
Exploring the Impact of Serverless Computing on
Peer To Peer Training Machine Learning

Amine BARRAK∗, Ranim TRABELSI∗, Fehmi JAAFAR∗, Fabio PETRILLO†
∗Department of Computer Science and Mathematics, University of Quebec at Chicoutimi, UQAC, Saguenay, Canada

Email: {mabarrak, ranim.trabelsi1, fehmi.jaafar}@uqac.ca
†Département de génie logiciel, École de Technologie Supérieure, ÉTS, Montreal, QC

Email: fabio.petrillo@etsmtl.ca

Abstract—
The increasing demand for computational power in big

data and machine learning has driven the development of
distributed training methodologies. Among these, peer-to-
peer (P2P) networks provide advantages such as enhanced
scalability and fault tolerance. However, they also encounter
challenges related to resource consumption, costs, and commu-
nication overhead as the number of participating peers grows.
In this paper, we introduce a novel architecture that com-
bines serverless computing with P2P networks for distributed
training and present a method for efficient parallel gradient
computation under resource constraints.

Our findings show a significant enhancement in gradient
computation time, with up to a 97.34% improvement compared
to conventional P2P distributed training methods. As for costs,
our examination confirmed that the serverless architecture
could incur higher expenses, reaching up to 5.4 times more
than instance-based architectures. It is essential to consider that
these higher costs are associated with marked improvements
in computation time, particularly under resource-constrained
scenarios.

Despite the cost-time trade-off, the serverless approach
still holds promise due to its pay-as-you-go model. Utilizing
dynamic resource allocation, it enables faster training times
and optimized resource utilization, making it a promising
candidate for a wide range of machine learning applications.

Index Terms—Serverless, FaaS, Function as a Service, P2P,
peer-to-peer architecture, Distributed Training, Machine Learn-
ing.

I. INTRODUCTION

The exponential growth of data in the modern digital age [1]
has transformed the landscape of artificial intelligence (AI) and
machine learning (ML), propelling these fields into a new era
of innovation and discovery. This vast deluge of data, has given
rise to increasingly sophisticated and complex models that
can extract valuable insights and make accurate predictions
[2]. However, these sophisticated models pose a formidable
challenge, due to the need for vast computational resources.

This escalating demand for computational power has led to
the emergence of distributed training [3]. By harnessing the
combined power of multiple devices, the training methodology
encompasses the division of the dataset among a cohort of

workers, each training their local model replicas in parallel and
iteratively. To ensure convergence, the workers periodically
synchronize their updated local models [4].

Various topologies have been proposed in the literature [2]
to facilitate distributed training, including parameter server
[5]–[7] and peer-to-peer architectures [8]–[12]. In the parame-
ter server architecture, the worker nodes perform computations
on their respective data partitions and communicate with the
parameter server to update the global model. In contrast, peer-
to-peer (P2P) architectures distribute the model parameters and
computation across all nodes in the network, eliminating the
need for a central coordinator [2].

Regardless of the topology employed for distributed train-
ing, developers often struggle with managing resources and
navigating the complexities of ML training. This can result
in over-provisioning and diminished productivity, posing chal-
lenges for ML users striving to achieve optimal outcomes [13].

To address these challenges, building machine learning
(ML) on top of serverless computing platforms has emerged as
an attractive solution that offers efficient resource management
and scaling [14]–[17]. By automatically scheduling stateless
functions, serverless computing eliminates the need for de-
velopers to focus on infrastructure management [18], [19].
However, ML systems are not inherently compatible with the
Function-as-a-Service (FaaS) model due to limitations such as
statelessness, lack of function-to-function communication, and
restricted execution duration [13], [20].

Numerous efforts have been made to optimize the utilization
of FaaS platforms for managing ML pipelines [13], [15], [21]–
[25]. The implementation of parameter server architecture in
a serverless environment demonstrated significant benefits, in-
cluding reduced costs [23], scalability [13], [22], and improved
performance efficiency [25].

Notwithstanding these encouraging findings, there remains
a dearth of research elucidating the ramifications of serverless
computing on peer-to-peer architecture. To the best of our
knowledge, no research has been conducted to study the
impact of serverless computing in a peer-to-peer environment.

Distributed training in peer-to-peer (P2P) networks offers
benefits such as improved scalability and fault tolerance [26],
but also presents challenges. As the network grows, communi-
cation, synchronization, and model update overheads increase,
leading to latency and reduced training efficiency [4]. The

ar
X

iv
:2

30
9.

14
13

9v
1

 [
cs

.D
C

]
 2

5
Se

p
20

23

diverse nature of devices in P2P networks can also cause
imbalanced workloads and resource constraints, complicating
the training process [27].

Another challenge faced during distributed training in P2P
is the implementation of parallel batch processing inside each
or the workers using popular machine learning frameworks
like PyTorch. These frameworks often rely on the available
and limited resources of individual workers to perform parallel
computing on batches, which can lead to inefficiencies when
resources are scarce [28], [29]. Consequently, these frame-
works may resort to processing batches sequentially, which can
result in longer training times and diminished performance.

In this paper, we present a novel approach to address
all these challenges associated with distributed training in
P2P networks by integrating serverless computing for parallel
gradient computation. Our approach consists of the following
components: (a) Incorporating serverless computing into the
P2P training process, which eliminates the need to expand the
number of workers in the network, effectively reducing com-
munication and synchronization overhead and consequently
enhancing training efficiency. (b) Introducing an advanced
technique that leverages serverless functions and workflows
for parallel gradient computation within each worker, ensuring
efficient and accelerated gradient computation for each peer in
the network, even in the presence of resource constraints.

Through a series of experiments and analyses 1, we demon-
strate the effectiveness of our proposed approach in improving
training, and optimizing resource utilization.

Our main contributions in this paper include:
• Propose a novel architecture that integrates serverless

computing into P2P networks for distributed training.
• Introducing an advanced technique for efficient, parallel

gradient computation within each peer, even under re-
source constraints.

• Demonstrate the effectiveness of the proposed approach
in improving training and optimizing resource utilization.

II. BACKGROUND

In this background section, we delve into the intricate world
of peer-to-peer machine learning. Additionally, we will explore
the realm of serverless computing and workflow service state
machines, such as AWS Step Functions.

A. Peer To Peer architecture for distributed training

Peer-to-Peer (P2P) architecture is a decentralized commu-
nication topology that is widely used in distributed systems.
In a P2P system, nodes communicate directly with each other
and there is no central point of control or coordination.

In P2P training, the computational workload is distributed
across multiple devices, creating a decentralized network
where each device contributes its resources to collectively train
the model. This approach can improve scalability, reduce train-
ing time, and minimize reliance on centralized infrastructure,

1https://github.com/AmineBarrak/PeerToPeerServerless

making it a viable option for various applications, especially
those with limited resources or rapidly changing workloads.

P2P training in machine learning presents an attractive
alternative to traditional centralized training methods. By
leveraging the distributed computing capabilities of multiple
devices, P2P training can offer improved scalability, fault
tolerance, and privacy preservation. However, challenges such
as heterogeneity and resource constraints must be addressed to
fully realize the potential of P2P training in machine learning
applications.

B. Serverless Computing

Serverless computing is an emerging paradigm in cloud
computing that enables developers to build and deploy ap-
plications without the need to manage server infrastructure.
This model eliminates the need for developers to worry about
infrastructure scaling, server maintenance, and other low-level
tasks, allowing them to focus on creating business logic.

Serverless computing is built on the concept of Function-as-
a-Service (FaaS), which provides developers with a platform
to deploy and run small pieces of code, called functions, in
response to events. When an event triggers a function, the
cloud provider provisions the necessary infrastructure to run
the function, and then releases it once the function completes
its execution.

The benefits of serverless computing, such as cost-
effectiveness, scalability, flexibility, and ease of use, make
it a promising approach for machine learning applications,
enabling efficient resource management and rapid model de-
velopment.

C. Serverless AWS Step Function Workflow

The AWS Step Function Workflow enables developers to
design, execute, and monitor multi-step workflows, addressing
the complexity of manually managing multiple serverless
functions (e.g., AWS Lambda Function [30]). By defining a
state machine using the Amazon States Language, developers
can create long-running workflows that are easy to understand
and maintain, improving the overall coordination of serverless
applications.

III. METHODOLOGY AND SYSTEM DESIGN

In this section, we present a novel P2P training ML system
based on Serverless computing, focusing on the design archi-
tecture, algorithm, and techniques to reduce peer overload. Our
approach aims to improve efficiency, scalability, and alleviate
resource constraints in ML training.

A. Design Architecture of Peer to Peer training Machine
Learning based on Serverless Computing

We implemented our approach using AWS Lambda due
to its 15-minute timeout and 10GB RAM availability [31].
Comparable services exist on platforms like Google Cloud
Functions, Azure Functions, and IBM Cloud Functions.

Figure 1 describes the overall proposed architecture. During
the training of deep learning models, PyTorch strives to maxi-
mize resource utilization efficiently. However, ML frameworks

Peer 2

Peer n

Batch Distributed Computing

GnG1 G2 ...

Gradients
Agregation

Model
Generation

Convergence
Detector

Peer 1

G
b

1
G

b
n

...

Batch
Gradient

Batch
Gradient

Batch
Gradient

Average G
radient

Peers Train Data

...

AWS Step Function

Fig. 1: Overview of the proposed Peer To Peer training based on Serverless computing

i.e.,PyTorch, do not inherently possess a mechanism to seam-
lessly transition between parallel and sequential processing
under resource constraints. In real-world scenarios, ML frame-
works leverage a GPU for computations when available and
default to the CPU when GPU resources are not accessible.

By harnessing the power of serverless computing, our
system architecture enables parallel gradient computations
across multiple Lambda functions, leading to a substantial
reduction in overall computation time. We thoroughly examine
the intricacies of our peer-to-peer architecture, which consists
of four integral system components. An overview of the peer
to peer ML system based on Serverless computing architecture
is depicted in Figure 1.

AWS S3 Buckets : In a peer-to-peer network, data is
systematically partitioned into discrete segments, with each
peer’s assigned portion subsequently uploaded to a dedicated
S3 bucket. This approach guarantees seamless access to their
own data for each peer, while simultaneously leveraging the
high-performance, cloud-based architecture of S3.

AWS Lambda Function : We strategically chose to imple-
ment parallel batch processing, a complex task made feasible
by employing AWS Lambda serverless functions. By har-
nessing AWS Lambda’s capabilities, we link each data batch
to a specific Lambda function responsible for executing the
necessary gradients computations. This approach significantly
reduces total computation time through the wise distribution
of workloads across multiple Lambda function instances, ac-
celerating data processing and cutting down the time needed
to complete processing the training set. Additionally, We inte-
grate AWS Step Functions to manage, orchestrate and invoke
the Lambda serverless parallel computing process, adapting to
the availability of data batches and ensuring efficient handling

of the workload.
EC2 Instance: Each EC2 instance in our system architec-

ture, assigned to individual peers, carries multiple responsibil-
ities. First, it acts as a trigger for invoking Lambda functions
responsible for essential gradient computation. Additionally, it
includes a crucial set of features that enable gradient exchange
between peers. Ultimately, the EC2 instance is equipped with
a specialized feature to detect model convergence, further
boosting the overall efficiency of the system.

RabbitMQ : The proposed architecture relies on the utiliza-
tion of RabbitMQ, that enable seamless communication be-
tween peers. After computing gradient averages over batches,
a peer publishes the resultant data to its dedicated queue. Other
peers in the network can access the gradients published in the
queue, enabling efficient and seamless information sharing.
This is a critical aspect of our methodology, as it allows
each peer to access the required information quickly and
accurately to perform computations. RabbitMQ’s reliability
and security ensure smooth and secure data transmission and
communication, promoting an efficient processing of complex
data sets.

B. Peer to Peer training Machine Learning
We specify a peer-to-peer architecture that leverages dis-

tributed computation for the purpose of training machine
learning models. Algorithm 1 present the logic we followed.
Initially, a workload is provided that includes the Deep Neural
Network (DNN) model and the training dataset, along with
parameters specifying the number of peers (P), batch size (B),
and training epochs (E).

Additionally, each peer has an array of key-value pairs,
where the key is the peer’s rank (ID) and the value is the
computed gradient.

Algorithm 1: P2P ML Distributed Training
Input: Deep Neural Network training workload with

its input train dataset D with size n,
validation dataset V , the number of peers P ,
model size dm, the learning rate η, the batch
size B, and the number of epochs E.

Output: The trained model with updated weights θ∗.
Peer of rank r = 0, . . . , P :
▷ Each peer simultaneously implements:

Initialize: Gradients Peers={}
Initialize communication channels in RabbitMQ
Initialize a dedicated peer queue qr
Initialize model parameters randomly as θ0 ∈ Rd

for epoch e = 1 to E do
Load a unique partition of data Dr

Randomly partition the subset Dr into m batches
of size B

for each batch b do
gt,b ← ComputeBatchGradients(θt−1)

AverageBatchesGradients as gt,r ← 1
m

∑m
b=1 gt,b

Gradients Peers[r]← gt,r
SendGradientsToMyQueue(gt,r, qr)
for i from 0 to P do

if i is not equal to r then
gt,i ←ConsumeGradientsFromQueue(qi)
WaitUntilReceptionDone()
Gradients Peers[i]← gt,i

gt ← AverageGradients(Gradients Peers)
if is synchronous then

SynchronisationBarrier()
Update the model as θt ← θt−1 + η · gt
if DetectConvergence(θt,V) then

Return updated model θ∗.

We explain in the following the different sections of the
algorithm.

1) Dataset Preprocessing: Within our system architecture,
we have integrated a preprocessing stage to to transform the
training dataset using methods like min-max scaling, standard-
ization, and normalization. After preprocessing, the dataset is
divided into partitions for each peer in the training process. A
dataloader is implemented to further split the partitions into
batches, which are then stored in designated Amazon S3 cloud
storage buckets.

2) Compute Batch Gradients: The peer-to-peer training
paradigm entails a multi-stage process wherein each worker
subdivides its designated data subset into smaller batches,
which are intended to expedite the training and convergence
process by allowing each worker to compute gradients for
smaller subsets of the data. During the training phase, each
worker calculates the gradients for the batches of data it has
processed and subsequently averages these gradients across
all batches. This crucial step enables each worker to obtain

an accurate representation of the gradients for its designated
subset of data.

3) Communication Protocol: To communicate between
peers, we used Amazon MQ’s RabbitMQ for exchanging
gradients between multiple peers during the model synchro-
nization process. Each peer is assigned a dedicated queue
that contains a single, persistent gradient message. When a
new gradient is generated, it replaces the previous one in the
queue, ensuring that the latest gradient is always available for
consumption by other peers.

Peers can access and consume gradient messages from all
other queues without deleting them, which promotes efficient
gradient exchange and prevents data loss in case of temporary
disruptions. The persistence of gradient messages guarantees
the availability of the necessary information for model syn-
chronization, even under challenging network conditions.

When peers are ready to synchronize their models, they
read the gradient messages from all other queues, excluding
their own. This process allows them to effectively update
their models based on the gradients received from other peers,
streamlining the distributed training process across the entire
system.

To store received gradients from peers, a dictionary is
created, where the peer’s rank serves as the key to map to its
corresponding received gradient. Each peer retains the received
gradients in the local dictionary, and if the dictionary’s size
exceeds a threshold predefined in advance, the peer retrieves
the gradients and calculates their average. The worker then
updates its model parameters in accordance with the result.
This iterative process continues for a predetermined number
of epochs, as established by the input hyperparameters.

To overcome Amazon MQ’s message size limitations
(100MB per message), large files are stored in Amazon
S3 and referenced using UUIDs. Sending UUIDs through
Amazon MQ enables efficient, scalable data transfer without
compromising performance or reliability, providing a flexible
solution for seamless data exchange.

4) Compression / Decompression: we address the challenge
of high communication overhead by incorporating the QSGD
algorithm [32]. This algorithm uses a compression technique
to quantize gradients before transmission, reducing the size
of transmitted gradients and leading to improved training
efficiency.

5) Average Gradients: After receiving gradients from other
peers, each peer aggregates the gradients by computing their
average and uses this averaged gradient to update their local
model parameters. The advantage of this approach is that it
allows each peer to learn from the gradients computed by other
peers, resulting in a more accurate representation of the global
gradients.

6) Synchronous & Asynchronous Gradient Computation:
In the following stage, the worker simultaneously distributes
the averaged gradients to all other workers in the network and
receives from them their averaged gradients as well. This pro-
cess can be executed using either synchronous or asynchronous

approaches. Figure 2 show an example of synchronous and
asynchronous communication using four workers.

1

Peer 1 Peer 2 Peer 3 Peer 4

Synchronization barrier

Peer 1 Peer 2 Peer 3 Peer 4

First
epoch

1
1

1

1
1 1

1

2

2

2

2

2

2 2
2

Second
epoch

Fig. 2: Synchronous(left) and asynchronous(righ) Communi-
cation

In the asynchronous communication, Amazon MQ’s Rab-
bitMQ service provide a separate dedicated queues for each
peer. These queues store the latest gradients generated by each
peer, and they can be accessed and consumed by other peers
without having to wait for every peer to finish their gradient
computation. This means that a peer can start updating its
model with the latest available gradients from other peers,
without waiting for gradients from slower peers or those
experiencing temporary disruptions.

In the synchronous communication, a synchronization
barrier is added to ensure that all peers progress through the
distributed training process together.

Synchronizing autonomous peers in a distributed system
is challenging, especially when using RabbitMQ queues for
gradient communication. Factors like varying resource avail-
ability can cause some peers to progress through epochs at
different speeds. To address this issue, we have implemented a
RabbitMQ-based synchronization mechanism. Each peer sends
a message to a designated synchronization queue, signifying
the completion of gradient computation, sending, and receiving
for all connected peers. Once the size of this synchronization
queue matches the total number of peers, it indicates that all
peers have completed the current epochs, and they can then
proceed to the next one in a coordinated manner.

7) Convergence Detection: To detect model convergence,
two key techniques are used: ReduceLROnPlateau and Early
Stopping. ReduceLROnPlateau adjusts the learning rate during
training, improving generalization by preventing overshooting
the loss function’s minimum. It monitors model performance
on a validation dataset, reducing the learning rate if improve-
ment stalls.

Early stopping detects convergence by tracking performance
during training and stopping when performance degrades,
preventing overfitting. If convergence isn’t reached through
these techniques, the epoch limit determines the maximum
training iterations.

Achieving convergence ensures the model’s accuracy and
effectiveness in making predictions.

8) Memory, CPU and Time metrics collection:: To assess
and diagnose the efficiency of the system architecture, several

Python libraries are used for recording performance metrics.
Tracemalloc is utilized for measuring RAM utilization, psutil
for monitoring CPU usage in real-time, and the perf counter
function for evaluating time-based performance. These tools
enable a deep understanding of system performance and
identification of areas requiring optimization or improvement.

C. Serverless to reduce a Peer overload computing:

We leverage AWS Lambda for serverless parallel batch pro-
cessing, enabling efficient workload distribution and reducing
computation time. By assigning specific Lambda functions to
data batches, we effectively manage gradients computations.
AWS Step Functions orchestrate the Lambda functions, adapt-
ing to data batch availability for optimal workload handling.
This serverless approach minimizes peer overload and accel-
erates training set processing, enhancing overall performance.

IV. EXPERIMENTAL SETUP

This section details our experimental setup to evaluate the
performance of various CNN models across different datasets
on the proposed architectures.

A. Datasets

MNIST: The MNIST Handwritten Digit Collection [33]
consists of 60,000 samples of handwritten numerals, each
categorized into one of ten classes.

CIFAR: The CIFAR Image Dataset [34] encompasses
60,000 color images spanning ten distinct classes, such as
automobiles, animals, and objects. Each category contains
6,000 images that are evenly distributed.

B. Model Architectures and Hyperparameters

SqueezeNet 1.1: SqueezeNet 1.1 is an efficient CNN archi-
tecture [35], with fewer parameters (1.2 million) and a small
model size (<5MB).

MobileNet V3 Small: MobileNet V3 Small [36] is a
lightweight CNN tailored for mobile and edge devices, featur-
ing inverted residual blocks, linear bottlenecks, and squeeze-
and-excitation modules. With approximately 2.5 million train-
able parameters and a compact model size,

VGG-11: VGG-11 is a deep convolutional neural network
(CNN) architecture developed for image classification tasks
[37]. It is a variation of the VGG family, with 11 weight layers,
including convolutional and fully connected layers. With an
input resolution of 224x224 and approximately 132.9 million
trainable parameters.

C. EC2 Instances configuration for peers

We aim to determine the ideal machine instance for three
different neural network models: Vgg11, MobileNet V3 Small,
and SqueezeNet 1.1. We started with the smallest available
machine instance and trained the models on it. If the machine
crashed due to resource limitations during training, we moved
up to the next larger machine instance until we found one
that was able to train the model without issue. Additionally,
we incrementally increased the number of peers during the
experimentation, starting with 4 and adding 4 peers at a time

until we reached 12 peers, to determine the computation and
communication resources usage. Ultimately, we determined
that the Vgg11 model require t2.large instance, while the
MobileNet V3 Small and SqueezeNet 1.1 models could be
trained model could be trained on t2.medium instance. This
approach allowed us to optimize the use of resources and
achieve optimal performance for each model, taking into
account both computation and cost.

D. Serverless client functions configuration

In the following, we discuss our approach to implementing
a serverless training workflow by leveraging AWS Step Func-
tions and Lambda functions for parallel gradient computation
and batch processing.

1) Serverless AWS Lambda Configuration for Gradient
Computation: We prepared an AWS lambda serverless func-
tion for machine learning batch training. The function is
designed to be invoked with essential parameters such as
the specific model, batch identifier, optimizer, learning rate,
and loss function. To obtain the necessary data batch for
training, the function accesses an S3 bucket, where we have
pre-processed and stored batches.

To facilitate seamless deployment on our custom ARM
architecture, we packaged the machine learning dependencies,
including the Pytorch library, in a zip file with a size less
than 50MB. If additional dependencies are needed, they can
be incorporated as separate layers within the AWS Lambda
service. This approach allows for a modular structure while
complying with the service’s constraints. The total size of
the unzipped files must not exceed 250MB, ensuring that
the serverless function remains within the allowable resource
limits, ultimately fostering efficient and scalable training pro-
cesses in our custom ARM-based environment.

2) Serverless AWS Lambda Pricing: One of the key factors
in pricing for AWS Lambda is the amount of memory allocated
to the function. The prices of AWS Lambda are calculated
based on the amount of memory allocated to the function and
the duration of the execution.

The objective is to compare the costs of running the same
workload using EC2 peer to peer instances without serverless
and using EC2 small instances by invoking serverless lambda
for parallel compute gradients. This comparison will give
us insights into the cost-effectiveness of using serverless
computing in contrast to traditional computing methods.

3) Dynamic AWS Step Function State Machine for Paral-
lel Batch Processing: We have developed a Dynamic State
Machine using AWS Step Functions, designed to compute
parallel batch gradients on serverless Lambda functions. This
state machine is generated dynamically according to the given
batch number, allowing it to accommodate varying batch
sizes. By leveraging the parallel computing capabilities of
AWS Step Functions, each Lambda invocation processes an
assigned batch saved in an S3 bucket. Once the state machine
is deployed, it is invoked with the necessary input, which
includes the total number of batches and the data required
for the Lambda function to compute gradients corresponding

to each data batch. This data encompasses the model, batch,
optimizer, learning rate, and loss function. Our approach ef-
fectively enables parallel processing of gradient computations
within a serverless environment using AWS Step Functions
and Lambda functions.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments, fo-
cusing on distributed deep learning aspects including resource
requirements, serverless efficiency, communication overhead,
and synchronization barriers in peer-to-peer training.

A. Identify tasks needing expensive computational level
To determine the resource usage and identify computation-

ally expensive tasks in a distributed peer-to-peer training setup.
In this setup, four worker nodes collaborate to train a machine
learning model. The experiment focuses on measuring the
resource usage at different stages of the distributed training
process, including computing gradients, sending gradients,
receiving gradients, updating the model, and convergence
detection, is monitored and captured.

Metrics such as CPU usage, memory consumption, and
processing time are recorded for each stage. The experi-
ment continues to four epochs and the average per epoch
is computed. Afterward, we compare resource consumption
across different stages and identify the most computationally
demanding tasks.
TABLE I: Evaluating Resource Usage in Distributed Peer-
to-Peer Training with Four Workers and 30 Batches; Goal
is to Determine the Most Resource Consuming in Term of
CPU/Memory and Processing Time

Model
(instance type) Dataset Training

Stage

Compute
Gradients
(per batch)

Send
Gradients

Receive
Gradients

Model
Update

Convergence
detection

squeezenet 1.1
(t2.medium)

MNIST
/ CIFAR

CPU
Usage (%) 194,82 / 195,45 39,37 / 43,95 71,85 / 73,72 122,4 / 141,5 198,17 / 196,17

Memory
(MB) 600 / 570 568,29 / 566,64 555,32 / 569,91 566 / 530 574 / 540

Processing
Time (s) 14,93 / 14,01 0,084 / 0,08 0,25 / 0,27 0,18 / 0,0052 0,19 / 0,16

MobileNet
V3 Small
(t2.medium)

MNIST
/ CIFAR

CPU
Usage (%) 197,87 / 198 40,45 / 40,92 75,3 / 81,42 147,6 / 134,8 198,05 / 198

Memory
(MB) 840 / 640 835,70 / 630,86 843,81 / 624,33 786 / 780 800 / 800

Processing
Time (s) 29,72 / 24,01 0,11 / 0,11 0,38 / 0,43 0,015 / 0,016 1,12 / 0,92

VGG 11
(t2.large)

MNIST
/ CIFAR

CPU
Usage (%) 198,4 / 198,2 65,22 / 74 53,72 / 56 166 / 154 198,4 / 198,8

Memory
(GB) 4,10 / 4,24 3,19 / 3,075 4,8 / 4,33 2,4 / 2,46 2,41 / 2,4

Processing
Time (s) 104,37 / 104,20 7,38 / 6,72 15,55 / 19,54 4,8 / 4,2 9,20/7,6

According to the results of our experimental investigation on
three different models, namely VGG11, MobileNetV3 Small,
and SqueezeNet, using two distinct datasets, MNIST and
CIFAR, we have identified the most resource-intensive step
during the training process. As demonstrated in the tabulated
data of Table I, the computation of gradients consumes a
substantial amount of computational resources and memory,
particularly for VGG11, which requires approximately 4 GB
of memory per batch, and given that we executed 30 batches
during our experiment. In comparison to other stages, such as
sending and receiving data, updating models, and detecting
convergence, the computation of gradients resulted in the
highest CPU usage. As a result, it is reasonable to recommend
the migration of the computation of gradients to a serverless
infrastructure, which can reduce the overheads associated with
managing and provisioning resources.

Batch Size

G
ra

di
en

ts
 C

om
pu

ta
tio

n
Ti

m
e

(s
)

0

100

200

300

400

64 128 512 1024

Without Serverless With Serverless

(a) Four Peers

Batch Size

G
ra

di
en

ts
 C

om
pu

ta
tio

n
Ti

m
e

(s
)

0

100

200

300

400

64 128 512 1024

Without Serverless With Serverless

(b) Eight Peers

Batch Size

G
ra

di
en

ts
 C

om
pu

ta
tio

n
Ti

m
e

(s
)

0

100

200

300

400

64 128 512 1024

Without Serverless With Serverless

(c) Twelve Peers

Fig. 3: Comparison of Processing Training Time on Gradients Computing for different number of Peers and batch sizes in
Peer to Peer Training with and Without Serverless

B. Evaluation of Serverless Infrastructure for Gradient Com-
puting

Throughout this section, we conducted a series of experi-
ments to evaluate the impact of serverless infrastructure on the
performance and cost of gradients computing. We evaluate two
distinct architectures to assess the impact of serverless integra-
tion on resource utilization and cost. In the first architecture,
we train a VGG11 model and MNIST dataset with t2.large
instances. In the second architecture, we train the same model
with t2.small instances, while offloading high-computational
tasks to a distributed lambda serverless infrastructure.

1) Computation Time Comparison: Serverless vs. Instance-
based Architectures for Gradient Computing: We examined
different architectures, batch sizes, and numbers of workers to
gain a comprehensive understanding of the potential benefits
and challenges associated with serverless integration in terms
of execution time of the gradients computation. The findings
from our experiments are illustrated in a bar plot figure3 ,
where we have two bars for each batch size – one represent-
ing the time taken with serverless infrastructure (blue bar)
and the other without serverless infrastructure (orange bar).
This visual representation clearly highlights the significant
improvements in the time taken to compute batches when
employing serverless infrastructure across various batch sizes
(64, 128, 512, and 1024) and numbers of workers (4, 8, and
12). For instance, in a configuration with 4 workers and a
batch size of 64, the blue bar (serverless) is considerably
shorter than the orange bar (non-serverless), demonstrating a
remarkable 97.34% reduction in the time taken to compute
batches. Similarly, with 8 workers and a batch size of 128, the
improvement reaches 92.04%. However, it is worth noting that
the improvement tends to decrease as the number of workers
increases, especially for larger batch sizes.

2) Cost Comparison: Serverless vs. Instance-based Archi-
tectures for Gradient Computing: In the previous experiment,
we evaluated the impact of serverless infrastructure on compu-
tation time for gradient computing in peer-to-peer training. The
results demonstrated significant improvements across varying
batch sizes and numbers of workers, especially with a four-
worker setup. This finding prompted us to delve deeper into
the cost analysis for this scenario.

In this section, we present a cost comparison between

serverless and instance-based architectures for gradient com-
puting, focusing on a case study involving four workers, the
VGG11 model, and the MNIST dataset. Tables II and III
detail the time and cost evaluation for computing gradients
with different batch sizes in both architectural scenarios.
Lambda memory size was set to match the minimal functional
requirements for gradient computation.

In our cost comparison analysis, the estimated cost per peer
was calculated as follows:

Cost per Peerserverless = [Lambda Cost× Num of batches
+ EC2 Cost]
× Computation Time (1)

Cost per Peerinstance-based = EC2 Cost× Computation Time
(2)

From Table II, we observe that for serverless architecture, as
the batch size decreases, so does the computation time, leading
to variable costs per batch size. However, the number of
batches, also increases, affecting the lambda costs since each
batch is a separate invocation of the lambda function. Hence,
while larger batch sizes increase efficiency in computation
time, they also necessitate more resources, thus increasing the
costs.

In comparison, Table III presents the costs associated with
the instance-based architecture, showing a clear increase in the
costs as the batch size decreases. The cost differences between
the two architectures can be attributed to the use of different
instance types (t2-small, t2.large) and the varying memory
size requirements for the lambda functions in the serverless
architecture.

For a detailed understanding of the cost dynamics, we
scrutinized the estimated cost of computing gradients (in
USD) for both architectures across all batch sizes. For a
batch size of 1024, we found that the serverless architecture
costs approximately 5.34 times more than the instance-based
architecture. However, this discrepancy in cost decreases with
smaller batch sizes.

The results highlight a greater cost when utilizing a server-
less architecture with low resource instances, it’s important

Peers

Ti
m

e
(s

)

0

100

200

300

400

4 8 12

Communication Computation

(a) VGG

Peers

Ti
m

e
(s

)

0

10

20

30

40

50

4 8 12

Communication Computation

(b) MobileNet V3 Small

Fig. 4: Gradients Computation and communication time per # Peers on VGG11 and MobileNet V3 Small (1024 batch size)

to consider the time-efficiency gains. As there is a trade-off
between the significant improvements in computation time and
the cost associated with using serverless infrastructure. It is
essential for researchers and practitioners to consider their
specific requirements, such as training time constraints and
budget limitations, when selecting an architecture for gradient
computing.
TABLE II: Time and Cost Evaluation of Compute Gradients
in Peer to Peer Training with Serverless; Model trained on
VGG11, MNIST dataset, and Four Peers

Batch Size 1024 512 128 64
Number of batches 15 30 118 235

Instance Type t2-small t2-small t2-small t2-small
Lambda

Memory size 4400 MB 2800 MB 1800 MB 1700 MB

Time to Compute
Gradients (seconds) 41.2 28.1 12.9 10.5

Estimated EC2
instance Cost

(USD / seconds)
$0.00000639 $0.00000639 $0.00000639 $0.00000639

Estimated Lambda
Cost (USD / seconds) $0.0000573 $0.0000362 $0.0000233 $0.0000220

Estimated Compute
Gradients Cost per

Peer (USD)
$0.03567 $0.03069 $0.03451 $0.05435

TABLE III: Time and Cost Evaluation of Compute Gradients
in Peer to Peer Training without Serverless; Model trained on
VGG11, MNIST dataset, and Four Peers

batch size 1024 512 128 64
Instance Type t2-large t2-large t2-large t2-large

Time to Compute
Gradients (seconds) 258 278,4 330,4 394,8

Estimated EC2
instance Cost

(USD / seconds)
$0.00002578 $0.00002578 $0.00002578 $0.00002578

Estimated Compute
Gradients Cost per

Peer (USD)
$0.00665 $0.00717 $0.00851 $0.01017

C. Compression and Communication Overhead

In this section, we will explore Compression and Commu-
nication Overhead in distributed deep learning systems. We
will first analyze the impact of varying the number of workers
on computation and communication overhead, followed by an
investigation into Gradient Compression techniques for en-
hancing communication efficiency during the training process.

1) Computation and communication Over workers: To elu-
cidate the impact of communication overhead on system per-

formance in a peer-to-peer architecture, we conducted rigorous
experiments involving both VGG111 and MobileNet V3 Small
models, varying the number of workers. In each experiment,
we meticulously recorded both the compute time and the
communication time. The results presented in the Figures 4
show the relationship between the number of workers (peers),
communication time, and computation time for VGG11 and
MobileNet V3 Small models when using a batch size of 1024.
In both cases, the figures reveal that as the number of workers
increases, computation time decreases while communication
time increases. This can be attributed to the fact that with more
workers, the dataset is divided among more devices, allowing
for faster computation. We notice that the magnitude of the
increase is much higher in the VGG11 model compared to the
MobileNet V3 Small model. This could be due to the VGG11
model having a larger number of parameters, which results
in more gradient information being communicated between
workers.

2) Gradient Compression for communication improvement:
As mentioned in the previous section, communication over-
head increases as the number of workers increases. Gradient
compression can be a solution to mitigate this. In order to
assess the impact of gradient compression on communication
overhead, an experimental investigation was executed using
the VGG11 model, the MNIST dataset, and a network com-
posed of four peers. Our paramount focus was on precisely
measuring the send and receive times from a single peer,
in order to comprehensively elucidate communication effi-
ciency. As illustrated in Figure5, we demonstrate that the
utilization of gradient compression techniques yields to a
significant reduction in communication time when compared
to the utilization of non-compressed gradients. This reduction
in communication time is observed across a broad range of
batch sizes.

D. Peer to Peer Training and Communication Barrier Syn-
chronisation

In our experiments, we aimed to compare the performance
of two different peer-to-peer (P2P) approaches: synchronous
P2P and asynchronous P2P. We conducted experiments on
Mobilenet v3 small with a batch size of 64, a learning rate
of 0.001, and the optimizer SGD. Our findings revealed that

64 128 512 1024
Batch Size

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)
Send Time
Receive Time
Send Time (Compressed)
Receive Time (Compressed)

Fig. 5: Compression Algorithm impact on Time Communica-
tion (Send and Receive Gradients)

the synchronous P2P approach outperformed the asynchronous
P2P approach in terms of convergence rate and achieved
a higher accuracy level. Specifically, the synchronous P2P
approach achieved an accuracy of 84.3% after approximately
128 epochs, while the asynchronous P2P approach required a
greater number of epochs to converge and exhibited instability
during the convergence. This was due to the asynchronous
approach’s tendency to consider outdated gradients, resulting
in more epochs number to converge [16]. These results indicate
that in P2P communication, synchronicity plays a crucial role
in achieving a faster and more accurate convergence rate.

Fig. 6: Synchronous Vs Asynchronous Peer to Peer Training
of MobileNet V3 Small

VI. DISCUSSION

In this section, we reflect on the key findings and im-
plications of our research on distributed deep learning in
peer-to-peer training setups. Our focus is on the benefits and
challenges of serverless infrastructure, the significance of man-
aging communication overhead, addressing synchronization
barriers, and the impact of choosing the model architecture
and dataset on overall training performance.

A. Benefits and Challenges of Serverless Infrastructure

Our experimental results have underscored that the com-
putation of gradients is the most resource-intensive task in
distributed peer-to-peer training setups. By transitioning this
task to serverless infrastructure, we have witnessed substantial
improvements in computation time across various batch sizes
and numbers of workers. This emphasizes the potential of
serverless infrastructure as an efficient and scalable solution
for managing computationally demanding tasks in distributed
training, especially when working with complex models that
require expensive computational instances.

Serverless infrastructure offers notable benefits but also
presents cost implications. Our analysis revealed its potential
in situations of constrained computational resources. Although
serverless architectures may be more costly for smaller batch
sizes, they significantly improve computation time when re-
sources are scarce. This underlines their advantage in scenar-
ios that demand rapid processing under resource limitations.
Therefore, researchers and practitioners need to weigh their
specific needs, such as time constraints, budget, resource
limitations, and model complexity, when deciding on adopting
a serverless architecture. This balanced approach allows for
an optimal decision that accommodates cost, efficiency, and
performance requirements.

B. Reducing Communication Overhead

Our analysis of communication overhead in distributed peer-
to-peer training revealed that the amount of data transferred
during the training process is influenced by the choice of
model architecture and dataset. Larger model architectures
and more complex datasets resulted in higher communication
overhead, which can negatively impact the overall efficiency
of the training process.

To reduce communication overhead, techniques such as
gradient compression [32], model sparsification [38], Delta
compression [39], communication optimisation [40] and ef-
ficient data encoding can be employed. These methods can
help minimize the data transfer during the training process,
resulting in a more efficient and cost-effective training setup.

C. Impact of Model Architecture and Dataset Choices

Our experiments have shown that the choice of model
architecture and dataset can have a significant impact on
various aspects of distributed peer-to-peer training, including
computational resource requirements, communication over-
head, and synchronization barriers. Larger model architectures
and more complex datasets generally require more computa-
tional resources, result in higher communication overhead, and
demand longer synchronization times.

This highlights the importance of selecting appropriate
model architectures and datasets for distributed training pro-
cesses, considering the available resources and the desired
trade-offs between training time, cost, and performance.

VII. RELATED WORK

In this related work section, we will explore two distinct
but interrelated areas: Peer-to-Peer Machine Learning, which
focuses on decentralized training approaches, and Serverless
Computing for Machine Learning, which examines the effi-
cient use of serverless to reduce computational overhead.

A. Peer to Peer in Machine Learning

In recent years, numerous initiatives have been proposed to
address the challenges of distributed, decentralized, and peer-
to-peer (P2P) systems for machine learning. These works can
be broadly classified into the following categories: decentral-
ized training methodologies, privacy-preserving approaches,
and communication-efficient solutions.

Decentralized training methodologies, such as BrainTorrent
[9] and the consensus-based distributed stochastic gradient
descent algorithm proposed by Zhanhong et al. [41], utilize
fully decentralized systems for training a shared model. Both
approaches showcase the potential of decentralized training
in large-scale machine learning systems while maintaining
scalability and convergence guarantees. BrainTorrent requires
peers to share their local model weights and update them by
calculating a weighted average between the weights of the
receiving and sending peers. In contrast, Zhanhong et al.’s
algorithm leverages gossip-based communication protocols
to propagate the model between nodes in fixed topology
networks.

Addressing communication overhead and efficiency in P2P
topologies is another critical aspect of distributed machine
learning systems. Garfield [4] presents a decentralized archi-
tecture for training machine learning models in the presence
of adversarial nodes, leveraging a Byzantine fault-tolerant
consensus protocol for secure and scalable P2P training. Xing
et al. [42] highlight the communication overhead in P2P
parameter synchronization and the need for efficient communi-
cation strategies. SELMCAST [43], an algorithm for multicast
receiver selection, optimizes the bottleneck sending rate to
reduce time cost for parameter synchronization. Lastly, the
SAPS-PSGD algorithm [12] maximizes bandwidth efficiency
through adaptive worker pair selection in a distributed training
approach involving a coordinator and multiple peers. These
communication-efficient solutions showcase the potential to
overcome the challenges of communication overhead in peer-
to-peer topologies while achieving substantial savings com-
pared to centralized topologies.

In this work, our proposed method involves peers in a dis-
tributed training system sending large gradient computations
to serverless computing resources instead of calculating them
locally. By doing so, the peers can focus on other tasks, such as
updating model weights and communicating with other nodes
in the network, while serverless platforms efficiently handle
the computationally expensive gradient calculations.

B. Serverless Computing for Machine Learning

Given that the use of serverless runtimes for machine
learning pipelines is a relatively new research area [15], [17],

[19], [44], [45], several initiatives have been undertaken to
encourage wider adoption and promote efficient utilization of
Function-as-a-Service (FaaS) platforms. To this end, various
serverless development frameworks have been proposed, such
as Cirrus [15], which has been meticulously crafted to profi-
ciently manage the entire ML workflow.

Particularly, recent research efforts have been directed to-
wards ML model training [16], [20]–[22], [24], [46]. Exist-
ing approaches for distributed training machine learning are
based on parameter server communication topologie where all
communication between workers goes through a server for a
synchronisation purpose.

Ali et al. [13] proposed SMLT, a serverless framework for
distributed training based on parameter server architecture and
a Hybrid Storage Enabled Hierarchical Model Synchronization
method. This approach achieves faster training speeds and
reduced monetary costs compared to other serverless ML train-
ing frameworks and VM-based systems. Experimental eval-
uations show SMLT outperforms state-of-the-art VM-based
systems and serverless ML training frameworks in training
speed (up to 8×) and cost (up to 3×).

MLLESS [20], proposed by Sarroca and Sanchez-Artigas,
is a FaaS-based ML training prototype designed for cost-
effective ML training in serverless computing. It incorporates
a decentralized design, a significance filter, and a scale-
in auto-tuner optimized for serverless computing. MLLess
outperforms serverful ML systems by up to 15x for sparse
ML models with fast convergence and demonstrates ease of
scaling out to large clusters of serverless workers.

In this work, we use a fully decentralized machine learning
training approach, leveraging serverless benefits to compute
expensive gradient calculations, combining the advantages of
both distributed learning and serverless computing for more
efficient and scalable ML training processes.

VIII. CONCLUSION

In this paper, we present a novel serverless peer-to-peer
(P2P) architecture for distributed training, introducing an
efficient parallel gradient computation technique to address
resource constraints. We evaluated the performance of our ap-
proach with a focus on computational resource requirements,
serverless infrastructure efficiency, communication overhead,
and synchronization barriers. Our experimental results showed
that the computation of gradients is the most computation-
ally expensive task, benefiting from serverless infrastructure
integration and leading to up to a 97.34% improvement in
computation time. We investigated the trade-off between com-
putation time improvements and associated costs, revealing
that serverless architecture tended to be more expensive, with
costs being up to 5.3 times higher than traditional, instance-
based architectures. Additionally, we briefly analyzed the
communication overhead and synchronization problems in the
distributed training process, highlighting the need for efficient
strategies in P2P distributed training systems.

The insights gleaned from this research can be utilized by
other researchers and practitioners to build upon our work,

further optimize distributed training processes, and potentially
revolutionize the way machine learning models are trained
across various applications.

REFERENCES

[1] I. B. Data and D. A. S. Cities, “The exponential growth of data,”
Inside Big Data White paper. Retrieved online at https://insidebigdata.
com/2017/02/16/the-exponential-growth-of-data, 2017.

[2] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” Acm
computing surveys (csur), vol. 53, no. 2, pp. 1–33, 2020.

[3] B. Yuan, C. R. Wolfe, C. Dun, Y. Tang, A. Kyrillidis, and
C. Jermaine, “Distributed learning of fully connected neural networks
using independent subnet training,” Proc. VLDB Endow., vol. 15, no. 8,
p. 1581–1590, apr 2022. [Online]. Available: https://doi.org/10.14778/
3529337.3529343

[4] R. Guerraoui, A. Guirguis, J. Plassmann, A. Ragot, and S. Rouault,
“Garfield: System support for byzantine machine learning (regular
paper),” in 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2021, pp. 39–51.

[5] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola,
“Parameter server for distributed machine learning,” in Big learning
NIPS workshop, vol. 6, no. 2, 2013.

[6] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), 2014, pp.
583–598.

[7] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing, “More effective distributed ml via a stale
synchronous parallel parameter server,” Advances in neural information
processing systems, vol. 26, 2013.

[8] I. Foster and A. Iamnitchi, “On death, taxes, and the convergence of
peer-to-peer and grid computing,” in Peer-to-Peer Systems II: Second
International Workshop, IPTPS 2003, Berkeley, CA, USA, February 21-
22, 2003. Revised Papers 2. Citeseer, 2003, pp. 118–128.

[9] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger,
“Braintorrent: A peer-to-peer environment for decentralized federated
learning,” arXiv preprint arXiv:1905.06731, 2019.

[10] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized and
private peer-to-peer machine learning,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2018, pp. 473–481.

[11] T. Wink and Z. Nochta, “An approach for peer-to-peer federated
learning,” in 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE, 2021,
pp. 150–157.

[12] Z. Tang, S. Shi, and X. Chu, “Communication-efficient decentral-
ized learning with sparsification and adaptive peer selection,” in 2020
IEEE 40th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2020, pp. 1207–1208.

[13] A. Ali, S. Zawad, P. Aditya, I. E. Akkus, R. Chen, and F. Yan, “Smlt: A
serverless framework for scalable and adaptive machine learning design
and training,” arXiv preprint arXiv:2205.01853, 2022.

[14] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a
serverless architecture,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1288–1296.

[15] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus: A
serverless framework for end-to-end ml workflows,” in Proceedings of
the ACM Symposium on Cloud Computing, 2019, pp. 13–24.

[16] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards demystifying serverless machine
learning training,” in Proceedings of the 2021 International Conference
on Management of Data, 2021, pp. 857–871.

[17] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, A. Gokhale, and
T. Damiano, “Stratum: A serverless framework for the lifecycle
management of machine learning-based data analytics tasks,” in
2019 USENIX Conference on Operational Machine Learning (OpML
19). Santa Clara, CA: USENIX Association, May 2019, pp.
59–61. [Online]. Available: https://www.usenix.org/conference/opml19/
presentation/bhattacharjee

[18] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: a
survey of opportunities, challenges, and applications,” ACM Computing
Surveys, vol. 54, no. 11s, pp. 1–32, 2022.

[19] A. Barrak, F. Petrillo, and F. Jaafar, “Serverless on machine learning:
A systematic mapping study,” IEEE Access, vol. 10, pp. 99 337–99 352,
2022.

[20] P. G. Sarroca and M. Sánchez-Artigas, “Mlless: Achieving cost
efficiency in serverless machine learning training,” arXiv preprint
arXiv:2206.05786, 2022.

[21] D. Barcelona-Pons, P. Sutra, M. Sánchez-Artigas, G. Parı́s, and
P. Garcı́a-López, “Stateful serverless computing with crucial,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 3, pp. 1–38, 2022.

[22] A. Grafberger, M. Chadha, A. Jindal, J. Gu, and M. Gerndt, “Fedless:
Secure and scalable federated learning using serverless computing,”
arXiv preprint arXiv:2111.03396, 2021.

[23] P. G. Sarroca and M. Sánchez-Artigas, “Mlless: Achieving cost
efficiency in serverless machine learning training,” arXiv preprint
arXiv:2206.05786, 2022.

[24] M. Sánchez-Artigas and P. G. Sarroca, “Experience paper: Towards
enhancing cost efficiency in serverless machine learning training,” in
Proceedings of the 22nd International Middleware Conference, 2021,
pp. 210–222.

[25] J. Sampé, G. Vernik, M. Sánchez-Artigas, and P. Garcı́a-López, “Server-
less data analytics in the ibm cloud,” in Proceedings of the 19th
International Middleware Conference Industry, 2018, pp. 1–8.

[26] S. Alqahtani and M. Demirbas, “Performance analysis and com-
parison of distributed machine learning systems,” arXiv preprint
arXiv:1909.02061, 2019.

[27] “A survey of federated learning for edge computing: Research
problems and solutions,” High-Confidence Computing, vol. 1, no. 1,
p. 100008, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S266729522100009X

[28] J. Kepner, V. Gadepally, H. Jananthan, L. Milechin, and S. Samsi,
“Sparse deep neural network exact solutions,” in 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE, 2018,
pp. 1–8.

[29] N. S. Sattar and S. Anfuzzaman, “Data parallel large sparse deep neural
network on gpu,” in 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2020, pp. 1–9.

[30] “Serverless computing - aws lambda - amazon web services,” https:
//aws.amazon.com/lambda/, (Accessed on 04/20/2023).

[31] “Lambda quotas - aws lambda,” https://docs.aws.amazon.com/lambda/
latest/dg/gettingstarted-limits.html, (Accessed on 06/24/2023).

[32] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in neural information processing systems, vol. 30, 2017.

[33] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE signal processing magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[34] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on
cifar-10,” Unpublished manuscript, vol. 40, no. 7, pp. 1–9, 2010.

[35] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[36] B. Koonce and B. Koonce, “Mobilenetv3,” Convolutional Neural Net-
works with Swift for Tensorflow: Image Recognition and Dataset Cate-
gorization, pp. 125–144, 2021.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[38] X. Ma, M. Qin, F. Sun, Z. Hou, K. Yuan, Y. Xu, Y. Wang, Y.-K. Chen,
R. Jin, and Y. Xie, “Effective model sparsification by scheduled grow-
and-prune methods,” arXiv preprint arXiv:2106.09857, 2021.

[39] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased
compression for distributed learning,” arXiv preprint arXiv:2002.12410,
2020.

[40] P. Zhou, Q. Lin, D. Loghin, B. C. Ooi, Y. Wu, and H. Yu,
“Communication-efficient decentralized machine learning over heteroge-
neous networks,” in 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 2021, pp. 384–395.

[41] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning
in fixed topology networks,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[42] E. P. Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and principles of
distributed machine learning on big data,” Engineering, vol. 2, no. 2,
pp. 179–195, 2016.

https://doi.org/10.14778/3529337.3529343
https://doi.org/10.14778/3529337.3529343
https://www.usenix.org/conference/opml19/presentation/bhattacharjee
https://www.usenix.org/conference/opml19/presentation/bhattacharjee
https://www.sciencedirect.com/science/article/pii/S266729522100009X
https://www.sciencedirect.com/science/article/pii/S266729522100009X
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/ lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/ lambda/latest/dg/gettingstarted-limits.html

[43] S. Luo, P. Fan, K. Li, H. Xing, L. Luo, and H. Yu, “Fast parameter
synchronization for distributed learning with selective multicast,” in ICC
2022-IEEE International Conference on Communications. IEEE, 2022,
pp. 4775–4780.

[44] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar,
“Towards a serverless platform for edge AI,” in 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19).
Renton, WA: USENIX Association, Jul. 2019. [Online]. Available:
https://www.usenix.org/conference/hotedge19/presentation/rausch

[45] N. Shahidi, J. R. Gunasekaran, and M. T. Kandemir, “Cross-platform
performance evaluation of stateful serverless workflows,” in 2021 IEEE
International Symposium on Workload Characterization (IISWC), 2021,
pp. 63–73.

[46] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λ dnn : Achieving
predictable distributed dnn training with serverless architectures,” IEEE
Transactions on Computers, 2021.

https://www.usenix.org/conference/hotedge19/presentation/rausch

	Introduction
	Background
	Peer To Peer architecture for distributed training
	Serverless Computing
	Serverless AWS Step Function Workflow

	Methodology and System Design
	Design Architecture of Peer to Peer training Machine Learning based on Serverless Computing
	Peer to Peer training Machine Learning
	Dataset Preprocessing
	Compute Batch Gradients
	Communication Protocol
	Compression / Decompression
	Average Gradients
	Synchronous & Asynchronous Gradient Computation
	Convergence Detection
	Memory, CPU and Time metrics collection:

	Serverless to reduce a Peer overload computing:

	Experimental Setup
	Datasets
	Model Architectures and Hyperparameters
	EC2 Instances configuration for peers
	Serverless client functions configuration
	Serverless AWS Lambda Configuration for Gradient Computation
	Serverless AWS Lambda Pricing
	Dynamic AWS Step Function State Machine for Parallel Batch Processing

	Experimental Results
	Identify tasks needing expensive computational level
	Evaluation of Serverless Infrastructure for Gradient Computing
	Computation Time Comparison: Serverless vs. Instance-based Architectures for Gradient Computing
	Cost Comparison: Serverless vs. Instance-based Architectures for Gradient Computing

	Compression and Communication Overhead
	Computation and communication Over workers
	Gradient Compression for communication improvement

	Peer to Peer Training and Communication Barrier Synchronisation

	Discussion
	Benefits and Challenges of Serverless Infrastructure
	Reducing Communication Overhead
	Impact of Model Architecture and Dataset Choices

	Related work
	Peer to Peer in Machine Learning
	Serverless Computing for Machine Learning

	Conclusion
	References

