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Abstract—Mobile clients that consume and produce data are
abundant in fog environments. Low latency access to this data
can only be achieved by storing it in close physical proximity
to the clients. Current data store systems fall short as they do
not replicate data based on client movement. We propose an
approach to predictive replica placement that autonomously and
proactively replicates data close to likely client locations.

Index Terms—Fog Computing, Data Management, Replication
Service

I. INTRODUCTION

To reap the full potential of fog computing and enable
emerging application domains such as the Internet of Things
(IoT) or connected driving, platform architectures need to be
redesigned for an increasing degree of geo-distribution.

In, e.g., a fog data store, full replication is infeasible
as it requires constant communication between all nodes,
especially when considering consistency guarantees. Newer
systems shard data and route client requests to the node
that is concerned with a particular data item [1]. GFS [2]
and Nebula [3] use centralized master servers that control
replica placement. This is practical in a tightly coupled cluster
but routing requests to a central server negates any QoS
improvements in a geo-distributed fog deployment. Pastry [4],
OceanStore [5], or Cassandra [6] use hashing, which scales
well and is easily implemented, but cannot take data movement
based on proximity into account.

Instead, the close relationship between physical and virtual
world in fog computing invites a new approach where data is
sharded based on network topology and geographic distribu-
tion of application clients. Most importantly, different clients
rarely access the same data at different locations, e.g., an
eHealth sensor is bound to a specific person and is independent
from sensors on another person.

A fog data management system needs to ensure that the data
the client needs is available at its closest node. In iFogStor [7],
a centralized cloud node calculates optimal data placement
based on optimizing latency between clients and nodes, yet
placement is static and as such not useful for mobile clients.
FBase [8], [9] allows applications to control replica placement
directly, which optimizes efficiency by moving data replicas
with clients but places a burden on application developers.
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Fig. 1. Hybrid Solution with Thin Client Middleware and Prediction Logic
at Edge Nodes

We extend this approach with a component to predict
application client movement that alleviates work needed on
the application side. The idea is that a client always accesses
the same kind of data, so constantly moving this data to
a node near the client leads to optimal resource allocation.
Crucially, this needs to happen without fully replicating all
data, which is inefficient considering the limited network and
storage resources available at the fog and edge.

II. ARCHITECTURE

Introducing a centralized component that manages replica
placement limits scalability and introduces additional latency.
Furthermore, all access data would need to be relayed to this
component, increasing stress on the network.

The better solution, then, is to decide replica placement at
the edge in a decentralized manner. We see two options for
this: storage nodes keep track of data access and communicate
among each other to coordinate data movement, or a client-
side middleware initiates data movement. The first approach
enables thinner clients, can make use of resource pooling for
different clients on the storage node, and can take topology
information into account. The second approach places a lesser
burden on the edge node as prediction logic travels with the
client, and sensitive information about data access and location
can be kept on the client.

We propose a hybrid of both solutions. As shown in
Figure 1, the client contains a small middleware that collects
metadata about data access and, optionally, hints about future
movement or data access from the application in the form of
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Fig. 2. The Application Client Only Moves Between Adjacent Nodes and
Cannot Skip a Node

geo-hints. The middleware then relays the collected data to the
edge node, which can also collect additional metadata. This
data is then used by a prediction component in the edge node
that predicts future client location and initiates data movement.

Data about a particular client is kept mostly on the client
so it does not have to be propagated throughout the storage
system. At the same time, executing prediction logic on the
edge node enables more efficient clients.

III. PREDICTIVE REPLICATION STRATEGIES

When deciding whether to replicate a group of data items
to a particular node, two costs have to be considered. On the
one hand, moving a replica incurs a cost for network traffic,
increased complexity in managing consistency, and a cost for
actually storing the data. On the other hand, opportunity costs
for not replicating have to be considered as well. These could
be increased access latency, decreased resiliency in case of
node failure, or costs caused by missed QoS guarantees.

The optimal replication strategy for a data item requires
knowledge of where and when application clients access this
item. Hence, predicting data placement means predicting data
access. This prediction can be based on the times a client
accessed particular data in the past, on the physical or logical
location of that access, on inferred metadata, or on client hints
about future data access and location.

Client access statistics in the form of time series data can be
collected. From here, time series forecasting can help predict
where the client might be located. Movement of the client
may also be considered. When data shows that the client
continuously moves between nodes in the same direction,
future access is likely to happen at nodes further in this
direction. Metadata inferred from the data could, e.g., be the
speed and direction of a connected car that it writes to the
data store. Finally, a client might have specific information on
where it is moving and where future access will happen and
can relay that information to the distributed storage system.

Based on this data, time series forecasting, e.g., ARI-
MAX [10] or machine learning might be used to predict future
client location. The prediction can be simplified when taking
topology into account. As shown in Figure 2, to reach the
section of a node that is not adjacent to the client’s current
section, it must first pass through the section of an adjacent
node. Hence, when a node predicts the next location of the
client, only adjacent nodes must be considered. This greatly

reduces possible locations and, consequently, nodes only need
a local view of the system rather than knowledge of all other
nodes. Clients disconnecting and reconnecting at a different
part of the world, e.g., a user with a mobile phone boarding
a flight, are a particular challenge we plan to investigate.

Data movement within the system should also be transpar-
ent, as predicting location of application clients has privacy
implications. Metadata collected to realize this prediction
could personally identify users and should as such be treated
as personally identifiable data. Predictions must also conform
to data movement restrictions, e.g., a dataset might be required
to not leave the European Union because of the GDPR.

IV. CONCLUSION & FUTURE WORK

Current data store designs are ill-equipped to maximize
efficiency in geo-distributed fog deployments. Data should
only be replicated close to the application clients that access
it. This replication should happen automatically to lower the
barrier of fog computing adoption for application developers.
To that end, we present an approach towards predictive replica
placement that predicts movement of application clients based
on data such as past data access patterns and proactively repli-
cates data to likely future locations. This approach promises
more efficient resource allocation in fog environments and
optimal access latency to data for clients.

Our approach opens up interesting future research direc-
tions. We plan to evaluate the effectiveness of different sources
for data access and client location patterns, as well as different
prediction methods. Furthermore, we plan to compare the
performance of our proposed system to other replica placement
approaches, in particular with regards to access latency, over-
head, and privacy in the context of data movement restrictions.
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