
Streaming vs. Functions:
A Cost Perspective on Cloud Event Processing

Tobias Pfandzelter†∗, Sören Henning‡∗, Trever Schirmer†, Wilhelm Hasselbring‡, David Bermbach†
†TU Berlin & ECDF, Mobile Cloud Computing Research Group

{tp,ts,db}@mcc.tu-berlin.de
‡Kiel University, Software Engineering Group
{soeren.henning,hasselbring}@email.uni-kiel.de

Abstract—In cloud event processing, data generated at the edge
is processed in real-time by cloud resources. Both distributed
stream processing (DSP) and Function-as-a-Service (FaaS) have
been proposed to implement such event processing applications.
FaaS emphasizes fast development and easy operation, while
DSP emphasizes efficient handling of large data volumes. Despite
their architectural differences, both can be used to model and
implement loosely-coupled job graphs.

In this paper, we consider the selection of FaaS and DSP from
a cost perspective. We implement stateless and stateful workflows
from the Theodolite benchmarking suite using cloud FaaS and
DSP. In an extensive evaluation, we show how application type,
cloud service provider, and runtime environment can influence
the cost of application deployments and derive decision guidelines
for cloud engineers.

Index Terms—cloud data processing, streaming, FaaS, scala-
bility

I. INTRODUCTION

The increasing degree of data generation at the edge, e.g.,
by web clients or IoT devices, has led to a growing demand
for live data and event processing in the cloud [1]–[3]. Today,
the most popular paradigms for this are distributed stream
processing (DSP) and Function-as-a-Service (FaaS) [4], [5].
In both paradigms, data processing applications are modeled
as loosely-coupled graphs of data operations.

In DSP, this graph is a network of operators, deployed on
a stream processing engine running on a distributed cluster
of compute nodes. The stream processing engine partitions
incoming data across nodes for horizontal scalability, hence,
parallelizing the data processing workflow for the devel-
oper [1], [6]. Typical examples of stream processing engines
include Apache Flink1 and Google Cloud Dataflow2 [7], [8].
FaaS platforms, e.g., AWS Lambda3 and Google Cloud Func-
tions4, allow developers to deploy small, stateless functions
on managed infrastructure that are billed per invocation and
run duration. These functions can also be chained to build
larger applications, e.g., through synchronous invocations or
asynchronously by sharing state in a database [9], [10]. The

∗Co-first authors.
1https://flink.apache.org/
2https://cloud.google.com/dataflow/
3https://aws.amazon.com/lambda/
4https://cloud.google.com/functions/

managed approach promises high elasticity and scalability for
developers and allows cloud service providers to allocate their
infrastructure more efficiently [11], [12].

Despite their architectural differences, both DSP and FaaS
can be used to model the loosely-coupled job graphs that un-
derlie cloud data processing [5], [13]. Beyond some qualitative
concerns, different billing models introduce a cost dimension
that should be taken into account when designing data process-
ing applications and choosing between paradigms [11], [14].
In this paper, we quantify this cost dimension through cost
benchmarking [15] to let application developers and cloud en-
gineers make more informed decisions when designing event
processing applications. We make the following contributions:

• We present an application-centric benchmark with both
stateful and stateless applications for cost-benchmarking
of DSP and FaaS environments (Section III).

• In experiments, we analyze the impact of processing
paradigm, type of application, execution environment,
and choice of cloud provider on the cost of an event
processing application deployment (Section IV).

• We provide decision guidelines for application developers
based on our quantitative data (Section V).

• We discuss the limitations of our work and derive avenues
for future work (Section VI).

We make our implementation available as open-source5 to
enable other researchers and practitioners to conduct their own
experiments.

II. BACKGROUND

While the concept of cloud computing is well-established in
both research and industry, paradigms for cloud applications
are constantly evolving. In this section, we give an overview of
distributed stream processing and Functions-as-a-Service, two
of today’s most common cloud data processing paradigms [1],
[5], and introduce the related terminology.

A. Distributed Stream Processing

Most distributed stream processing engines extend the well-
known MapReduce pattern [16] with support for processing

5https://github.com/pfandzelter/cloud-event-processing-costs

ar
X

iv
:2

20
4.

11
50

9v
2

 [
cs

.D
C

]
 1

2
A

ug
 2

02
2

https://flink.apache.org/
https://cloud.google.com/dataflow/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://github.com/pfandzelter/cloud-event-processing-costs

continuous data streams. In modern DSP engines, devel-
opers define dataflow graphs (called pipelines or jobs) of
operators using a declarative programming model [6], [7].
Prominent examples for DSP engines are the open source
projects Apache Flink [17], Apache Samza [18], and Apache
Kafka Streams [19], or cloud services such as Google Cloud
Dataflow [20]. Apache Beam6 is a framework providing a
unified programming model [20] to define dataflow graphs,
which can be executed by many stream processing engines.

DSP engines are deployed as clusters of multiple instances
(e.g., on different computing nodes). To enable horizontal
scalability, data streams between operators are partitioned and
operators are scheduled on multiple instances, where each
operator instance processes only a portion of the data. The
key idea is that state should only be maintained locally in
an operator instance. Additionally, DSP engines often use
periodic checkpointing and require durable, replayable data
sources to ensure fault tolerance.

While stream processing engines have traditionally been
operated as long-running clusters on virtual machines, they are
now often deployed in standalone, cloud-native applications.
In particular, containerization techniques and Kubernetes, the
de-facto standard for container orchestration [21], are used
to reduce the operational complexity when running DSP jobs
at large scale; managed Kubernetes services are provided on
all major cloud platforms. In addition to a (fixed) cluster
management fee, users of such services are billed variable
cost for the allocated VMs or, more recently, for the actual
resource usage of containers.

B. Function-as-a-Service

In the FaaS programming model, developers deploy applica-
tions in the form of individual functions to a FaaS platform that
handles event-driven code invocation and horizontal scaling.
Function infrastructure is completely handled by the cloud ser-
vice provider, i.e., “serverless”, and consumers pay per request
based on the resources consumed by a function [12], [22].
Functions can be implemented in a number of programming
languages and can be invoked by web requests, IoT sensor
readings, database updates, and even other functions, so-called
function chaining [23], [24].

A key element to horizontal scalability is that function
instances logically exist only for the duration of a single invo-
cation and do not support any state beyond that execution [10].
To support stateful applications, functions usually leverage
serverless, pay-per-request cloud datastores such as Google
Cloud Firestore7 or AWS DynamoDB8 [25], [26].

In combination with lightweight virtualization techniques,
such as containers or microVMs [27], [28], FaaS platforms
can quickly spin up new and destroy old function instances,
enabling rapid elasticity. The low management burden for the
consumer and the wide range of possible applications are clear
advantages for developers. For cloud service providers, the

6https://beam.apache.org/
7https://cloud.google.com/firestore/
8https://aws.amazon.com/dynamodb/

FormatInput Storage

Fig. 1. In the stateless storage use-case (UC1), input data is transformed and
then persisted in a storage backend.

AggregateSliding
WindowInput Further

Processing

Fig. 2. In the stateful sliding window aggregation use-case (UC2), incoming
data items are grouped in fixed-size time windows based on their key. Within
a window, data is aggregated and then forwarded for further processing, e.g.,
to persist it.

fine-grained execution of functions enables a more efficient
allocation of their infrastructure [12].

III. COST BENCHMARK

Both FaaS and DSP can be used to build cloud event
processing applications. To quantify the cost dimension of
the decision between the two paradigms when building such
an application, we introduce a new application-centric cost
benchmark that can be applied to any cloud processing
paradigm. The proposed benchmark comprises an application
implementing two example use-cases, which could easily be
extended, the load generator which creates requests for the
application, and its configuration. The system under test (SUT)
in each benchmark is either a FaaS or a DSP platform. In
this section, we present our proposed benchmark and the
methodology for executing it.

A. Cloud Event Processing Use-Case

Our example application is derived from the Theodolite
suite of stream processing scalability benchmarks [4]. Both
use-cases are designed for Industrial Internet of Things (IIoT)
event processing in the context of a smart factory, where
sensors at the edge produce large amounts of data that require
real-time event processing in the cloud [29]. We chose both a
stateless and a stateful use-case in order to quantify the impact
of state management on application cost.

Stateless Storage: The first use-case (UC1) persists in-
coming data in a serverless key-value database. Such an
operation is often required for archiving events and making
them accessible to other applications. As shown in Fig. 1,
incoming events are first transformed to match the data format,
required by the database API, and then written to that database
system. Since each data item is treated individually, no state
is maintained within the application.

Stateful Sliding Window Aggregation: As a second use-
case, we chose a sliding window data aggregation (UC2).
Such aggregations are used in many scenarios, e.g., to derive
a smoothed trend. As illustrated in Fig. 2, incoming data is
first windowed in a sliding window. Data within a window
is then aggregated by computing summary statistics, yielding
a moving aggregation. Results of this windowed aggregation

https://beam.apache.org/
https://cloud.google.com/firestore/
https://aws.amazon.com/dynamodb/

TABLE I
OVERVIEW OF DSP DEPLOYMENTS CONSIDERED (CHANGES OVER THE BASELINE MARKED IN BOLD)

GCP (Baseline) GCP Pub/Sub AWS GCP Samza GCP Dataflow GCP Autopilot

Cloud Provider GCP GCP AWS GCP GCP GCP
Kubernetes Service GKE GKE EKS GKE — GKE Autopilot
VM Instance Type e2-standard-4 e2-standard-4 m5.xlarge e2-standard-4 e2-standard-4 —
Streaming Engine Apache Flink Apache Flink Apache Flink Apache Samza Cloud Dataflow Apache Flink
Transport HTTP & Kafka Cloud Pub/Sub HTTP & Kafka HTTP & Kafka Cloud Pub/Sub HTTP & Kafka
Database Cloud Firestore Cloud Firestore AWS DynamoDB Cloud Firestore Cloud Firestore Cloud Firestore

TABLE II
OVERVIEW OF FAAS DEPLOYMENTS CONSIDERED (CHANGES OVER THE BASELINE MARKED IN BOLD)

GCP (Baseline) GCP Pub/Sub AWS GCP Go GCP NodeJS

Cloud Provider GCP GCP AWS GCP GCP
FaaS Engine Cloud Functions Cloud Functions AWS Lambda Cloud Functions Cloud Functions
Function Memory 256 MB 256 MB 256 MB 256 MB 256 MB
Language Java Java Java Go NodeJS
Transport HTTP Cloud Pub/Sub HTTP HTTP HTTP
Database Cloud Firestore Cloud Firestore AWS DynamoDB Cloud Firestore Cloud Firestore

can then be used in further data processing. In this use-case,
the windowing of data requires application state.

B. Benchmark Methodology

Executing the benchmark for a platform entails threes steps:
1) An application containing the two use-cases is imple-

mented for the chosen platform.
2) For different rates of data ingress, i.e., workload levels,

load is generated against the application.
3) The total cost of running the application is measured for

the duration of processing a constant data rate.
Application Implementation: Our benchmark first requires

that the two use-cases are implemented for a chosen SUT, such
as a DSP in a specific cloud environment or a FaaS offering.
Although we present some implementations in Section IV,
we cannot provide a generic, ready-to-use implementation for
all possible SUTs, as implementation details are highly SUT-
specific. The application implementation should also conform
to any best practices for the chosen SUT to support a fair
comparison [15].

The benchmark is not restricted to evaluating only the
difference between DSP and FaaS, but can also be used to eval-
uate other scenarios: Users might, e.g., use the benchmark to
compare two different stream processing engines, compare the
same engine deployed on different cloud providers, or compare
the same FaaS functions using different event triggers. We
explore such options in our experiments in Section IV.

Load Generation: Load is generated through a dedicated
load generator deployed within the same cloud datacenter
as the SUT using the Theodolite load generators. The load
generators emulate a number of sensors that send data in a
fixed interval in an open workload model [15], i.e., requests
are non-blocking. By varying the number of sensors that are
emulated by the load generator, we can achieve cost estimates

for varying request loads. To simplify our cost calculations, we
set the fixed interval at one second so that, e.g., 500 emulated
sensors lead to a load of 500 requests/s.

A constant arrival rate does not necessarily reflect real world
data ingress patterns. However, the goal of our benchmark is
not to measure scalability or elasticity of a given platform but
rather to explore the cost of operating an application for a
given data rate that may reflect an average rate over time.

Cost Measurement: The result of our benchmark is an
hourly cost estimate for the implementation of a use-case for
a given level of constant load. To yield such an estimate, we
can leverage different kinds of information provided by cloud
platforms or measurements. For experiments on FaaS plat-
forms with pay-per-request pricing models, cost estimates can
be derived by extrapolating from small-scale environments, as
the cost can be expected to scale linearly with the number of
requests for current cloud pricing models. Additionally, any
costs for database reads and writes can be derived by tracking
database access and calculating the resulting cost based on per-
request cost of the database system used. To achieve a cost
estimate for a DSP deployment, we benchmark multiple infras-
tructure configurations until the least expensive deployment,
which can still handle the configured load without violating
specified service level objectives (SLOs), is found [30], [31].
Specifically, our SLO demands that the event consumer lag
does not increase substantially [32], meaning that events are
processed at the same or higher rate of event ingress. We
evaluate this using monitoring data provided by the SUT and
the cloud providers that are automatically analyzed by the
Theodolite framework [33].

IV. EXPERIMENTS

In this section, we present an extensive evaluation of dif-
ferent cloud event processing deployments. After an initial

Load
Generator

FaaS Firestore

(a) UC1 as FaaS Implementation

Load
Generator

Firestore

Kubernetes

Kafka Flink
HTTP
Bridge

(b) UC1 as Streaming Implementation

Load
Generator

FaaS
Standard
Output

Firestore

(c) UC2 as FaaS Implementation

Load
Generator

Standard
Output

Kubernetes

FlinkHTTP
Bridge Kafka

(d) UC2 as Streaming Implementation

Fig. 3. Implementations in our baseline benchmarks: To aggregate data across multiple events, the FaaS implementation is connected to a Firestore database
to persist state. As Apache Beam running on top of Apache Flink cannot process HTTP requests directly, we add an HTTP bridge and Apache Kafka.

comparison of DSP and FaaS (Section IV-A), we use our
benchmark to explore the parameter space. Specifically, we
evaluate the impact of chosen event passing paradigm (Sec-
tion IV-B), cloud service provider (Sections IV-C and IV-D),
FaaS runtime environment (Section IV-E), DSP engine choice
(Section IV-F), a serverless DSP offering (Section IV-G), and
a managed Kubernetes service (Section IV-H). An overview of
our experiment setups for DSP and FaaS is given in Tables I
and II, respectively.

A. Baseline: Cloud Stream Processing and Functions

As our baseline, we compare Google Cloud Functions and
Apache Flink, running Apache Beam pipelines on Google
Kubernetes Engine (GKE).

Implementation: In the stateless storage use-case (UC1),
client events are sent over HTTP and stored in Google Cloud
Firestore (see Fig. 3a). We choose Firestore for its pay-as-you-
go model that fits the serverless pricing model. As necessary
for Apache Flink, HTTP events are enqueued in Apache Kafka
by a middleware prior to processing (see Fig. 3b). Cloud
Functions, on the other hand, can directly expose an HTTP
endpoint.

The stateful windowed aggregation application (UC2) also
receives events over HTTP, but results are emitted to the
output log of the respective platform. In a real application,
a further stateless operation such as UC1 might be performed
afterwards, yet our goal here is to study the stateful operator in
isolation. For our implementation with Flink, we use the built-
in window aggregation mechanisms with RocksDB as state
backend (see Fig. 3d). To support stateful windowed aggrega-
tion on stateless functions, we store intermediate window state
in a Google Cloud Firestore collection for each window (see
Fig. 3c). Both implementations are configured to aggregate
data over windows of 30 seconds, with a new window starting
every 3 seconds. This results in 10 windows per emulated
sensor that are maintained in parallel.

As Apache Flink and its operators are implemented in Java,
we also use the Java 11 runtime for our cloud functions
to account for effects caused by programming language or
runtime. We set the function memory to 256 MB, which is the

smallest amount that can support a function execution without
running into memory errors. This also limits our per-function
compute resources to 0.1667 vCPU.

For our streaming implementation, we deploy Flink in a
GKE cluster with different numbers of e2-standard-4
virtual machines. The overall deployment consists of one
coordinating Flink jobmanager, varying numbers of Flink
taskmanagers, a three-node Apache Kafka cluster, a compo-
nent redirecting incoming HTTP requests to Kafka as well
as some additional components for monitoring and cluster
management. To ensure a reasonable degree of fault tolerance,
Flink is configured with a 30-second checkpointing interval
and each Kafka partition is replicated across three brokers.

All experiments are conducted in the europe-west-3
(Frankfurt) Google Cloud region, with the load generators
deployed on e2-highcpu-4 virtual machines on Google
Compute Engine in the same region.

Results: We show the results of our baseline evaluation in
Fig. 4. For the application that we consider, costs scale linearly
with request loads, yet at different rates. This is expected for
functions, which are billed by request and where requests can
be processed independently. In essence, FaaS is variable cost
only. In stream processing, we instead observe a pattern of
steps, which can be seen in Fig. 4a (and more pronounced at
a larger scale in Fig. 7b). This is a result of a more coarsely
grained allocation of resources, i.e., servers that need to be
added to the cluster. Additionally, there is a minimum cost
of running the cluster, which is the cost of a single server,
a fixed rate for managing the Kubernetes cluster, and cost
for the necessary load balancer. Overall, this means that DSP
costs here are a combination of fixed cost, variable cost per
request, and variable cost which need to be added in batches,
as shown in Fig. 5. This leads to the intersection of function
and cluster costs at a specific request level (200 req/s for UC1
and 5 req/s for UC2): At a request rate below this level, the
fixed cost of running a single-server cluster is higher than
paying per request for FaaS functions. Beyond this request
rate, the overhead of operating full servers in a cluster is
negligible compared to the premium of serverless functions.

0 100 200 300 400 500 600
Load (req/s)

0

1

2

3

4
C
os

t
pe

r
H

ou
r

($
)

Platform
Google Cloud Functions
Apache Flink

(a) UC1 Costs

0 20 40 60 80 100
Load (req/s)

0

1

2

3

4

C
os

t
pe

r
H

ou
r

($
)

Platform
Google Cloud Functions
Apache Flink

(b) UC2 Costs

Fig. 4. The cost benchmark results of our baseline comparison of Apache
Flink and Google Cloud Functions show how application costs scale with
request load. The overhead of operating a Kubernetes cluster for Apache
Flink leads to higher costs compared to Cloud Functions at lower request
loads. The request rate at which Cloud Functions become less economical
than stream processing with Flink depends on the type of function: 200 req/s
for UC1 and 5 req/s for UC2.

0 200 400 600 800 1000 1200
Load (req/s)

0

1

2

3

4

5

6

C
os

t
pe

r
H

ou
r

($
)

Cost Type
Transport
Instances
DB Write
Cluster

Fig. 5. The cost breakdown of our baseline evaluation of UC1 with Apache
Flink shows that total costs are composed of fixed costs (Kubernetes cluster
and HTTP load balancer), costs per request (database writes), and costs
increasing in batches (Kubernetes cluster nodes).

Interestingly, the break-even point is at a higher load rate
for the stateless UC1 than for the stateful aggregation in UC2.
For the cloud function implementation of UC2, the largest
share of costs per request are caused by writes (62.2%) and
reads (20.8%) to Cloud Firestore, as shown in Fig. 6. This
database access is required to store intermediate state – in
our implementation, each window is stored as a database
entry, leading to ten read and write requests for each function
invocation. In the streaming implementation, on the other

hand, there is no such database access required since all state
is maintained inside the Flink taskmanagers.

Takeaway for Platform Choice: Our baseline experiments
show that FaaS is an economical choice over DSP for stateless
applications with low to medium event arrival rates, in our
case from 0 to 200 req/s. For stateful applications, where
functions need to store intermediate state in a database, the
cost of database access makes FaaS infeasible for anything
but low-rate event processing.

B. Impact of Pub/Sub in FaaS and Streaming

While we use HTTP endpoints for sensors in our baseline
evaluation, this does not necessarily reflect all IoT envi-
ronments, where data distribution paradigms such as pub-
lish/subscribe are more common [34]. We thus further quantify
the impact of endpoint choice on DSP and FaaS costs.

Implementation: We extend our baseline implementation
with support for Google Cloud Pub/Sub9. For our function
implementation, this requires adding an event trigger and
application logic for event parsing. In our Apache Flink
setup, we replace the previous HTTP middleware and the
Apache Kafka deployment with a direct connection to Google
Cloud Pub/Sub, using the PubSubIO connectors provided by
Apache Beam. Instead of sending JSON objects as done with
our HTTP implementation, we send binary encoded Apache
Avro10 records via Pub/Sub.

Results: As shown in Fig. 6, using Cloud Pub/Sub has
a noticeable effect on the execution duration of our FaaS
implementations, especially in UC1, where processing costs
increase by 154.6%. This effect is less pronounced for UC2,
where duration increases by 8.6%. One possible explanation
for this effect is an increased overhead caused by message
parsing compared to HTTP, where request data is passed to
our function directly as JSON rather than encoded. However,
due to the relatively high costs of database access, this has
only a small impact on total costs (12.9% increase for UC1
and 1.4% increase for UC2). At less than $0.04 per 1,000,000
messages, the cost per Cloud Pub/Sub message is two orders of
magnitude smaller than costs incurred by message processing.

Figure 7 shows how costs increase with increasing load
when using Cloud Pub/Sub in our Apache Flink implementa-
tion. Pub/Sub introduces an additional cost factor to the overall
deployment. These costs increase at a steeper rate than the
costs for the Kubernetes cluster: While the share of Pub/Sub
costs in total costs is 1.5% for UC1 and 2.9% for UC2 at
a load intensity of 100 req/s, it grows to 2.6% and 17.5%,
respectively, at a load of 1,000 req/s. On the other hand, these
additional costs are compensated by the slightly higher loads
which Flink can process with Pub/Sub before requiring an
additional virtual machine. Figure 8 shows that, averaged over
all evaluated load profiles, costs for processing messages from
Pub/Sub are similar to redirecting HTTP requests via Kafka.

9https://cloud.google.com/pubsub/
10https://avro.apache.org/

https://cloud.google.com/pubsub/
https://avro.apache.org/

GCP GCP
Pub/Sub

AWS GCP
Go

GCP
NodeJS

Platform

0.0

0.5

1.0

1.5

2.0

A
vg

. C
os

t
pe

r
R
eq

ue
st

 (
$)

1e-6

Cost Type
Transport
Duration
DB Read
DB Write
Invocation

(a) UC1

GCP GCP
Pub/Sub

AWS GCP
Go

GCP
NodeJS

Platform

0.0

0.5

1.0

1.5

2.0

A
vg

. C
os

t
pe

r
R
eq

ue
st

 (
$)

1e-5

Cost Type
Transport
Duration
DB Read
DB Write
Invocation

(b) UC2

Fig. 6. FaaS Cost per Request by Type: Breaking down the costs per requests of our cloud function implementations of the two applications in our
benchmarks, we see that database access is the major cost factor. While this does not impact UC1, where both the FaaS and DSP implementation write to
Cloud Firestore and thus incur identical database access costs, storing intermediate state in UC2 accounts for 83.0% of the total cost of operating the FaaS
implementation. Neither the choice of Cloud Platform, of programming language, nor of endpoint change this result significantly: AWS Lambda is 6.4% more
expensive than our baseline as a result of increased DynamoDB access cost, while the choice of language runtime only changes function duration costs, which
are marginal compared to Firestore access costs.

Takeaway for Endpoint Choice: Our experiments show that
there is no clear difference in costs when choosing Pub/Sub
or HTTP, neither in DSP nor in FaaS. However, small savings
are possible when using a transform method that simplifies
processing. Hence, it does not seem to be reasonable to add a
dedicated message transform layer just to save costs.

C. Different FaaS Platforms

In our baseline FaaS evaluation, we use Google Cloud
Functions, yet other cloud providers offer their own server-
less platforms that may have different runtime behavior and
pricing, impacting the cost results of our experiments. In this
experiment, we thus compare our Google Cloud Function
implementation with an implementation on AWS Lambda.

Implementation: We implement our benchmark for AWS
Lambda with an AWS DynamoDB serverless database. To
ensure comparability, we use the Java 11 runtime and conduct
our experiments in the eu-central-1 (Frankfurt) region.
We again set the memory limit to 256 MB. Our load gener-
ator for this implementation runs in the same region on an
m5.xlarge EC2 instance.

Results: As we expect the costs for function execution to
scale linearly with event arrival rate, we consider the average
cost for individual function execution which we show in
Fig. 6. The average cost per function execution is 6.4% higher
on AWS Lambda than on Google Cloud Functions for both
applications, which is caused mainly by the more expensive
database access in DynamoDB over Cloud Firestore.

Takeaway for Cloud Provider Choice in FaaS: In our
experiments, the choice of FaaS provider had only a limited
impact on the total cost of execution, yet we see that the
cost difference can depend on the type of application as ap-
plications using other cloud platform services may encounter
significant costs (which may vary between providers).

D. Different Kubernetes Engines

Similar to our evaluation of different FaaS Platforms, we
also compare GKE and AWS Elastic Kubernetes Service
(EKS).

Implementation: Deployment descriptions for Kubernetes
are largely platform independent, allowing us to almost use the

0 200 400 600 800 1000 1200
Load (req/s)

0

1

2

3

4

5

6

C
os

t
pe

r
H

ou
r

($
)

Platform
GCP
GCP Pub/Sub
AWS
GCP Samza
GCP Dataflow
GCP Autop.

(a) UC1 Costs

0 200 400 600 800 1000 1200
Load (req/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
pe

r
H

ou
r

($
)

(b) UC2 Costs

Fig. 7. Costs increase approximately linearly for all evaluated streaming
deployments. However, Google Cloud Dataflow has considerably lower costs
than the other streaming engines.

GCP GCP
Pub/Sub

AWS GCP
Samza

GCP
Dataflow

GCP
Autop.

Platform

0.0

0.5

1.0

1.5

2.0

A
vg

. C
os

t
pe

r
R
eq

ue
st

 (
$)

1e-6

Cost Type
Transport
Instances
DB Write
Cluster

(a) UC1

GCP GCP
Pub/Sub

AWS GCP
Samza

GCP
Dataflow

GCP
Autop.

Platform

0

1

2

3

4

5

A
vg

. C
os

t
pe

r
R
eq

ue
st

 (
$)

1e-7

Cost Type
Transport
Instances
DB Write
Cluster

(b) UC2

Fig. 8. DSP Cost per Request by Type: Averaging the cost per request over all evaluated load profiles, we see that, similar to FaaS, writing to a database is
the largest cost factor for UC1 on all deployments. For UC2, costs are similar independent of the cloud provider, endpoint, and streaming engine, but instance
costs are considerably lower for Dataflow and higher for GKE Autopilot.

same deployment with EKS as with GKE. As in our evaluation
of different FaaS Platforms, we write incoming events in
our UC1 implementation to an AWS DynamoDB serverless
database. Both our EKS cluster and the load generator for this
implementation use m5.xlarge EC2 instances, running in
the eu-central-1 (Frankfurt) region.

Results: As shown in Fig. 7a, the costs for our UC1
deployment on EKS increase at a steeper rate than in the GKE
deployment. Averaged over all evaluated load profiles, EKS
has 24.3% higher costs than GKE as shown in Fig. 8a. Inter-
estingly, EKS has higher costs although the EKS deployment
requires significantly less Flink taskmanager instances: Loads
up to 1,100 req/s can be processed by a single taskmanager,
compared to 8 instances required in the GKE deployment.
However, higher costs per VM instance and especially higher
costs per database write outweigh this superior performance.
As we do not see such a difference in resource usage for UC2,
we conclude that either DynamoDB provides faster writes
than Firestore or Beam’s DynamoDB writer is more resource
efficient than the Firestore writer.

In our implementation of the stateful application, we use
only native Apache Beam functionality. As shown in Fig. 7b,
costs increase in EKS at a similar rate as in GKE. Depending
on the load intensity, at which VMs have to be added to
the cluster, either GKE or EKS is cheaper. Averaged over all
evaluated load profiles, EKS has 8.8% higher costs than GKE
(see Fig. 8b). This is in accordance with the slightly higher
costs per VM instance in AWS.

Takeaway for Cloud Platform Choice in Stream Process-
ing: Similar to our findings from evaluating different FaaS
platforms, the choice of cloud infrastructure for running a DSP
engine has a small but noteworthy impact on the total costs.
The discrepancy results mainly from different costs for cloud
resources, which even outweigh significant performance gaps.

E. Different Programming Languages in FaaS

In our baseline FaaS evaluation, we use the Java 11 runtime
in order to account for effects of programming language or

runtime performance when comparing to Apache Flink. Most
modern FaaS platforms support a wider variety of runtimes,
and the choice of language may have an indirect impact
on execution cost when an implementation requires more
resources or function executions take more time.

Implementation: To quantify the effect of runtime choice,
we implement our benchmark in Node.js and Go. Node.js is
one of the most popular choices for cloud functions, while Go
is the only programming language supported by Google Cloud
Functions that is compiled directly to machine code and may
thus have the smallest performance overhead [35].

Results: As shown in Fig. 6, the choice of programming
language has only a small effect on the cost of function
execution, with overall costs changing by -1.9% and -7.5%
(Go) and 0.4% and -1.9% (Node.js) for UC1 and UC2,
respectively. Although the duration of a function execution
changes by -22.7% and -50.8% for UC1 and UC2 with Go, the
effect on costs is insignificant compared to costs for database
access. Surprisingly, the Node.js implementation is as efficient
as our Java implementation. This might be caused by a more
mature and optimized execution environment in Google Cloud
Functions, as Node.js is one of the most popular languages for
FaaS functions.

Takeaway for Language Choice in FaaS: As the majority
of costs for the execution of a function are incurred by
database access and not function duration, the choice of
programming language has no considerable effect on the cost
of our application. For stateless applications without database
access, and especially for more complex functions where the
largest share of costs is incurred by execution duration rather
than function invocation, comparing implementation runtimes
may nevertheless be beneficial.

F. Different Streaming Engines

We use Apache Flink for our baseline evaluation, which is
a DSP engine originating in academia and extensively studied
in research. In this experiment, we compare this to Apache
Samza, an open source DSP engine developed in industry at

LinkedIn [18]. Samza is built around similar concepts as Flink
and can also be used to run Apache Beam pipelines.

Implementation: Thanks to Apache Beam, we can use
exactly the same implementation for Samza as we use for
Flink. In contrast to Flink, Samza does not need a dedicated
coordinator, but instead uses our existing Kafka/ZooKeeper
deployments for coordination among instances.

Results: In case of the stateless application, we found
that Samza has a significantly higher resource demand than
Flink, causing higher costs as shown in Fig. 7a. As processing
300 req/s already requires 14 Samza instances, we extrapolated
the costs for higher loads. We assume that this huge discrep-
ancy is because we did not enable bundling, a Beam feature,
which is used in Beam’s FirestoreIO to write multiple records
as batch. Bundling is disabled per default and its usage is not
documented for Samza.

With the stateful application, Samza performs similar to
Flink. As, however, Samza scales in smaller steps, the rather
small load profiles studied here result in slightly lower costs
for Samza as shown in Fig. 7b.

Takeaway for Engine Choice: In general, different stream
processing engines can be operated at similar costs. However,
different feature sets and inappropriate configuration options
might cause cost pitfalls, particularly when interacting with
other cloud services.

G. Serverless vs. Serverful Stream Processing

In our baseline evaluation, we compare serverless FaaS im-
plementations with streaming implementations running in Ku-
bernetes. Major cloud vendors also provide managed stream-
ing offerings, which run DSP pipelines on top of hosted stream
processing engines. While requiring the same development
skills than with other DSP engines, serverless stream process-
ing services can be considered an in-between of self-operated
DSP engines and FaaS in terms of operational complexity.

Implementation: To compare the costs of self-operating a
DSP engine with a fully-managed one, we run our Apache
Beam implementations on Google Cloud Dataflow with vary-
ing numbers e2-standard-4 instances. Similar to the other
engines, Dataflow should be used with a durable data source
instead of ingesting data directly via HTTP. As we consider
using a serverless DSP service along with a self-operated
Kafka cluster to be less realistic for real-world systems, we
focus on processing data from Google Cloud Pub/Sub and use
the Flink experiments with Pub/Sub as baseline.

Results: As shown in Fig. 7, Google Cloud Dataflow has
significantly lower costs than our Apache Flink on Kubernetes
deployment. Averaged over all evaluated load profiles (see
Fig. 8), Dataflow has 85.6% of the costs for operating Flink
for UC1 and only 41.2% for UC2. This is primarily due
to the massively reduced costs for the virtual machines as
with Dataflow, fewer instances are required to process the
same load, e.g., the stateful application can be run with a
single VM at all tested load rates. We observed that costs
for Dataflow could be further reduced when using smaller
instances such as n1-standard-1 ones. Additionally, there

are no general managing fees for Dataflow, while Google
charges customers $0.10 per hour for managing a Kubernetes
cluster. The impact of this fee on total costs decreases with
increasing load (see Fig. 5). Since the largest cost driver in
the stateless application are database writes, costs are reduced
less than in the stateful application. An in-depth analysis of
resource efficiency advantages in Dataflow is beyond the scope
of this work, but possible reasons are:

• Dataflow might in general offer a better performance than
other stream processing engines.

• Apache Beam might be optimized for Google Cloud
Dataflow and, as shown in previous research [36], Flink
provides much better performance when running native
Flink pipelines instead of using Beam.

• Flink’s default configuration might not be optimal and
additional tuning is required to reach comparable perfor-
mance.

• Resource utilization when running Flink in small Kuber-
netes clusters might not be optimal.

Takeaway for Platform Choice: Processing event streams
with Google Cloud Dataflow had significantly lower costs in
our experiments compared to our Flink deployment. Thus,
serverless stream processing services can be a compelling
alternative to running stream processing engines manually in
Kubernetes, reducing both operational complexity and costs.

H. Serverless vs. Serverful Kubernetes
Recently, cloud providers started offering managed Kuber-

netes services, which charge users per container resource usage
instead of for the underlying VM instances. A prominent
example for such a service is GKE Autopilot [37].

Implementation: As autoscaling of the Kubernetes cluster
takes a considerable amount of time, running dedicated exper-
iments with GKE Autopilot is unpractical. However, we can
get a reasonable cost approximation by using the results of
our baseline evaluation, in which we determined the required
number of Flink taskmanagers per load profile on a sufficiently
dimensioned cluster. Total costs are then the costs for the
taskmanagers, combined with the constant costs for other
components such as Kafka, HTTP Bridge, or monitoring.

Results: Independent of the load profile and the use case,
GKE Autopilot has higher costs compared to GKE’s default
mode (see Fig. 7). The relative cost difference appears to
decrease with higher loads. This can be explained by a
minimal cost per container that is charged independent of the
actual resource usage. Moreover, the cost difference is less
pronounced in the stateless application, where costs are heavily
influenced by database writes (see Fig. 8).

Takeaway for Engine Choice: While serverless Kubernetes
offerings reduce the management burden, they also have
higher cloud service costs. Nevertheless, costs for running self-
operated DSP engines in a serverless Kubernetes cluster are
still lower than for FaaS at medium and high loads.

V. DECISION GUIDELINES

In our experiments, we have quantitatively evaluated the
choice between functions and stream processing for cloud

Event Rate

State

Functions

Stream Processing

Fig. 9. From a cost perspective, FaaS is the best choice for applications that
require less state and process less events.

event processing and have explored the impact of choos-
ing cloud providers, endpoints, programming languages, and
platforms. We see that the major influences on cost are the
rate at which events arrive and the type of application. As
shown in Fig. 9, FaaS is the economic choice for applications
that manage little to no state and process events with low
to medium arrival rates. DSP is better suited for operations
that require state, such as windowed aggregation, and for
applications that process more events, i.e., on the order of
thousands of events per second.

Beyond these considerations, we could not observe any
considerable impact of other deployment parameters on costs.
The choice of a specific messaging paradigm, such as Pub/Sub
or HTTP, should thus be based not on cost but on functional
differences. Similarly, the choice of cloud service provider did
not influence costs significantly and might be influenced more
by specific services that a provider offers.

VI. LIMITATIONS & FUTURE RESEARCH DIRECTIONS

In our benchmarks and guidelines, we consider solely the
cost incurred by cloud resources for different deployments
of our applications. Particularly, we did not try to quantify
the “human resource” costs for implementing, operating, and
maintaining a specific target design. Beyond both cost types,
there are other aspects that may influence the design of a cloud
event processing application. We discuss these perspectives
here and derive avenues in which our work could be extended
in the future.

A. Non-Constant Workloads & Elasticity

In our benchmark experiments, we consider a constant event
arrival rate as our goal is to measure deployment costs at
a specific load. In some domains, workloads may instead
fluctuate, requiring elasticity from the processing application.
This elasticity is handled differently in DSP and FaaS: As
functions are stateless and can be scaled horizontally quickly,
load peaks can be processed in real-time. This will briefly
increase costs for a FaaS deployment. In DSP, such peaks
may be handled by queuing events and processing them
once load has reduced. This does not require any additional
infrastructure and hence does not incur additional costs as long
as sufficient queue capacity exists. Alternatively, infrastructure

can be expanded easily by adding more compute nodes to the
cluster. Compared to FaaS platforms, such horizontal scaling
is rather slow and will still require queuing. Depending on the
billing scheme of the runtime platform as well as the scale-in
strategy, short load spikes can also mean that the DSP cluster
is overprovisioned (and thus over-expensive) for some time
after the load spike whereas FaaS providers pay the costs for
keeping functions warm after a load spike.

B. Stateful Functions

Our experiments show that building a stateful processor with
serverless functions leads to high costs incurred by database
access used to persist state. Recently, there have been some
proposals to add mechanisms for stateful stream processing
to function platforms, e.g., [25], [26], [38]. These approaches
typically include a dedicated datastore directly in the FaaS
platform, which could reduce access costs. However, public
cloud vendors do not offer such services at this time, leaving
engineers only the option of dedicated cloud datastores. As an
alternative, engineers might use an open source FaaS system
and retrofit the “sharding by key” features to its load balancer
and use local ephemeral storage for state. This would require
significant engineering and infrastructure management efforts,
breaking the concept of “serverless” platforms.

C. Lock-In Effects

In addition to deployment costs, there are “hidden” costs
to building cloud applications with managed services such
as Kubernetes engines or FaaS platforms: Lock-in effects
increase the effort required to move between cloud vendors.
Such effects could also influence the decision between DSP
and FaaS as paradigms for a cloud event processing appli-
cation: We were able to move our Apache Flink benchmark
implementation from Google Kubernetes Engine to AWS
EKS with little effort (Section IV-D) as both platforms un-
derstand similar Kubernetes application descriptions. Porting
our implementation from Google Cloud Functions to AWS
Lambda (Section IV-C), however, required changing the highly
platform-specific function implementation almost completely.

D. SLAs and SLOs

A further factor that is beyond the scope of our benchmark is
the influence of different service level agreements (SLA) and
service level objectives (SLO) on the true cost of an appli-
cation deployment. For self-managed streaming applications
in Kubernetes, only very basic SLAs are guaranteed by the
cloud provider such as the availability of compute instances.
Application-level SLOs such as maximum latency must be
monitored and managed by the operator. As FaaS platforms
are fully managed by the provider, they may provide further
guarantees on availability.

E. Tuning for Cost-efficiency

Finding a cost-optimal configuration (e.g, machine type,
cluster size, or stream processing engine settings) for a self-
operated DSP deployment is a complex task, especially in

comparison to FaaS. This is even more important when
comparing managed stream processing services against self-
operated ones and may also explain why we found Cloud
Dataflow to be significantly less expensive than running
Apache Flink. We cannot exclude that Apache Flink can be
tuned for better performance to achieve similar or better cost
efficiency than FaaS for low event rates or than Google Cloud
Dataflow in general. However, such performance tunings come
at the cost of expert knowledge or extensive benchmarking.

VII. RELATED WORK

Although including a cost model in cloud benchmarking
studies is considered good scientific practice [39], in existing
benchmarking studies on FaaS [24], [40]–[43] and DSP [4],
[44], [45], cost evaluations can mainly be found for cloud
functions, where the pay-per-execution pricing model has
presented a significant paradigm shift.

LIBRA [46] is an approach to offload FaaS function in-
vocations to self-managed function infrastructure to leverage
economies of scale and decrease costs for FaaS applications.
Conversely, SplitServe [47] offloads latency-sensitive Apache
Spark jobs to a FaaS platform to manage unexpected spikes in
demand. Chadha et al. [48] present a comprehensive evaluation
of the impacts of runtime, region, and processor architecture
choice on the performance and cost of compute-intensive
functions on Google Cloud Functions. Similarly, Eivy [49]
gives an overview and discussion of cloud FaaS pricing and
Cordingly et al. [50] introduce SAAF, a cost and performance
predictor for serverless functions. In the context of DSP,
Truong et al. [51] present a resource provisioning strategy
that optimizes costs for cloud data processing and Bedini et
al. [52] show an approach to model the performance of the
Apache Storm stream processing engine. To the best of our
knowledge, existing work has not compared FaaS and DSP to
implement the same application.

Copik et al. [41] evaluate how Infrastructure-as-a-Service
costs relate to FaaS costs, finding that IaaS provides better
performance at lower costs if high utilization could be reached.
Similarly, Müller et al. [53] compare the costs of Query-as-a-
Service systems with FaaS costs and show that cold data can
be requested significantly cheaper with FaaS.

Previous research comparing different stream processing
systems focuses on self-operated, open source systems such
as Apache Storm, Apache Flink, and Apache Spark and does
not include cloud services for DSP [4], [54]–[56]. Akidau et
al. [8] present a performance comparison of Apache Flink and
Google Cloud Dataflow on GCP. These evaluations, however,
do not focus on cloud infrastructure costs.

In previous work [5], we have considered the choice be-
tween functions, stream processing, and batch processing for
IoT data and event processing in the fog from a qualitative
perspective and derived a set of best practices. With a focus
on cloud event processing in this paper, we have extended this
with a quantitative evaluation focusing on the cost dimension.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we took a cost perspective on cloud event
processing. We have presented a novel application-centric cost
benchmark with event dataflows from an IIoT context that
include both a stateless and a stateful job graph. Further,
we have used this benchmark to compare distributed stream
processing and Functions-as-a-Service, today’s most popular
cloud event processing paradigms, and have explored the
parameter space to evaluate which factors influence the cost
of operating event processing applications in the cloud. We
found that in terms of pure costs for the cloud services, FaaS
is superior for applications that are subject to small event
rates and require small state. Once event rates increase and
utilize at least a single DSP instance, DSP engines can be
operated at lower costs. This observation holds independently
of the cloud provider and implementation technology. How-
ever, when choosing among FaaS and streaming also “hidden”
costs should be taken into account. As part of this paper, we
derived avenues for future work to quantify the costs for other
workload scenarios, future cloud services, lock-in effects, SLO
compliance, and cost tuning.

ACKNOWLEDGEMENTS

Partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 415899119. This
material is based upon works supported by the Google Cloud
Research Credits program with the awards GCP209186206
and GCP203304083.

REFERENCES

[1] L. Thamsen, J. Beilharz, A. Polze, and O. Kao, “The methods of cloud
computing,” Technische Universität Berlin, Tech. Rep., Feb. 2022.

[2] T. Pfandzelter, J. Hasenburg, and D. Bermbach, “From zero to fog: Effi-
cient engineering of fog-based internet of things applications,” Software:
Practice and Experience, vol. 51, no. 8, pp. 1798–1821, 2021.

[3] D. Bermbach, A. Chandra, C. Krintz, A. Gokhale, A. Slominski,
L. Thamsen, E. Cavalcante, T. Guo, I. Brandic, and R. Wolski, “On
the future of cloud engineering,” in Proceedings of the 9th IEEE
International Conference on Cloud Engineering (IC2E 2021), Oct. 2021,
pp. 264–275.

[4] S. Henning and W. Hasselbring, “Theodolite: Scalability benchmarking
of distributed stream processing engines in microservice architectures,”
Big Data Research, vol. 25, p. 100209, 2021.

[5] T. Pfandzelter and D. Bermbach, “IoT data processing in the fog:
Functions, streams, or batch processing?” in Proceedings of the 1st
Workshop on Efficient Data Movement in Fog Computing (DaMove
2019), Jun. 2019, pp. 201–206.

[6] A. Margara, G. Cugola, N. Felicioni, and S. Cilloni, “A model and survey
of distributed data-intensive systems,” arXiv:2203.10836 [cs.DC], 2022.

[7] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos, “A survey
on the evolution of stream processing systems,” arXiv:2008.00842
[cs.DC], 2020.

[8] T. Akidau, E. Begoli, S. Chernyak, F. Hueske, K. Knight, K. Knowles,
D. Mills, and D. Sotolongo, “Watermarks in stream processing systems:
Semantics and comparative analysis of Apache Flink and Google Cloud
Dataflow,” Proceedings of the VLDB Endowment, vol. 14, no. 12, pp.
3135–3147, 2021.

[9] A. Mahgoub, L. Wang, K. Shankar, Y. Zhang, H. Tian, S. Mitra, Y. Peng,
H. Wang, A. Klimovic, H. Yang, and Others, “SONIC: Application-
aware data passing for chained serverless applications,” in Proceedings
of the 2021 USENIX Annual Technical Conference (USENIX ATC ’21),
Jul. 2021, pp. 285–301.

[10] M. Copik, A. Calotoiu, K. Taranov, and T. Hoefler, “FaasKeeper: a
blueprint for serverless services,” arXiv:2203.14859 [cs.DC], 2022.

[11] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. Abad, and A. Iosup, “Serverless applications: Why, when,
and how?” IEEE Software, vol. 38, no. 1, pp. 32–39, 2021.

[12] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openLambda,” in Proceedings of the 8th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud ’16), Jun. 2016.

[13] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, vol. 62, no. 12, pp.
44–54, 2019.

[14] E. van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann,
“A SPEC RG cloud group’s vision on the performance challenges
of FaaS cloud architectures,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (ICPE ’18), Apr.
2018, pp. 21–24.

[15] D. Bermbach, E. Wittern, and S. Tai, Cloud Service Benchmarking: Mea-
suring Quality of Cloud Services from a Client Perspective. Springer,
2017.

[16] J. Dean and S. Ghemawat, “MapReduce: a flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[17] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[18] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: Stateful scalable stream pro-
cessing at LinkedIn,” Proceedings of the VLDB Endowment, vol. 10,
no. 12, pp. 1634–1645, 2017.

[19] G. Wang, L. Chen, A. Dikshit, J. Gustafson, B. Chen, M. J. Sax,
J. Roesler, S. Blee-Goldman, B. Cadonna, A. Mehta, V. Madan, and
J. Rao, “Consistency and completeness: Rethinking distributed stream
processing in Apache Kafka,” in Proceedings of the 2021 International
Conference on Management of Data (SIGMOD/PODS ’21), Jun. 2021,
pp. 2602–2613.

[20] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle, “The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing,” Proceedings of the VLDB Endowment, vol. 8, no. 12,
pp. 1792–1803, 2015.

[21] Cloud Native Computing Foundation, “CNCF annual survey 2021,”
https://www.cncf.io/reports/cncf-annual-survey-2021/, Feb. 2022, ac-
cessed: 2022-04-07.

[22] J. Scheuner and P. Leitner, “Function-as-a-Service performance evalua-
tion: A multivocal literature review,” Journal of Systems and Software,
vol. 170, p. 110708, 2020.

[23] Z. Jia and E. Witchel, “Nightcore: efficient and scalable serverless com-
puting for latency-sensitive, interactive microservices,” in Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2021), Apr.
2021, pp. 152–166.

[24] M. Grambow, T. Pfandzelter, L. Burchard, C. Schubert, M. Zhao, and
D. Bermbach, “BeFaaS: An application-centric benchmarking frame-
work for FaaS platforms,” in Proceedings of the 9th IEEE International
Conference on Cloud Engineering (IC2E 2021), Oct. 2021, pp. 1–8.

[25] A. Akhter, M. Fragkoulis, and A. Katsifodimos, “Stateful functions as a
service in action,” Proceedings of the VLDB Endowment, vol. 12, no. 12,
pp. 1890–1893, 2019.

[26] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez,
J. M. Hellerstein, and A. Tumanov, “Cloudburst: Stateful functions-as-
a-service,” Proceedings of the VLDB Endowment, vol. 13, no. 12, pp.
2438–2452, 2020.

[27] T. Pfandzelter and D. Bermbach, “tinyFaaS: A lightweight FaaS platform
for edge environments,” in Proceedings of the Second IEEE Interna-
tional Conference on Fog Computing (ICFC 2020), Apr. 2020, pp. 17–
24.

[28] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization for
serverless applications,” in Proceedings of the 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’20), Feb.
2020, pp. 419–434.

[29] S. Henning, W. Hasselbring, H. Burmester, A. Möbius, and M. Woj-
cieszak, “Goals and measures for analyzing power consumption data in
manufacturing enterprises,” Journal of Data, Information and Manage-
ment, vol. 3, no. 1, pp. 65–82, 2021.

[30] S. Henning and W. Hasselbring, “A configurable method for bench-
marking scalability of cloud-native applications,” Empirical Software
Engineering, vol. 27, no. 6, 2022.

[31] G. Brataas, N. Herbst, S. Ivanšek, and J. Polutnik, “Scalability analysis
of cloud software services,” in Proceedings of the 2017 IEEE Inter-
national Conference on Autonomic Computing (ICAC), Jul. 2017, pp.
285–292.

[32] S. Henning and W. Hasselbring, “How to measure scalability of dis-
tributed stream processing engines?” in Proceedings of the Companion
of the ACM/SPEC International Conference on Performance Engineer-
ing (ICPE ’21), Apr. 2021, pp. 85–88.

[33] ——, “Demo paper: Benchmarking scalability of cloud-native applica-
tions with theodolite,” in Proceedings of the 10th IEEE International
Conference on Cloud Engineering (IC2E 2022), 2022.

[34] J. Hasenburg, F. Stanek, F. Tschorsch, and D. Bermbach, “Managing
latency and excess data dissemination in fog-based publish/subscribe
systems,” in Proceedings of the Second IEEE International Conference
on Fog Computing (ICFC 2020), Apr. 2020, pp. 9–16.

[35] R. Cordingly, H. Yu, V. Hoang, D. Perez, D. Foster, Z. Sadeghi,
R. Hatchett, and W. J. Lloyd, “Implications of programming language
selection for serverless data processing pipelines,” in Proceedings of the
2020 IEEE International Conference on Dependable, Autonomic and
Secure Computing, International Conference on Pervasive Intelligence
and Computing, International Conference on Cloud and Big Data
Computing, International Conference on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020, pp. 704–
711.

[36] G. Hesse, C. Matthies, K. Glass, J. Huegle, and M. Uflacker, “Quan-
titative impact evaluation of an abstraction layer for data stream pro-
cessing systems,” in Proceedings of the 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), Jul. 2019, pp.
1381–1392.

[37] D. Bradstock, “Introducing GKE Autopilot: a revolution in
managed Kubernetes,” https://cloud.google.com/blog/products/
containers-kubernetes/introducing-gke-autopilot, Feb. 2021, accessed:
2022-04-19.

[38] M. de Heus, K. Psarakis, M. Fragkoulis, and A. Katsifodimos, “Dis-
tributed transactions on serverless stateful functions,” in Proceedings of
the 15th ACM International Conference on Distributed and Event-Based
Systems (DEBS ’21), Jun. 2021, pp. 31–42.

[39] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. v. Kistowski,
A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tůma, and A. Iosup,
“Methodological principles for reproducible performance evaluation in
cloud computing,” IEEE Transactions on Software Engineering, vol. 47,
no. 8, pp. 1528–1543, 2021.

[40] J. Kuhlenkamp, S. Werner, M. C. Borges, D. Ernst, and D. Wen-
zel, “Benchmarking elasticity of FaaS platforms as a foundation for
objective-driven design of serverless applications,” in Proceedings of
the 35th Annual ACM Symposium on Applied Computing (SAC ’20),
Mar. 2020, pp. 1576–1585.

[41] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,
“SeBS: A serverless benchmark suite for function-as-a-service comput-
ing,” in Proceedings of the 22nd International Middleware Conference
(Middleware ’21), Dec. 2021, pp. 64–78.

[42] K. L. Ngo, J. Mukherjee, Z. M. Jiang, and M. Litoiu, “Evaluating
the scalability and elasticity of function as a service platform,” in
Proceedings of the 2022 ACM/SPEC on International Conference on
Performance Engineering (ICPE ’22), Apr. 2022, pp. 117–124.

[43] E. van Eyk, J. Scheuner, S. Eismann, C. L. Abad, and A. Iosup, “Beyond
microbenchmarks: The SPEC-RG vision for a comprehensive serverless
benchmark,” in Proceedings of the Companion of the ACM/SPEC
International Conference on Performance Engineering (ICPE ’20), Apr.
2020, pp. 26–31.

[44] M. V. Bordin, D. Griebler, G. Mencagli, C. F. R. Geyer, and L. G. L. Fer-
nandes, “DSPBench: A suite of benchmark applications for distributed
data stream processing systems,” IEEE Access, vol. 8, pp. 222 900–
222 917, 2020.

[45] G. van Dongen and D. Van den Poel, “Influencing factors in the
scalability of distributed stream processing jobs,” IEEE Access, vol. 9,
pp. 109 413–109 431, 2021.

[46] A. Raza, Z. Zhang, N. Akhtar, V. Isahagian, and I. Matta, “LIBRA: An
economical hybrid approach for cloud applications with strict SLAs,”
in Proceedings of the 2021 IEEE International Conference on Cloud
Engineering (IC2E 2021), Oct. 2021, pp. 136–146.

https://www.cncf.io/reports/cncf-annual-survey-2021/
https://cloud.google.com/blog/products/containers-kubernetes/introducing-gke-autopilot
https://cloud.google.com/blog/products/containers-kubernetes/introducing-gke-autopilot

[47] A. Jain, A. F. Baarzi, G. Kesidis, B. Urgaonkar, N. Alfares, and
M. Kandemir, “SplitServe: Efficiently splitting Apache Spark jobs across
FaaS and IaaS,” in Proceedings of the 21st International Middleware
Conference (Middleware ’20), Dec. 2020, pp. 236–250.

[48] M. Chadha, A. Jindal, and M. Gerndt, “Architecture-specific perfor-
mance optimization of compute-intensive FaaS functions,” in Pro-
ceedings of the 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD 2021), Sep. 2021, pp. 478–483.

[49] A. Eivy, “Be wary of the economics of “serverless” cloud computing,”
IEEE Cloud Computing, vol. 4, no. 2, pp. 6–12, 2017.

[50] R. Cordingly, W. Shu, and W. J. Lloyd, “Predicting performance and
cost of serverless computing functions with SAAF,” in Proceedings of
the 2020 IEEE International Conference on Dependable, Autonomic and
Secure Computing, International Conference on Pervasive Intelligence
and Computing, International Conference on Cloud and Big Data
Computing, International Conference on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020, pp. 640–
649.

[51] T. M. Truong, A. Harwood, R. O. Sinnott, and S. Chen, “Cost-efficient
stream processing on the cloud,” in Proceedings of the 2019 IEEE

12th International Conference on Cloud Computing (CLOUD 2019),
Jul. 2019, pp. 209–213.

[52] I. Bedini, S. Sakr, B. Theeten, A. Sala, and P. Cogan, “Modeling
performance of a parallel streaming engine: Bridging theory and costs,”
in Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering (ICPE ’13), Apr. 2013, pp. 173–184.

[53] I. Müller, R. Marroquı́n, and G. Alonso, “Lambada: Interactive data ana-
lytics on cold data using serverless cloud infrastructure,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’20), Jun. 2020, pp. 115–130.

[54] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, “Benchmarking distributed stream data processing systems,”
in Proceedings of the 2018 IEEE 34th International Conference on Data
Engineering (ICDE), Apr. 2018, pp. 1507–1518.

[55] G. van Dongen and D. Van den Poel, “Evaluation of stream processing
frameworks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 8, pp. 1845–1858, 2020.

[56] G. Hesse, C. Matthies, M. Perscheid, M. Uflacker, and H. Plattner, “ESP-
Bench: The enterprise stream processing benchmark,” in Proceedings of
the ACM/SPEC International Conference on Performance Engineering
(ICPE ’21), Apr. 2021, pp. 201–212.

	I Introduction
	II Background
	II-A Distributed Stream Processing
	II-B Function-as-a-Service

	III Cost Benchmark
	III-A Cloud Event Processing Use-Case
	III-B Benchmark Methodology

	IV Experiments
	IV-A Baseline: Cloud Stream Processing and Functions
	IV-B Impact of Pub/Sub in FaaS and Streaming
	IV-C Different FaaS Platforms
	IV-D Different Kubernetes Engines
	IV-E Different Programming Languages in FaaS
	IV-F Different Streaming Engines
	IV-G Serverless vs. Serverful Stream Processing
	IV-H Serverless vs. Serverful Kubernetes

	V Decision Guidelines
	VI Limitations & Future Research Directions
	VI-A Non-Constant Workloads & Elasticity
	VI-B Stateful Functions
	VI-C Lock-In Effects
	VI-D SLAs and SLOs
	VI-E Tuning for Cost-efficiency

	VII Related Work
	VIII Conclusions and Outlook
	References

