best to take what we call the 50/50 approach: setting
both the fetch size and the pre-fetch threshold to half the
cache size. This effectively ensures that one fetch of data is
always cached and that each new fetch fits fully within the
cache. Figure 3 shows that this configuration is the fastest of
everything tested. We suspect that it beats our disk baseline in
part because MongoDB caches frequently accessed entries in
memory. The best settings we found work well across different
workloads tested, suggesting that these properties are fairly
general characteristics of our system. The potential cost-saving
effects of this are discussed in Section V-E.

C. Effect of Caching On Data Loading Time

We first evaluate the effectiveness of caching alone to help
determine how necessary each component of our system is
in improving data loading time. These experiments use the
aforementioned three-node setup, partitioning scheme, and
workloads. As shown in Figure 3, an unlimited cache can
have some benefits over fetching directly from the object store
during the second epoch. To determine how effective a cache
is at more realistic sizes, an unlimited cache is tested against
caches that can only hold 25%, 50%, and 75% of the samples
a node would be assigned in one partition.

Our results show that caching alone is not particularly well-
suited to the data parallel case our research explores. Under
these circumstances, even a cache large enough to hold the
entire dataset does not show impressive gains within the first
two epochs. As Figure 5 demonstrates, the miss rate for an
unlimited cache’s second epoch is very high at 66%, which
makes sense given that the partition across three nodes is
random every time.5 Each node should be able to cache the
entirety of whatever random third of the data it was assigned
in the first epoch partition. When the data is re-sampled for
the second epoch, about a third of these samples are likely to
be reassigned to that node, which would result in a 33% hit
rate and a 66% miss rate, aligning very closely with what we

5Although training over many epochs would eventually cache the entire
dataset, our testing focuses on improvements within the first two epochs.

Fig. 6: The effect of increasing the fetch size on miss rate. In general,
increasing the fetch size will decrease the miss rate.

observed. The fact that these numbers are so consistent across
workloads further underscores this point: the miss rates are
probabilistic rather than dataset-dependent.

Figure 5 furthermore demonstrates that the miss rate climbs
rapidly as the cache size is constrained. This is especially
troublesome because a constrained cache better reflects the
situations in which our system is designed to help—where
the dataset cannot feasibly be held on each node. If there is
enough disk space to cache the entire dataset, that space would
be better used to hold the dataset directly, rather than fetching
it from object storage. Limiting the cache size to even 75%
of the data partitioned to a node results in about a 90% miss
rate. Clearly, caching alone does not sufficiently counteract the
penalty of accessing data from the object store.

Summary: Caching can help improve data loading times,
but caching alone is not a robust strategy, especially when
applied with partitioned data. The benefits of caching diminish
if the cache is not large enough to hold the entire dataset.

D. Maximizing Cache Benefits with Pre-Fetching

Building on top of the caching approach, pre-fetching fur-
ther reduces data-loading time by strategically pre-populating
the cache. To evaluate this approach, we left the cache unlim-
ited and varied the fetch size in increments of 256 samples.
Figure 6 shows the clear benefits of increasing the amount of
data that is fetched ahead of time.

As mentioned previously, an unlimited cache is simply not
practical. Our testing demonstrates, though, that if the cache
size is limited, similar performance to the unlimited cache can
be achieved for any cache size greater than or equal to the fetch
size. To show this, we conduct an experiment in which the
fetch size is fixed at 1024 samples (i.e. less than 10% of each
node’s partition for both CIFAR-10 and MNIST) and the cache
size is varied. Figure 7 shows the result of this experiment;
after the cache size exceeds the fetch size, the difference in
miss rate becomes negligible. The plot for a batch size of
1024 underscores the significance of this result: with a fetch
size equal to the batch size, maximum performance can be
obtained by storing only the batch we are currently training
on.

Curiously, the miss rate of the CIFAR-10 trials is consis-
tently lower than the MNIST trials. This can be attributed to

Fig. 7: The effect of increasing the cache size with a constant fetch
size. After 1x, the benefits of doing so vanish.

the large difference in compute time between our custom con-
volutional network and ResNet. On average, the compute time
of ResNet was 15x slower than the convolutional network.
This makes sense, given that ResNet is a far more complex
model. During this training time, the pre-fetcher has ample
opportunity to download more data, resulting in a lower miss
rate for CIFAR-10.

Recall from Section IV that the default pre-fetching ap-
proach only fetches new samples when the Sampler’s queue
of samples has been depleted (i.e. a pre-fetch threshold of
zero). We run experiments to see how adjusting the pre-fetch
threshold affects data loading time. Again holding the fetch
size constant at 1024, we adjust the cache size to different
multiples of the fetch size (0.5x, 1x, 2x, 3x). For each of
these cache sizes, we test a pre-fetch threshold of 25%, 50%,
and 75% of the cache size.

Figure 8 shows that with a cache size of 2048 and a pre-
fetch threshold of 1024 (i.e. 50%), we can see a 31% and 80%
decrease in miss rate for MNIST and CIFAR-10 respectively,
with diminishing returns afterwards. In other words, maximum
benefit can be obtained by setting the fetch size to half of
the cache size, and setting the pre-fetch threshold equal to
the fetch size. This means that the pre-fetcher will prepare
a full fetch of data just as there is exactly one fetch worth
of data remaining, referred to earlier as the 50/50 approach.
This produces a similar effect to doubling the fetch size.
Although the magnitudes of the miss rate differ between the
two workloads, the trend holds across them. This difference in
magnitude can again be attributed to the difference in compute
time.

Although setting the pre-fetch threshold to 75% of the cache
size may appear advantageous in some cases (e.g. a cache size

(a) Comparing the effect of different pre-fetch thresholds on the
MNIST workload.

(b) Comparing the effect of different pre-fetch thresholds on the
CIFAR-10 workload.

Fig. 8: Comparing the effect of different pre-fetch thresholds (as a
proportion of cache size) on cache miss rate for various cache sizes
across epochs and models.

of 2048 on MNIST), this does not seem to generalize well.
As the CIFAR-10 graphs reveal, a pre-fetch threshold of 75%
does not always show the same gains as a threshold of 50%.
Furthermore, the error bars on the 75% pre-fetch thresholds
on both workloads indicate a lack of reliability; the other
thresholds proved to be more reliable. Similarly, though there
are some cases where the 25% pre-fetch threshold edges out

Fig. 9: Comparing the best-found settings for fetch size and pre-fetch
threshold across models for a cache size of 2048.

the performance of a 50% pre-fetch threshold, this is hardly
consistent, and not worth considering compared to the more
reliable 50% threshold.

Given the choice between doubling the fetch size (termed
Full Fetch) and making the fetch size and pre-fetch threshold
equal to 50% of the cache size, one should prefer the latter.
Figure 9 demonstrates this; though for MNIST the difference
is quite small, applying the 50/50 approach yields an 83%
decrease in miss rate for CIFAR-10. Therefore, we recommend
using the 50/50 approach for more computationally-intensive
workloads (i.e. with longer per-epoch computation time), as
the difference can be quite drastic, even beating our disk
baseline, as shown in Figure 3. The speedup for the CIFAR-10
workload can be in part attributed to MongoDB’s in-memory
caching mechanism. To validate that this is the case, we
examine MongoDB’s internal cache metrics6; they indicate
that the node’s entire partition is in memory after the first
epoch, though this may not be true with larger datasets.

Summary: It is always beneficial to pre-fetch more data,
but doing so increases the amount of disk space used. If the
cache is limited, it does not need to be larger than the fetch
size, but we can make the data loading time even lower by
raising the threshold for the next fetch.

E. Cost

Despite our initial hypotheses, our approach did not uni-
versally lower the cost of running these workloads. Table II
compares the monetary costs between DELI with different
configurations and two data loading baselines. Specifically, we
highlight the cost of training from disk, the significant cost
increase of moving to cloud buckets, and the cost of using
our approach in comparison to those baselines. We produced
these figures using the model described in Section III-C; the
average data loading and compute times from these trials were
used as tc and td, in lieu of estimated values.

To produce these figures, we model the cost of the baseline
approaches and the best configurations of our approach. Using
this model, we produc the results shown in Table II. The
only scenarios where there’s a cost saving is when using the
full fetch approach with a fetch size of 2048, and the 50/50
approach with a fetch size of 1024. These gains are only

6Specifically, db.serverStatus().wiredTiger.cache["bytes
currently in cache"] was checked.

realized on our ResNet/CIFAR-10 workload, which makes
sense given that the model complexity allows the pre-fetching
system to significantly reduce data loading time. In turn,
this lowers the total epoch time and therefore the “compute
+ loading” cost. It is worth noting that the costs from the
per-request pricing scheme can quickly add up, which is a
contributing factor to the figures in the table.

Summary: Though the bucket pricing model is cheaper
per gigabyte than local storage, it is not always effective at
lowering costs. Our caching and pre-fetching approach for
bucket storage is favorable to storing samples on each node if
the model compute time is sufficiently long.

VI. DISCUSSION

Our results show a clear performance improvement when
using a caching and pre-fetching approach in a cloud-based
distributed training environment. Specifically, by using DELI,
we can achieve near-disk data loading time when storing
training data centrally in cloud bucket-based storage. Even
though our approach does not lead to significant monetary
savings as we had envisioned at the outset, we believe that
DELI is valuable for emerging training scenarios where it
is not feasible to store training data on local disks. For
instance, serverless environments, by design, have very small
amounts of temporary storage [3], [5]. These constraints lend
themselves well to using a bucket for storage. In addition,
some learning environments store real-time data from the edge
to train machine learning models, and will store this data in
storage buckets [4], [9], [11].

With that said, we note two limitations associated with our
evaluation methodology. First, both of the datasets we chose
are relatively small in size, and do gain some advantage from
MongoDB’s internal caching, as previously stated. Second,
while our workloads are widely used in the machine learning
community, they are not benchmarks in and of themselves,
and our results may not be directly comparable to other work
using these workloads. As such, further investigations into this
technique may wish to use a peer-reviewed machine learning
benchmark, such as Deep500 or DDLBench [32], [33].

While DELI presents a promising way to perform dis-
tributed training with centralized bucket storage, there are
a number of potential directions one can explore to further
understand and improve the performance of cloud-based data
loading. First, some of the performance savings were realized
due to MongoDB’s internal caching, which stores frequently
accessed samples in memory [34]. It would be useful to quan-
tify what portion of our savings comes from this mechanism.
Second, though DELI is agnostic of architecture, measuring
how it performs in other architectures, such as a parameter
server architecture [35], would underscore its usefulness in
other applications. Last, cost could be further optimized by
cutting down on the number of necessary bucket API calls.
Namely, Class A requests could be cut down by caching the
list of items in a bucket locally, and Class B requests could be
cut down by grouping samples into super-samples: collections
of multiple samples. These super-samples would reduce the

TABLE II: The modeled cost of training each workload for two epochs. Totals that are underlined save money compared to the disk baseline.

MNIST Costs CIFAR-10 Costs
Method API Storage Compute + Loading Total API Storage Compute + Loading Total

Baseline (Disk) n/a $1.95 $0.10 $2.05 n/a $1.95 $0.28 $2.23
Baseline (GCP) $0.03 $1.93 $0.72 $2.68 $0.03 $1.93 $0.72 $2.68

Full Fetch Approach (Fetch Size=1024) $0.08 $1.93 $0.16 $2.17 $0.07 $1.93 $0.25 $2.25
Full Fetch Approach (Fetch Size=2048) $0.06 $1.93 $0.12 $2.10 $0.05 $1.93 $0.23 $2.21

50/50 Approach (Fetch Size=1024)† $0.08 $1.93 $0.11 $2.12 $0.07 $1.93 $0.17 $2.17
† This configuration uses as much cache space as Full Fetch Approach (FS=2048), which is twice the cache space of Full Fetch Approach (Fetch Size=1024).

number of fetches needed to download a node’s partition from
the bucket, but the partitioning strategy would need to be
altered to account for them.

VII. RELATED WORK

There has been limited research into optimizing the data-
loading aspect of distributed training. The most relevant work
we found to our research was by Yang et al. [15]. This paper
suggests a novel approach to caching, in which every node
keeps a local cache of mini-batches, and uses this cache to
determine which samples it should fetch from the storage
server. If a node’s cache does not contain a balanced number of
samples from different mini-batches, it may exchange samples
with another node. We initially attempted to adapt this paper’s
methodology to the cloud; however, Yang et al.’s paper does
not take into account the limitations of a cloud environment,
including low bandwidth between nodes. Unlike their work,
though, DELI does not need to concern itself with the load
capacity of the storage medium, as GCP’s buckets auto-
scale [36].

In addition, some existing research relating to serverless
computing demonstrated some of the ways that our approach
could be applied more generally. The Cirrus framework [3],
for instance, implements both caching and pre-fetching from
buckets in their approach, and demonstrated significant gains
when pre-fetching was added. They also use other techniques
that we considered during our design process, such as batching
multiple samples in the object store. Cirrus demonstrates
that these approaches can reduce training time in serverless
environments, and complements our study of saving time on
data loading, even outside a serverless framework.

Wang et al. propose an interesting caching idea that could
serve as a good middle-layer on top of DELI. Their system,
InfiniCache, creates a cache by storing samples in-memory
in serverless functions, and then allows them to become idle.
These functions stay warm and ready to serve requests for
several hours, despite their idle state, which allows the system
to operate as a cheap and efficient cache [37]. Though on its
own InfiniCache serves a different purpose than DELI, it may
serve as a good intermediary between DELI and the storage
buckets, due to its low cost and high performance of retrieval.

Some other work has been done to accelerate data aug-
mentation [38], which is the transformation process that data
must undergo before being fed into the neural network. This
is an important step of the data loading process, and was not
something that DELI attempts to accelerate. Its integration
could help further improve data loading time.

VIII. CONCLUSION

In this paper, we investigated the use of classical techniques,
caching and pre-fetching, to support distributed training with
cloud-based storage. We implemented a prototype of our
system, DELI, on top of the PyTorch Framework and evalu-
ated its effectiveness on Google Cloud Platform. While other
work has focused on speeding up training or coordination
between nodes, we aim to fill the research gap in speeding
up data loading, specifically within cloud-based environments
that use bucket storage. As Section V details, our system can
perform as well as storing data locally on each node under the
right conditions, such as when training a more complicated
model that takes longer per epoch. While increasing the cache
space per node (and the corresponding fetch size/pre-fetch
threshold) would also speed up data loading, this research
chooses to consider the storage space per node as a constraint
and to characterize how caching and pre-fetching can be used
effectively within this given amount of storage.

With that in mind, we want to reiterate that the goal of
our research is not to find better configurations for virtual
machines, but rather how to improve the data-loading within
those configurations. In doing this, we hope that this approach
will easily apply to smaller-scale distributed deep learning
operations. While adding more nodes, increasing storage, and
renting faster hardware will almost always help reduce epoch
run time, they are beyond the scope of this research. This
also helps our research remain applicable to scenarios where
storing large amounts of data on disk may not be possible,
such as serverless workloads.

We measured the data loading time of our model under
different conditions and compare these measurements to base-
lines where pieces of our model were selectively removed.
This comparison allows us to decompose the observed benefits
into what time savings come from caching, pre-fetching, and
setting a pre-fetch threshold. Our evaluation demonstrates that
DELI is effective, and that each of its three major components
are necessary to fully realize its potential to speed up data
loading in bucket-based distributed deep learning.

ACKNOWLEDGMENT

We thank all anonymous reviewers and shepherds for their
comments and suggestions which helped improve this paper.
This work is supported in part by National Science Foundation
grants CNS-#1755659 and CNS-#1815619, WPI CS Depart-
ment funding, and Google Cloud Platform free credits.

REFERENCES

[1] J. J. Dai, Y. Wang, X. Qiu, D. Ding, Y. Zhang, Y. Wang, X. Jia, C. L.
Zhang, Y. Wan, Z. Li, J. Wang, S. Huang, Z. Wu, Y. Wang, Y. Yang,
B. She, D. Shi, Q. Lu, K. Huang, and G. Song, “Bigdl: A distributed
deep learning framework for big data,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 50–60. [Online].
Available: https://doi.org/10.1145/3357223.3362707

[2] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li,
A. Paszke, J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch
distributed: Experiences on accelerating data parallel training,” Proc.
VLDB Endow., vol. 13, no. 12, p. 3005–3018, Aug. 2020. [Online].
Available: https://doi.org/10.14778/3415478.3415530

[3] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus: a
serverless framework for end-to-end ml workflows,” in Proceedings of
the ACM Symposium on cloud computing, ser. SoCC ’19. ACM, 2019,
pp. 13–24.

[4] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Where’s the bear? -
automating wildlife image processing using iot and edge cloud systems,”
in 2017 IEEE/ACM Second International Conference on Internet-of-
Things Design and Implementation (IoTDI), 2017, pp. 247–258.

[5] J. Beswick. (2020, 10) Choosing between aws
lambda data storage options in web apps.
[Online]. Available: https://aws.amazon.com/blogs/compute/
choosing-between-aws-lambda-data-storage-options-in-web-apps/

[6] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a
serverless architecture,” in IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications, 2019, pp. 1288–1296.

[7] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proceedings of the
2017 Symposium on Cloud Computing, ser. SoCC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 445–451.
[Online]. Available: https://doi.org/10.1145/3127479.3128601

[8] M. S. Kurz, “Distributed double machine learning with a serverless
architecture,” in Companion of the ACM/SPEC International Conference
on Performance Engineering, ser. ICPE ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 27–33. [Online].
Available: https://doi.org/10.1145/3447545.3451181

[9] H. Alipour and Y. Liu, “Online machine learning for cloud resource pro-
visioning of microservice backend systems,” in 2017 IEEE International
Conference on Big Data (Big Data), 2017, pp. 2433–2441.

[10] M. Makkie, H. Huang, Y. Zhao, A. V. Vasilakos, and T. Liu,
“Fast and scalable distributed deep convolutional autoencoder for
fmri big data analytics,” Neurocomputing, vol. 325, pp. 20–30, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231218311470

[11] J. Ma, A. Ovalle, and D. M. Woodbridge, “Medhere: A smartwatch-
based medication adherence monitoring system using machine learning
and distributed computing,” in 2018 40th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC),
2018, pp. 4945–4948.

[12] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale synchronous
parallel distributed training for deep learning,” in IEEE International
Conference on Distributed Computing Systems, ser. ICDCS ’19.

[13] S. Li, O. Mangoubi, L. Xu, and T. Guo, “Sync-Switch: Hybrid Parameter
Synchronization for Distributed Deep Learning,” in IEEE International
Conference on Distributed Computing Systems, ser. ICDCS ’21.

[14] M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao,
S. Yilmaz, C. Kim, H. Yuen, M. Ozdal, K. Nair, I. Gao, B.-Y. Su,
J. Yang, and M. Smelyanskiy, “Deep learning training in facebook
data centers: Design of scale-up and scale-out systems,” arXiv preprint
arXiv:2003.09518, 2020.

[15] C.-C. Yang and G. Cong, “Accelerating data loading in deep neural
network training,” 2019 IEEE 26th International Conference on
High Performance Computing, Data, and Analytics (HiPC), 12 2019.
[Online]. Available: http://dx.doi.org/10.1109/HiPC.2019.00037

[16] Google Cloud Platform. (2020). [Online]. Available: https://cloud.
google.com/storage/docs/json api/v1/how-tos/batch

[17] ——. (2020, 09) Disks and images pricing. [Online]. Available:
https://cloud.google.com/compute/disks-image-pricing#disk

[18] ——. (2020, 11) Vm instances pricing. [Online].
Available: https://cloud.google.com/compute/vm-instance-pricing#n1
highmem machine types

[19] W. Lee, Y. Lee, J. S. Jeong, G. Yu, J. Y. Kim, H. J. Park, B. Jeon,
W. Song, G. Kim, M. Weimer, B. Cho, and B. Chun, “Automating sys-
tem configuration of distributed machine learning,” in 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
2019, pp. 2057–2067.

[20] S. Shi and X. Chu, “Performance modeling and evaluation of distributed
deep learning frameworks on gpus,” CoRR, vol. abs/1711.05979, 2017.
[Online]. Available: http://arxiv.org/abs/1711.05979

[21] Y. Oyama, A. Nomura, I. Sato, H. Nishimura, Y. Tamatsu, and S. Mat-
suoka, “Predicting statistics of asynchronous sgd parameters for a large-
scale distributed deep learning system on gpu supercomputers,” in 2016
IEEE International Conference on Big Data (Big Data), 2016, pp. 66–
75.

[22] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling
and scalability optimization of distributed deep learning systems,” in
Proceedings of the 21th ACM SIGKDD International Conference on
knowledge discovery and data mining, ser. KDD ’15. ACM, 2015, pp.
1355–1364.

[23] P. Zhou, X. He, S. Luo, H. Yu, and G. Sun, “Jpas: Job-progress-aware
flow scheduling for deep learning clusters,” Journal of Network and
Computer Applications, vol. 158, p. 102590, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804520300643

[24] Google Cloud Platform. (2020, 10) Cloud storage pricing. [Online].
Available: https://cloud.google.com/storage/pricing

[25] Google Cloud Plaform. (2020, 10) Google cloud overview. [Online].
Available: https://cloud.google.com/docs/overview/

[26] Team PyTorch. (nodate) torch.utils.data - pytorch documentation.
[Online]. Available: https://pytorch.org/docs/stable/data.html

[27] “Capped collections,” 03 2021. [Online]. Available: https://docs.
mongodb.com/manual/core/capped-collections/

[28] S. Li, R. J. Walls, and T. Guo, “Characterizing and modeling distributed
training with transient cloud gpu servers,” in IEEE International Con-
ference on Distributed Computing Systems, ser. ICDCS ’21.

[29] L. Mai, G. Li, M. Wagenländer, K. Fertakis, A.-O. Brabete, and
P. Pietzuch, “Kungfu: Making training in distributed machine learning
adaptive,” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, Nov. 2020,
pp. 937–954. [Online]. Available: https://www.usenix.org/conference/
osdi20/presentation/mai

[30] Google Cloud Platform. Gpus pricing. [Online]. Available: https:
//cloud.google.com/compute/gpus-pricing

[31] C. Pinto, Y. Gkoufas, A. Reale, S. R. Seelam, and S. Eliuk, “Hoard: A
distributed data caching system to accelerate deep learning training on
the cloud,” ArXiv, vol. abs/1812.00669, 2018.

[32] T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter, and T. Hoefler,
“A modular benchmarking infrastructure for high-performance and
reproducible deep learning,” CoRR, vol. abs/1901.10183, 2019.
[Online]. Available: http://arxiv.org/abs/1901.10183

[33] M. Jansen, V. Codreanu, and A.-L. Varbanescu, “Ddlbench: Towards a
scalable benchmarking infrastructure for distributed deep learning,” in
2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomput-
ers (DLS), 2020, pp. 31–39.

[34] “Wiredtiger storage engine,” 03 2019. [Online]. Available: https:
//docs.mongodb.com/manual/core/wiredtiger/#wiredtiger-ram

[35] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). USENIX
Association, pp. 583–598. [Online]. Available: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/li mu

[36] Google Cloud Platform. (2020, 11). [Online]. Available: https:
//cloud.google.com/storage/docs/request-rate

[37] A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht, D. Skourtis,
V. Tarasov, F. Yan, and Y. Cheng, “Infinicache: Exploiting ephemeral
serverless functions to build a cost-effective memory cache,” in
18th USENIX Conference on File and Storage Technologies (FAST
20). Santa Clara, CA: USENIX Association, Feb. 2020, pp. 267–
281. [Online]. Available: https://www.usenix.org/conference/fast20/
presentation/wang-ao

[38] M. Zolnouri, X. Li, and V. Nia, “Importance of data loading pipeline in
training deep neural networks,” ArXiv, vol. abs/2005.02130, 2020.

https://doi.org/10.1145/3357223.3362707
https://doi.org/10.14778/3415478.3415530
https://aws.amazon.com/blogs/compute/choosing-between-aws-lambda-data-storage-options-in-web-apps/
https://aws.amazon.com/blogs/compute/choosing-between-aws-lambda-data-storage-options-in-web-apps/
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3447545.3451181
https://www.sciencedirect.com/science/article/pii/S0925231218311470
https://www.sciencedirect.com/science/article/pii/S0925231218311470
http://dx.doi.org/10.1109/HiPC.2019.00037
https://cloud.google.com/storage/docs/json_api/v1/how-tos/batch
https://cloud.google.com/storage/docs/json_api/v1/how-tos/batch
https://cloud.google.com/compute/disks-image-pricing#disk
https://cloud.google.com/compute/vm-instance-pricing#n1_highmem_machine_types
https://cloud.google.com/compute/vm-instance-pricing#n1_highmem_machine_types
http://arxiv.org/abs/1711.05979
https://www.sciencedirect.com/science/article/pii/S1084804520300643
https://cloud.google.com/storage/pricing
https://cloud.google.com/docs/overview/
https://pytorch.org/docs/stable/data.html
https://docs.mongodb.com/manual/core/capped-collections/
https://docs.mongodb.com/manual/core/capped-collections/
https://www.usenix.org/conference/osdi20/presentation/mai
https://www.usenix.org/conference/osdi20/presentation/mai
https://cloud.google.com/compute/gpus-pricing
https://cloud.google.com/compute/gpus-pricing
http://arxiv.org/abs/1901.10183
https://docs.mongodb.com/manual/core/wiredtiger/#wiredtiger-ram
https://docs.mongodb.com/manual/core/wiredtiger/#wiredtiger-ram
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://cloud.google.com/storage/docs/request-rate
https://cloud.google.com/storage/docs/request-rate
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/fast20/presentation/wang-ao

	I Introduction
	II Background
	II-A Distributed Deep Learning
	II-B Problems with Data Loading

	III Design and Considerations
	III-A Caching
	III-B Pre-fetching
	III-C Cost Analysis

	IV Implementation
	IV-A PyTorch's Mechanisms for Data Loading
	IV-B Caching
	IV-C Pre-fetching

	V Results
	V-A Experiment Methodology
	V-B Summary of Key Findings
	V-C Effect of Caching On Data Loading Time
	V-D Maximizing Cache Benefits with Pre-Fetching
	V-E Cost

	VI Discussion
	VII Related Work
	VIII Conclusion
	References

