

Haug, M., Lorenz, F. and Thamsen, L. (2021) GRAL: Localization of Floating Wireless

Sensors in Pipe Networks. In: 1st International Workshop on Testing Distributed

Internet of Things Systems (TDIS) at 9th IEEE International Conference on Cloud

Engineering (IC2E), 04-08 Oct 2021, pp. 251-257. ISBN 9781665449700.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/268176/

Deposited on: 24 May 2022

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/268176/
http://eprints.gla.ac.uk/

GRAL: Localization of Floating Wireless Sensors in
Pipe Networks

Martin Haug
Technische Universität Berlin

Berlin, Germany
m.haug@tu-berlin.de

Felix Lorenz*
Technische Universität Berlin

Berlin, Germany
felix.lorenz@tu-berlin.de

Lauritz Thamsen
Technische Universität Berlin

Berlin, Germany
lauritz.thamsen@tu-berlin.de

Abstract—Mobile wireless sensors are increasingly
recognized as a valuable tool for monitoring critical
infrastructures. An important use case is the discovery
of leaks and inflows in pipe networks using a swarm of
floating sensor nodes. While passively drifting along,
the devices must track their individual positions so
critical points can later be located. Since pipelines are
often situated in inaccessible places, large portions of
the network can be shielded from radio and satellite
signals, rendering conventional positioning systems in-
effective.

In this paper, we propose a novel algorithm for
assigning location estimates to recorded measurements
once the sensor node leaves the inaccessible area and
transmits them via a gateway. The solution is range-
free and makes use of a priori information about the tar-
get pipeline network. We further describe two extended
variants of our algorithm which use data of encounters
with other sensor nodes to improve accuracy. Finally,
we evaluate all variants with respect to various network
topologies and different numbers of mobile nodes in a
simulation. The results show that our algorithm local-
izes measurements with an average accuracy between
4.81% and 7.58%, depending on the variability of flow
speed and the sparsity of reference points.

Index Terms—localization, mobile wireless sensors,
pipeline monitoring, critical infrastructures

I. Introduction
In order to operate and maintain a pipe network,

utility operators must be able to investigate its current
state and detect specific undesirable conditions such as
leakages or inflows/infiltrations. However, with pipelines
buried deep underground, direct access and large-scale
deployment of stationary sensors for in vivo monitoring is
often infeasible. There have been recent efforts to resolve
this using autonomous mobile robots [1, 2] and Mobile
Wireless Sensor Network (MWSN) [3–5]. A Mobile
Wireless Sensor Network (MWSN) is a network of nodes
that can move, detect changes in their environment
and communicate wirelessly. In the special case of
pipe monitoring, nodes can do entirely without active
locomotion and instead float with the current of the
contained liquid [6]. Thus, they can be produced at a
fraction of the cost of actively moving robots and are at

*Work done while at Technische Universität Berlin, now at
ecospace

Fig. 1: The measurements taken by a sensor node (a) are
submitted to the GRAL backend through a gateway (b)
which resides at a junction in the pipe network.

the same time more robust. Sensor nodes can be inserted
into the system at likely points of interest. They may be
recovered or disposed of at a wastewater treatment plant.
For a comprehensive overview of the literature on MWSN
for pipe inspection, see [7].

The use of a big fleet of sensors to monitor a pipe
network requires solutions for data collection and scalable
analytics [8, 9]. However, to make use of the recorded data
in the first place, the position in which the measurement
was taken must be known. Satellite-based localization
systems like GPS are a natural choice for localization
but are often not applicable in MWSN due to power
constraints or insufficient signal coverage. In such cases,
one can instead make use of information on the proximity
to other nodes and the properties of the environment to
estimate the position of each reading.

In this paper, we address the localization problem
of MWSNs deployed in wastewater networks. However, the
approach can also be used in other pipeline-like environ-
ments like water networks or oil pipelines. We formalize
the localization problem in Section II.We review existing
localization algorithms for both Wireless Sensor Networks
(WSNs) in general and MWSNs with floating nodes in
Section III. For our work, we assume that the environment
is tree-shaped, where nodes move along the edges from the
leaves to the root. Gateways are installed at specific points

throughout the pipe network. We introduce the Graph-
based Localization (GRAL) algorithm as a method for
sensor localization in such situations (Section IV). The
idea is to use MWSN gateways as anchors and interpolate
the path between them, where nodes traverse areas with-
out coverage. Reconstruction of measurement locations is
done at a central backend, to which a node sends its
recordings upon entering the radio range of a gateway.
We analyze the performance of GRAL with several pipe
network topologies using a simulation (Section V).

II. Problem Setup: Localization in Pipe
Networks

Applications face the challenge of tracking the location
of a sensor node while it is moving through a pipe net-
works. For our solution to this, we consider networks that
satisfy the following requirements:

• The topology of the network can be described as
1) Junctions that may feature stationary gateways

with uplink connections
2) Links of a known length connecting the junctions

• This topology is fixed and can be modeled as a tree-
shaped graph in which the vertices correspond to
junctions and the edges represent links

• The stationary gateways’ approximate wireless radius
and positions are known a priori

• Sensor units record relevant physical quantities such
as conductivity or temperature while floating through
the pipes

• Every time a sensor unit passes a gateway, it will send
a batch of measurements to the backend

• The liquid flow direction in the network is never
reversed. The sensor nodes thus always travel from
the leaves to the root

This leads us to the measurement localization problem
that is addressed in this paper:

Given a series of measurements from a mobile wireless
sensor node floating through a tree-shaped pipe network,
determine the location in that network at which each
reading was taken.

III. Related Work
Classical approaches to WSN localization in arbitrary

environments can be divided into two classes: Range-
based localization schemes use observations of anchors
with known positions to estimate distances whereas range-
free algorithms which only rely on the binary state of
connectivity [10]. Lateration is a classic example for a
range-based localization method. It relies on the radio
signal strength indicator (RSSI), together with a model for
radio wave propagation [11]. Another range-based method
relies on the time difference of arrival between a radio
pulse and an ultrasonic pulse to estimate the distance to
the anchors [12]. Most range-based approaches are not
easily applicable for usage in MWSN due to the high

number of anchors required, poor calibration of cheap
radio devices, and the presence of obstacles [13].

In networks with dense anchor placement, reasonable
results can already be achieved by simply using the cen-
troid of all visible reference nodes [14], a simple range-
free approach. A graph-based solution is described in [15],
where a fold-free graph embedding is found, upon which
mass-spring based optimization is applied to localize a
node. Again, the problem with respect to the applicability
of classical range-free methods in pipe networks is that a
high gateway density can rarely be guaranteed in practice.

Both kinds of approaches have been used in MWSN
monitoring with floating sensors: Range-free localization
can be accomplished by applying RFID beacons to the
outside of pipes [16]. The SewerSnort system uses a custom
model of radio propagation in pipes to provide ranged lo-
calization with fewer, if more expensive, anchors [17]. Pipe
networks allow for less conventional ranged approaches us-
ing the propagation characteristics of ultrasonic sound [18]
or electromagnetic waves [19], which, however, require
dedicated hardware.

Another idea is to use visual simultaneous localization
and mapping (VSLAM), i.e., rely on camera images of the
pipes’ interior to track the device’s location [20]. Here, the
main drawback is that the nodes either have to transmit
large amounts of data or do expensive computations in-
volved in VSLAM.

For a more comprehensive overview, consult [21], a
dedicated survey of localization solutions for pipe mon-
itoring. Another approach to localize leaks and inflows
into water grids may be to forgo WSN entirely and to
use methods like distributed temperature sensing or gas
injection instead [22].

IV. The GRAL Algorithm
The graph-based localization algorithm solves the Mea-

surement Localization Problem from Section II by assign-
ing positions to the individual measurement packages. For
this class of applications, the position of the nodes along
the length of the pipes are of interest, therefore a position
can be expressed as a four-tuple. This tuple π contains two
junctions in the pipe network and the offset on the shortest
path between them which qualifies a node’s position.

Our algorithm is based on the assumption that we know
the structure of the pipe network the nodes are deployed
in and, at various moments, their positions. The most
obvious example, for the scenario laid out above, is that
when the sensors receive the signal of a gateway with
maximum strength, they are right below it. GRAL exploits
this series of moments with known positions: It localizes
a time-series of node measurements (called packages) by
partitioning them into “epochs”, each of which have a
known final position. The Graph-based localization algo-
rithm combines this information with prior knowledge of
the topology of the deployment environment, encoded in
a weighted, tree-shaped graph (environment graph).

The fact that the signal of the gateway may be received
only within a certain radius provides another positional
anchor: We can tell that a node is at the boundaries of the
circle this radius spans around the gateway the moment
it stops or starts receiving the signal. Note that this could
yield more than one possible position.

Based on the information of previous packages, we can
see at which positions within the graph a node has been
before and select one position for the package. Suppose
that a node starts receiving a given gateway’s signal, this
gateway g2 is located at a junction in the network where
three pipes meet. The node is then localized to be in the
pipe that is on the shortest path between the last gateway
g1 it has been at and g2, exactly g2’s radius removed from
the junction.

Below, we have to formalize the various types of epochs
that are created in the application above to see when
existing epochs learn about their final positions, can be lo-
calized and when new epochs need to be created. We need
to introduce some notation for this: J is the maximum
index of the packages for an epoch, sji is the jth-strongest
signal strength of a gateway in package i, and gji is the
gateway with the jth-strongest signal in package i. G1,
finally, is the set of gateways with the strongest signals
for all packages of an epoch.

GRAL has three epoch types:
• ν epochs where no gateway’s signal is received
• α epochs in which the strength of the strongest

received gateway signal increases with every package
• ω epochs in which the strength of the strongest

received gateway signal decreases with every package
At the most basic, a new package requires a new epoch

if it does not fit the type condition for the latest existing
epoch.

τ(P) :=


ν, if ∀ j = 1..J Gj = ∅
α, if ∀ j = 1..J s1j > s1j−1 ∧ g1j = g1j−1

ω, if ∀ j = 1..J s1j ≤ s1j−1 ∧ g1j = g1j−1

(1)

ν

saved packages

α ω

Fig. 2: Epochs created for a single node moving from a
gateway to another

Because GRAL interpolates the packages’ positions
within an epoch between a known starting and final
position along the shortest route between those in the
environment graph, both of these boundary positions have
to be known so that the packages can be localized, i.e. the
epoch is complete.

There is a set of requirements of which an epoch must
fulfill one to have a known final position πf :

Data: A node’s package p and a set of epochs E
for that node

Result: The updated set of epochs E annotated
with the correct types τ

1 Plast ← P (ϵ|E|) ; // packages in last epoch
/* determine package type as Eq.(1) */

2 if τ(Plast ∪ p) ∈ {α, ω, ν} then
3 Plast ← Plast ∪ p;
4 else

/* coalesce epochs if applicable */
5 if ∃i ∈ N.∀j ∈ N. j > i ∧ τ(Pi) ̸= ν ∧ τ(Pj) = ν

and g1(P1(Ei)) = g1(p) then
6 coalesce {p} and {P (e)|e ∈ ϵi . . . ϵ|E|};
7 else

/* otherwise, create new epoch */
8 E ← E ∪ (τ({p}), —, p);
9 end

10 end
11 return E;

Algorithm 1: Integrating a new package with the
epoch set, P (i) returns the packages in the ith epoch

• It is of the type α and it is not the last epoch (πf is
the position of g1i)

• It is of the type α and the RSSI of the gateway is
maximal in its last package (πf is the position of g1i)

• There is a subsequent epoch that is not of the type ν
(πf is the appropriate position at the border of g1i+1)

• The final position πf is pre-set
In order to be complete, an epoch additionally needs a

starting position which can either be pre-set or be derived
from the final position of the preceding epoch (which must
therefore also fulfill at least one of the above conditions).

For resiliency against positional fluctuations, all epochs
at a specific gateway g after the first α epoch are merged
as long as no other gateway is seen. GRAL is also fault-
tolerant: If a gateway is not operable, the algorithm will
just interpolate package positions with less epochs using
the surrounding gateways.

We consider GRAL to be range-free since it does not use
the RSSI to measure a distance; instead, it uses preloaded
data about the environment to derive distances. The RSSI,
which the implementor can substitute for any other prox-
imity indicator, is only used to determine the qualitative
difference of increasing or decreasing proximity.

A. Algorithm Extensions
In networks with sparse gateway deployment, epochs

of the ν type containing many packages will be created.
GRAL is especially designed for use in non-pressurized
wastewater systems with varying flow speeds. Because
interpolation error due to these speed differences accu-
mulates over time, localization accuracy can be low in
such environments. To alleviate that issue, we propose

two algorithmic extensions, which use information about
nearby other sensor nodes to refine epochs improve posi-
tion estimation.

Checkpointing If there is more than one mobile node
in the system, the nodes may meet. Data about these
encounters can be used to make sure that both nodes get
assigned a similar position for the moments where they
have met. Checkpoints are a way to accomplish this. When
processing an epoch’s packages, a checkpoint containing
a position, a timestamp and the identifier of the issuing
node is added any encountered nodes. A node can only
add a single checkpoint to each other node per epoch –
the algorithm selects the wireless contact with the highest
RSSI. When the encountered node reaches a gateway and
starts to transmit its packages, GRAL creates a new epoch
for the packages with a timestamp later than that of
the checkpoint. The checkpoint’s location is set as the
position that was calculated for the node first to arrive
at a gateway. Fig. 3 illustrates the process.

b

a
b

(a) Node b has already
been at the left gateway, a
second node a arrives

b

a

a
b

(b) Nodes a and b en-
counter one another

Checkpoint

a

b

b

a

(c) Node a reaches the
gateway, a checkpoint for b
is created

Checkpointb

a

b

(d) Node b reaches the
gateway, its ν epoch is split
at the checkpoint

Fig. 3: Checkpoint creation on a single link

Path rectification An encounter between two nodes
can also sometimes place a lower bound on their positional
estimates: Imagine two nodes approaching a junction with
three pipes, like in Fig. 4c. The nodes start on the left and
had contact to respective left gateways before. It is clear
that, when the two nodes meet, they have to be situated
behind the junction where they entered a shared path,
because an encounter has not been possible on the disjunct
paths they have been on before.

pathv(v, w) returns the vertices on the path from v
(inclusive) to w (exclusive) in the environment graph.

∃vc ∈ V.¬∃vn ∈ V. vc ̸= vn ∧ vc ∈ pathv(va, vf)∧
vc ∈ pathv(vb, vf) ∧ vn ∈ pathv(va, vf)∧
vn ∈ pathv(vb, vf)∧
|pathv(vc, vf)| < |pathv(vn, vf)| (2)

If packages for a node a coming from the position corre-
sponding to vertex va in the environment graph indicate
that it has seen another node b (coming from the corre-
sponding position of vertex vb), therefore, their confluence
vertex is calculated.
The confluence vertex vc is as defined above as the

earliest vertex that is contained both in the paths from va
and vb to a shared destination vf . Once the relevant epochs
get completed, localization is first performed normally. If
the results of this process for a estimate packages recording
contact to b to be located before the confluence vertex, the
relevant epochs are split at the earliest package recording
this contact with the location of the confluence vertex as
the final position πf of the first of these two epochs, the
packages are then re-localized.

V. Evaluation
To evaluate the performance of GRAL under vary-

ing conditions, we generate several pipe network graphs
through which simulated sensor nodes move, sense, and
communicate. For this, we created a custom simulation
environment.

A. Simulation
At each step of the simulation, all mobile node positions

are moved a fixed amount towards the root junction,
representing a base current within the pipes. A noise term
sampled from a boolean distribution with P (1) = 2

3 is
added to this movement. Random fluctuations in flow
speed are to be expected in real situations, due to ob-
structions and a non-uniform current along the cross-
section of the pipe [23]. The simulation uses a fixed
radio propagation model to calculate RSSI-like strength
indicators for the connections. Just like a physical system,
it occasionally emits batches of measurement packages to
be localized by GRAL. We compare our solution with and
without the described extensions against a naive approach
(baseline) which consists of simple linear interpolation
between gateways based on the first- and last-contact
timestamps. A reference implementation of GRAL is avail-
able at https://github.com/reknih/GRAL.

B. Experiments
In total, our experiments cover four scenarios (overview

in Fig. 4) for which 200 randomized runs (instances) are
performed. The test scenarios were constructed to be rep-
resentative of possible topologies that sensor nodes might
be deployed in in real wastewater systems. Scenarios 4c
and 4d include merging branches, which allow evaluation
of the path rectification feature. Deviations of the calcu-
lated locations from the ground truth are given as Root
Mean Square Error for both each instance (iRMSE) and
the entire respective scenario (dRMSE). We additionally
use the Mean Absolute Error (MAE) to compute average
error ranges in meters for real deployments.

50 50

a

(a) A single node in a pipe

a

b
50 50

(b) Two nodes in a pipe

a

b

50

50

50

(c) Two nodes in an envi-
ronment with a confluence

50

5
0

25

50

50

35

30

30

30

(d) Complex environment

Fig. 4: Overview of the test scenarios; to scale circles
representing gateway ranges

TABLE I: Evaluation results. Values correspond to
RMSE over 200 instances. CP = Checkpointing, PR =
Path rectification

Baseline GRAL
Vanilla CP PR CP & PR

Scenario 1 9.54 6.41 - - -
Scenario 2 9.13 6.5 6.83 - -
Scenario 3 11.64 10.03 9.9 10.02 9.89
Scenario 4 11.55 10.5 11.72 10.48 11.71
Total 10.1 8.36 - - -

C. Results
The results of our experimental evaluation are

summarized in Table I. GRAL consistently scores a
lower RMSE than the baseline. In Scenario 3, the best
accuracy is achieved by enabling both extensions, thus
demonstrating the benefit of checkpoints in a relatively
well-covered environment. Throughout the following, we
give a detailed discussion of the success and failure cases
and project the results onto deployments in real pipe
networks.

Scenario 1 In the first scenario, the environment con-
sists of three gateways, connected by two pipe segments
and is populated with a single node (Fig. 4a). GRAL with-
out extra features achieves a total error of dRMSE = 6.41,
compared to the baseline error of dRMSEB = 9.54. In this
scenario, the MAE is 4.81 over 100 distance units. This
means that one can expect GRAL to have an average error
of 4.81% of the total route length for a localized point in
this scenario, given that the ratio of pipe in range of a
gateway equals

√
10
25 .

Fig. 5 allows a closer look at instances with low and high
errors in the first scenario, respectively. In 5a, we see that
the node briefly stays in the vicinity of the first and second
gateway respectively, creating prolonged and flat ω epochs.
In contrast, Instance 5b shows the node to be drifting back
and forth in the segment between two gateways, causing
a large divergence from the interpolated values for that
epoch.

Scenario 2 The next scenario as seen in Fig. 4b has
the same layout but with two nodes deployed in close

p
o
s
itio

n
 (In

s
ta

n
c
e
 2

0
0

)

time

(a) iRMSE = 3.174

p
o
s
itio

n
 (In

s
ta

n
c
e
 7

5
)

time

(b) iRMSE = 10.7

Fig. 5: Instances with low or high iRMSE from the first
dataset

fre
q
u
e
n
c
y

iRSME

Fig. 6: Distribution of iRMSE for a dataset with two
nodes and no junctions; checkpoints enabled for striped
bars

succession. Thus, the two are frequently within range of
each other. Fig. 6 shows the distribution of iRMSE for
localization with and without checkpoints respectively.
The total error for the former is dRMSEC = 6.83, for
the latter it is dRMSE = 6.5. With the same assumptions
as above, this would mean an average localization error of
5.22% for checkpoints enabled and 4.98% for checkpoints
disabled.

The decrease in performance with checkpointing en-
abled is a rather surprising result. To see what has
gone wrong, we again consider two exemplary instances
in Fig. 7: Node 165 (blue) in 7a moves steadily, thus
experiences small localization errors. The speed of node
665 (orange) fluctuates between gateways. Because node
165 is the first to arrive at a gateway, its relatively
good localization can help improve the data for node 665.
Conversely, in 7d we again see one node (103; blue) moving
steadily and one (603; orange) experiencing turbulence. In
this instance, the turbulent node 603 is the first to arrive
at a gateway after it met its counterpart. Thus, it passes
on its big localization error to node 103.

We see here that checkpointing, while having a sound
theoretical justification, can cause the propagation of er-
rors from one node to another in certain cases.

Scenario 3 This scenario introduces a new topology,
as displayed in Fig. 4c. In this case, two initial gateways
each serve as starting points for a node. They are both
connected to the same junction with pipes of equal length.
This center junction lacks a gateway but has another
pipe leading to a last gateway. In this scenario, path
rectification becomes relevant as nodes may encounter
other nodes that did not share all of their path before
moving on to a shared gateway. The results show that
again vanilla GRAL (dRMSE = 10.03) outperforms the
baseline algorithm (dRMSEB = 11.64). The total error
is higher than in the previous datasets because of the

p
o
s
itio

n
 (In

s
ta

n
c
e
 1

6
5

)

time

(a) iRMSE = 5.79

checkpoints enabled

time

p
o
s
itio

n
 (In

s
ta

n
c
e
 1

0
3

)

(b) iRMSE = 14.95

checkpoints enabled

p
o
s
itio

n
 (In

s
ta

n
c
e
 1

6
5

)

time

(c) iRMSE = 6.08

checkpoints disabled

p
o
s
itio

n
 (In

s
ta

n
c
e
 1

0
3

)

time

(d) iRMSE = 11.71

checkpoints disabled

Fig. 7: Instances with low or high iRMSE from the second
dataset

uncertainty introduced by the missing center gateway.
Interestingly, checkpoints seem to increase overall accu-
racy in this dataset (dRMSEC = 9.90). The total error
decreases slightly with rectification enabled (dRMSEP =
10.02). Thus, simultaneously using both features, also
increases localization accuracy (dRMSECP = 9.89). This
means, that if the fraction of each path covered by a
gateway is

√
10
50 , the mean localization error for the worst

configuration (vanilla) is 7.62%. The best configuration
with checkpoints and path rectification would have an
mean localization error of 7.58%.

p
o
s
itio

n
 (In

s
ta

n
c
e
 3

1
2

)
time

(a) iRMSE = 9.685

rectification enabled

p
o
s
itio

n
 (In

s
ta

n
c
e
 3

1
2

)

time

(b) iRMSE = 11.889

rectification disabled

Fig. 8: Comparison between enabled and disabled path
rectification

Finally, we examine an instance in which path rectifica-
tion is beneficial: In Fig. 8, two nodes have different speeds
before and after the junction where they first meet (red
line). They also, importantly, encounter each other before
the final gateway. At the confluence point, new epochs
are created for both nodes, permitting more accurate
localization. Path rectification only moves the position
up to the first vertex where the other node could have
possibly been encountered; therefore, it is not possible to
‘overshoot’ the correct position.

Scenario 4 In this final scenario (Fig. 4d), we imple-
mented a more realistic environment with longer paths

from source to sink. There are five nodes in this scenario.
The experiments show that GRAL with path rectifica-
tion performs the best here (dRMSEP = 10.48) while
using checkpoints (dRMSEC = 11.72) is outperformed
by even the baseline algorithm (dRMSEB = 11.55). This
demonstrates that, while checkpoints may be beneficial
in environments with good gateway coverage, they may
severely impact the result if gateways are sparsely placed.
The average localization error for the best configuration is
7.76%.

VI. Conclusion
In this paper, we introduce the GRAL algorithm for

floating wireless sensor networks in pipe networks with
a tree-like structure and sparse gateway coverage. Our
solution does not need auxiliary positioning systems like
GPS, nor does it burden the sensors with any additional
computation. Instead, location estimates are computed for
every measurement package once the node encounters a
gateway and transmits them to a centralized backend.
In contrast to other range-free approaches, GRAL can
deliver location estimates for moments where a node has
no contact to any other node. An important use case
for our system is in vivo monitoring campaigns in pipe
networks to detect leakages and infiltrations.

We evaluate GRAL and the two proposed extensions
in a simulated environment with noisy node movement.
As a baseline for comparison, we use simple linear inter-
polation between the encountered gateways. The results
show that GRAL consistently outperforms the baseline
and achieves a measurement localization accuracy between
4.81% and 7.76%, depending on the distance between con-
secutive gateways in the network and flow speed variabil-
ity. Using two extensions, checkpointing and path rectifica-
tion in settings with multiple nodes, a sparse deployment
of gateways, and a frequently confluenting pipe network,
can improve estimation accuracy (RMSE = 9.89) over
vanilla GRAL (RMSE = 10.03). The advantage of path
rectification increases for networks with more junctions
and longer pipe segments.

In the future, we plan to use floating sensor node
prototypes to assess how well our solution is working in
the real world. It would also be promising to extend the
algorithm further by taking flow characteristics of different
parts of the pipe network (e.g. pipe width, materials)
into account to further segment and adjust the position
predictions.

Acknowledgments
This work has been supported through grants by the

German Ministry for Education and Research (BMBF) as
WaterGridSense 4.0 (funding mark 02WIK1475D).

References
[1] A. A. Nassiraei, Y. Kawamura, A. Ahrary, et al., “Concept

and design of a fully autonomous sewer pipe inspection mo-
bile robot ‘KANTARO’,” in Proceedings 2007 IEEE Interna-
tional Conference on Robotics and Automation, IEEE, 2007,
pp. 136–143.

[2] O. Tătar, D. Mandru, and I. Ardelean, “Development of
mobile minirobots for in pipe inspection tasks.,” Mechanika,
vol. 68, no. 6, 2007.

[3] T.-t. T. Lai, Y.-h. T. Chen, P. Huang, et al., “Pipeprobe: A
mobile sensor droplet for mapping hidden pipeline,” in Pro-
ceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, ACM, 2010, pp. 113–126.

[4] J.-H. Kim, G. Sharma, N. Boudriga, et al., “Spamms: A
sensor-based pipeline autonomous monitoring and mainte-
nance system,” in 2010 Second International Conference on
Communication Systems and Networks (COMSNETS 2010),
IEEE, 2010, pp. 1–10.

[5] Z. Sun, P. Wang, M. C. Vuran, et al., “Mise-pipe: Magnetic
induction-based wireless sensor networks for underground
pipeline monitoring,” Ad Hoc Networks, vol. 9, no. 3, pp. 218–
227, 2011.

[6] S. Ishihara and D. Sato, “Active node selection in flowing
wireless sensor networks,” Proc. 6th ICMU, pp. 8–15, 2012.

[7] M. S. BenSaleh, S. M. Qasim, A. M. Obeid, et al., “A review
on wireless sensor network for water pipeline monitoring appli-
cations,” in 2013 International Conference on Collaboration
Technologies and Systems (CTS), IEEE, 2013, pp. 128–131.

[8] F. Lorenz, M. Geldenhuys, H. Sommer, et al., “A scalable and
dependable data analytics platform for water infrastructure
monitoring,” in IEEE International Conference on Big Data,
IEEE, 2020, pp. 3488–3493.

[9] M. Geldenhuys, J. Will, B. Pfister, et al., “Dependable iot
data stream processing for monitoring and control of urban
infrastructures,” in 1st International Workshop on Testing
Distributed Internet of Things Systems, IEEE, 2021.

[10] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor
network localization techniques,” Computer Networks, vol. 51,
no. 10, pp. 2529–2553, 2007.

[11] T. S. Rappaport, Wireless communications: Principles and
practice, 2nd ed., ser. Prentice Hall communications engineer-
ing and emerging technologies series. Upper Saddle River, NJ,
USA: Prentice Hall, 2002, 707 pp.

[12] B. Krishnamachari, Networking Wireless Sensors. New York,
NY, USA: Cambridge University Press, 2005, 202 pp.

[13] H. Karl and A. Willig, Protocols and Architectures for Wire-
less Sensor Networks, 4th ed. West Sussex, UK: John Wiley
& Sons, 2007, 497 pp.

[14] S. P. Singh and S. C. Sharma, “Range free localization
techniques in wireless sensor networks: A review,” Procedia
Computer Science, vol. 57, no. 1, pp. 7–16, 2015.

[15] N. Priyantha, H. Balakrishnan, E. Demaine, et al., “Anchor-
free distributed localization in sensor networks,” MIT Lab-
oratory for Computer Science, Cambridge, MA, USA, Tech
Report 892, 2003-04, p. 13.

[16] A. S. Almazyad, Y. M. Seddiq, A. M. Alotaibi, et al., “A
proposed scalable design and simulation of wireless sensor
network-based long-distance water pipeline leakage monitor-
ing system,” Sensors, vol. 14, no. 2, pp. 3557–3577, 2014.

[17] J. Kim, J. S. Lim, J. Friedman, et al., “Sewersnort: A drifting
sensor for in-situ sewer gas monitoring,” in 2009 6th Annual
IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks, IEEE, 2009,
pp. 1–9.

[18] Y. Bando, H. Suhara, M. Tanaka, et al., “Sound-based online
localization for an in-pipe snake robot,” in 2016 IEEE Inter-
national Symposium on Safety, Security, and Rescue Robotics
(SSRR), IEEE, 2016, pp. 207–213.

[19] T. Seco, C. Rizzo, J. Espelosı́n, et al., “A robot localization
system based on rf fadings using particle filters inside pipes,”
in 2016 International Conference on Autonomous Robot Sys-
tems and Competitions (ICARSC), IEEE, 2016, pp. 28–34.

[20] D. Krys and H. Najjaran, “Development of visual simultane-
ous localization and mapping (vslam) for a pipe inspection
robot,” in 2007 International Symposium on Computational
Intelligence in Robotics and Automation, IEEE, 2007, pp. 344–
349.

[21] M. Z. Abbas, K. A. Baker, M. Ayaz, et al., “Key factors
involved in pipeline monitoring techniques using robots and
wsns: Comprehensive survey,” Journal of Pipeline Systems
Engineering and Practice, vol. 9, no. 2, 2018.

[22] K. B. Adedeji, Y. Hamam, B. T. Abe, et al., “Towards achiev-
ing a reliable leakage detection and localization algorithm for
application in water piping networks: An overview,” IEEE
Access, vol. 5, pp. 20 272–20 285, 2017.

[23] H. Haug, Statistische Physik, 2nd ed., 1 vols. Berlin, Heidel-
berg, DE: Springer, 2006, vol. 1, 376 pp.

	Enlighten Accepted coversheet
	268176

