
Harmonized Monitoring for High Assurance Clouds
Ani Bicaku1,3, Silvia Balaban2, Markus G. Tauber1,3, Silvia Balaban2, Aleksandar Hudic3,

Andreas Mauthe4, and David Hutchison4

1University of Applied Science Burgenland, Eisenstadt, Austria
2Karlsruhe Institute of Technology, Center for Applied Legal Studies, Karlsruhe, Germany

3Austrian Institute of Technology, Vienna, Austria
4Lancaster University, Lancaster, UK

Abstract— Due to a lack of transparency in cloud based
services well-defined security levels cannot be assured within cur-
rent cloud infrastructures. Hence sectors with stringent security
requirements hesitate to migrate their services to the cloud. This
applies especially when considering services where high security
requirements are combined with legal constraints. To tackle this
challenge this paper presents an extension to our existing work on
assurance methodologies in cloud based environments by inves-
tigating how current state of the art monitoring solutions can be
used to support assurance throughout the entire infrastructure. A
case study is used in which monitoring information representing
a set of relevant security properties is being collected. As result,
we propose that a combination of existing tools should be used
to harmonize existing monitoring artifacts. We describe and
evaluate an Evidence Gathering Mechanism (EGM) that provides
this harmonization and show how this can support assurance.
This can also underpin legal proceedings from an evidence law
perspective.

I. INTRODUCTION

The main motivation for adopting cloud technology in
different sectors is to increase efficiency and minimize IT costs
by utilizing new concepts such as elasticity, scalability and on-
demand resource provisioning. These properties make cloud
computing also attractive critical infrastructure (CI) operations
(such as water, electricity, public transportation, health care
and telecommunications).

Since through assurance guarantees can be given on the
level of security a system provides, it can also be useful
for ensuring legal compliance. A cloud provider and a user
can agree on a well-defined security level that an assurance
framework (AF) has to maintain. Any deviation from con-
tractually agreed levels then lead to a breach of duty. As the
AF permits independent, continuous and automatic monitoring
it guarantees users of cloud systems that this level is being
fulfilled. If it cannot be maintained (due to a fault, negligence
or for other reasons under the control of a cloud service
provider) a breach of duty would be given. The legal position
of the cloud user in a respective lawsuit could therefore be
strengthen considering the evidence available through the AF.
For instance, it would allow to check if an agreed security
level has been maintained when a possible fault occurred.
Especially if a high level was originally agreed the probability
that a fault occurs should be low. In the case of a violation
(e.g. through negligent behavior or someone failing to exercise
reasonable care) the cloud provider can be held responsible

for not providing an adequately secured system. In order to
accommodate this the AF permits continuous checking of
contractual obligation. The results of this process can then
be used as evidence in a possible lawsuit by establishing the
level of security the system had when a fault occurred. In
our previous work in the SECCRIT 1 project, we proposed a
methodology for modeling high assurance, i.e. analyzing how
high level security properties can be measured per component
of a cloud service and define how continuous aggregation of
measured information can be achieved [1], [2].

The aim of this work is to investigate how existing cloud
monitoring solutions can offer a unified view on assurance
related monitoring artifacts regardless of the tools in use for
low level monitoring. An example of a security property in
our existing approach [1], [2] is “strong password”. It supports
confidentiality by validating a set of characteristics (i.e. length,
special characters, numbers or history) which are used for a
password to assure a certain degree of password complexity,
based on NIST [3]. This property can be monitored by
performing checks on e.g. the PAM (Pluggable Authentication
Modules) module, assuming a Linux based system.

In order to support such assurance methodologies we have to
first analyze and identify the existing cloud-based monitoring
solutions that are capable of supporting a set of representative
security properties to understand their legal relevance. There-
fore, we present here a derived set of technical properties
that should be part of a monitoring tool for high assurance
environments. We furthermore investigate how existing mon-
itoring tools support the monitoring of individual properties.
This work mainly looks at open-source monitoring solutions,
since they can be customized for our needs with respect to
assurance. We find that a combination of existing tools and
individual modules can indeed be used to support assurance.

Therefore we propose an Evidence Gathering Mechanism
(EGM), which is designed to gather and harmonize relevant
monitoring artifacts in infrastructure, tenant and service layer
using existing monitoring tools. We show that a binary in-
dicators (0 or 1) can be derived from monitoring elements
to harmonize individual results despite from different hetero-
geneous tools. This also allows to define security properties,
link low level monitoring to the higher level assurance con-

1www.seccrit.eu



cepts, categorize the security properties (e.g. by using CIA),
and record (respectively report) the numbers supporting the
individual category.

This paper is organized as follows: Section II provides the
detailed definitions and the sources of the representative set of
security properties. Section III provides a survey of existing
monitoring tools based on monitoring types. Also, it gives
an overview of existing scientific work of cloud monitoring
in context of high assurance. In section IV we present the
evaluation of the monitoring tools for each security property
associated with security classes and analysed at various levels.
Section V presents the proposed architecture of the EGM and
also gives examples how a security property can be monitored
to provide high assurance in cloud environments. Finally,
section VI concludes the paper and gives an outline of our
future work.

II. PROPERTY ANALYSIS AND EVALUATION

This section specifies a representative set of security prop-
erties. These have been derived from a study including major
stakeholders as part of the project SECCRIT. Further, the
evaluated properties have been adopted from NIST, ISO or
other security standard catalogues, and are categorized in CIA
(Confidentiality, Integrity and Availability) classes.

From an evidence law perspective the confidentiality class
is specifically important for damage compensation cases. For
instance, in cases where cloud users outsource their data and
it is subsequently accessed by non-authorized persons causing
damage to the cloud user, proof is required to substantiate a
potential claim against the provider. Additionally, assuming
a Cloud user is outsourcing the storage of personal data
belonging to a third party. If this data is processed in a
way that is outside the scope of the agreed purpose (i.e. the
purpose for which the Cloud user has a legitimization), the
Cloud users will have to provide evidence in case of litigation
in order to disprove any potential allegation against them.
The integrity class is relevant for establishing if a breach of
duty has occurred when data has been modified and this has
led to damage. In turn the availability class is important for
SLA Compliance, specifically in order to check if the owed
performance duty has been fulfilled properly.

Hence, for each particular property a generic description and
a general method of monitoring has to be provided. A more
technical example of monitoring is provided in section V.

A. Confidentiality Properties

• Concurrent Session Control, based on NIST [4] sup-
ports confidentiality by restricting the number of concur-
rent sessions per system account, account type, or both.
We monitor this property by checking if the tools that
monitor concurrent session information and control it are
installed on the component of consideration.

• Strong passwords, based on NIST [3] supports confiden-
tiality by assuring that a certain degree of complexity is
required for passwords. This property can be monitored
by checking whether tools or services, enforcing complex

passwords are installed and actively being used on the
component of consideration.

• Encryption, based on ISO [5] supports confidentiality
by assuring that access to the encrypted data, remains
restricted to those who are not in possession of the proper
encryption/decryption key. We monitor this property by
checking whether encryption and secure communication
protocols are present on the component of consideration.

B. Integrity Properties

• Data Error Correction [6], supports integrity by assur-
ing that data is resilient to errors. This can be measured
by checking if the techniques that support data error cor-
rection are installed on the component of consideration.

• Information (Data) Consistency, based on ISO [5]
supports integrity by assuring that at any point of time the
transmitted or stored information is resilient to alteration.
This can be monitored by checking if tools that support
integrity are installed on the component of consideration.

• Data Alteration Prevention, based on ISO [5] supports
integrity by assuring that there are present services which
can prevent any kind of unauthorized modification of the
data. This can be monitored by identifying if there are
mechanisms like hashes or digital signatures applied to a
particular component.

C. Availability Properties

• Load Balancing, based on NIST [7] supports availability
by assuring the distribution of incoming requests across
multiple servers. This can be monitored by assuring that
there are services present that can perform load balancing
techniques.

• Resource Utilization, based on ISO [8] supports avail-
ability by assuring that a particular service of a system
could be spawned across physical or virtual nodes. This
property can be monitored by checking if data replication
techniques are present on the component of consideration.

• Live Backup, based on ISO [5] supports availability
by assuring that a live backup can be conducted. This
property can be monitored by assuring that there exist
services to support backup on the entity of consideration
and there is evidence that those means are in use.

III. MONITORING OVERVIEW AND RELATED WORK
This section gives an overview of existing state-of-the-

art work in respect of cloud based monitoring solutions and
concepts. First, we give an overview of existing monitoring
tools related to high assurance in CI environment. In particular
it is investigated if the monitoring tools are capable to provide
(i) cross layer monitoring; (ii) continuous monitoring; (iii) in-
terval or event based monitoring; (iv) multi-tenant monitoring.
Second, we consider the scientific work and publications for
cloud monitoring related to high assurance.

A. Cloud Monitoring Solutions

Existing open-source monitoring solutions are investigated
and summarized related to high assurance of services hosted



in cloud environments. Also, the evaluated solutions are in-
vestigated if they are extendable and which of them already
support the set of representative properties. Due to the fact
that the monitoring solution may also offer unofficial plug-
ins this work is mainly focused on an official set of features.
This section is based on output from the SECCRIT project,
specifically Deliverable 5.2 [2].

Nagios 2 is a well-known and provides a widely used
monitoring solution capable of monitoring all devices using
the TCP/IP protocol suite within interconnected networks, and
network and infrastructure devices. This monitoring solution
is capable of acquiring data from infrastructure layer and
delivering them to the central aggregation module (i.e. a server
used for data acquisition and data analysis). Nagios does not
support device auto-discovery, which in large scale dynamic
environments can be a significant drawback. Also, like a lot
open-source solutions Nagios is based on complex text based
configuration files which makes it challenging to administer.
Moreover, Nagios does not have the ability to distinguish
devices per types (e.g. servers, routers, or switches). There-
fore, Nagios is not capable of addressing challenges such as
cross layered monitoring. To define policies or interval based
monitoring in multi-tenant environments it requires additional
plugins giving the possibility of further extension.

Sensu 3 is a monitoring solution, also known as “Monitoring
Router”, a system which provides all the gathered data to event
handlers to correlate and analyse the results. The architecture
of Sensu is message-oriented using RabbitMQ and JSON
payloads with a friendly user interface solution. Sensu uses
RabbitMQ to establish client server communication. Hence, it
is compatible with message oriented architectures. The main
benefit of this tool is the ability to flexibly customize its
acquisition modules and flexibly scale across infrastructures.
Unfortunately, Sensu is not designed to monitor multi-tenant
environments or provide policy and interval based monitoring.

Munin 4 is a monitoring solution written in Perl and
designed to monitor infrastructure, network devices, and ser-
vices. This monitoring solution analyses data by using RRD-
Tool and graphing systems to present the output in graphs via
the user interface. Unfortunately, Munin does not offer much
flexibility when accessing monitored hosts and configuring the
monitored network. Although Munin offers the ability to run
various customisable scripts, it only provides a fixed interval-
scan rate where these scripts could be initiated. One of the
major drawbacks of Munin is its text file configuration model
which can be quite complex.

Private Cloud MONitoring System PCMONS [9] is a
monitoring system designed for private cloud infrastructures. It
is a compound of infrastructure layer, integration layer and the
view layer (based on Nagios) divided into eight components
(Node information gatherer, Cluster Data Integrator, Monitor-
ing Data Integrator, VM Monitor, Configuration Generator,

2www.nagios.org
3www.sensu.com
4www.munin-monitoring.org

Monitoring Tool Server, UI and Database). A main goal of
PCMONS is extensibility of its services.

Zabbix 5 is an enterprise monitoring tool focused on
network infrastructure monitoring. It is based on an agent-
less monitoring concept without connecting to the host and
therefore reducing the impact on the performance. Further-
more, Zabbix provides distributed monitoring in real-time with
centralized web administration. It offers an overview of all
hosts inside the network from a single point of entry. However,
its capability is limited when it comes to automatic discovery
of monitored devices .

Zenoss Core 6 is an IT monitoring software that offers
an overview of the entire IT infrastructure from the physical
infrastructure to the services running through its rich feature
set (e.g. automatic discovery, performance analysis, sophis-
ticated alerts, etc.). Furthermore, Zenoss offers extensibility
and flexible customization of monitoring environments via its
additions such as ZenPack.

Discussion
This short survey validates the monitoring issues with respect
to assurance methodologies based on monitoring types.

TABLE I
MONITORING TYPE

N
ag

io
s

Se
ns

u

M
un

in

PC
M

O
N

S

Z
ab

bi
x

Z
en

os
s

Cross layer monitoring X X X
Continuous monitoring X X X X X
Interval based monitoring X
Event based monitoring X X X X
Multi tenant monitoring X

Table I shows that only Sensu, PCMONS and Zenoss
can distribute a monitoring mechanism across all layers (in-
frastructure, tenant and service). Another important output
of the survey is the identification of continuous monitoring
capabilities. Continuous monitoring allows solution to adapt
and to monitor cloud infrastructure changes without requiring
manual interaction. So new nodes or VMs can be automatically
registered and monitored. The result shows that most of them
support continuous monitoring except Zennos. Event-based
monitoring is based on information about the state of the
system. Changes in the system state will generate an event
for the monitoring software. Interval-based monitoring checks
the system based on different time intervals according to the
resources (e.g. CPU, memory, storage and VMs) that have
to be monitored. The monitoring tools are divided between
interval-based (i.e. Munin) and event-based monitoring (i.e.
Nagios, Sensu, Zabbix and Zenoss). Another objective of this
evaluation is multi-tenant support, i.e. the ability to control
user permissions allowing users to see and control only
resources that they are authorized to view and change. This
property is supported only by PCMONS. The conclusion from
table I is that a single tool does not fulfil all the specified
properties. Therefore, we propose an EGM in section V

5www.zabbix.com
6www.zenoss.com



through which all the required properties can be accessed in
a unified and harmonised way.

B. Cloud Monitoring Scientific Work

At the moment to the best of our knowledge none of the
existing surveys or taxonomies investigate the possibility of
a harmonized solution for assurance in a cloud enivronment.

Aceto et al. [10] evaluated cloud monitoring solutions across
the following three dimensions: (i) layers, according to CSA,
(ii) abstraction levels, high and low monitoring level and (iii)
test and metrics. In addition, the authors provide motivations,
properties, basic concepts, open issues and discuss future
directions essential for cloud monitoring platforms. However,
with respect to our approach their analysis does not address
high assurance for cloud environments.

Fatema et al. [11] identify practical capabilities of an ideal
monitoring tool by evaluating a variety of monitoring tools.
Based on these capabilities, the authors provide a detailed
taxonomy where the monitoring tools have been classified
according to their purpose: (i) general purpose (to determine
how these tools can be extended), and (ii) cloud specific pur-
pose. The authors also highlight the importance of assurance
in cloud computing and the correlation with cloud monitoring,
but their research focus is not on assurance for highly sensitive
infrastructures and services.

Uriate and Westphall [12], present a novel cloud-based mon-
itoring architecture. They validate the monitoring architecture
through an experimental evaluation and analytical analysis
within respect of scalability and invasiveness. However, the
authors do not address any specific security properties for their
evaluation, or address high assurance in their objectives.

Andreolini et al. [13] propose a novel monitoring architec-
ture by combining a hierarchical approach with decentralized
monitoring that addresses scalability and high availability. In
comparison with their approach, we propose a combination
of existing monitoring solutions to address assurance in the
context of CIA.

Ward and Barker [14] perform a survey and taxonomy of
cloud monitoring to evaluate how existing tools meet the
challenges of cloud computing. They validate open-source
and commercial monitoring tools based on two categories: (i)
monitoring solutions developed only for cloud computing, (ii)
tools which are not developed especially for cloud monitoring
but have related goals and results. However, with respect to
our analysis, they do not address assurance in CI or monitoring
with respect to infrastructure, tenant or service layer.

To the best of our knowledge none of the existing work
addresses assurance in the context of high security for pro-
tecting CI services. Also they do not evaluate any of the
monitoring tools in the context of CIA. Therefore, we focus
our work on variety of open-source monitoring tools based
on the ability to monitor different security properties that
are defined with respect to high assurance of CI [2], [15].
Furthermore, we propose a possible solution for the problem
by harmonazing different monitoring tools and custom-based

scripts. This solution is presented in a form of an Evidence
Gathering Mechanism.

IV. OVERVIEW OF SECURITY/ASSURANCE SUPPORT IN
EXISTING MONITORING TOOLS

The selected security properties are investigated in respect to
individual monitoring solutions and the capability to monitor
a specific property across different layers. The result of this
investigation is shown in table II where the monitoring tools
are evaluated based on their ability to monitor a specific prop-
erty in infrastructure, tenant or service layer. The evaluation
of the monitoring tools with respect to security properties
identifies three different cases: (i) the monitoring tools that can
monitor a property in each layer without the need of a plugin
or additional scripts (e.g. the property resource utilization can
be monitored by Munin in all three layers), (ii) the monitoring
tools that can monitor only one layer and for the other layers a
plugin or an additional script is needed (e.g the property data
error correction in the infrastructure layer can be monitored by
Zabbix, in the tenant layer by a Nagios plugin, but to monitor
the service layer an additional script is needed), (iii) none of
the monitoring tools have the ability to monitor the property,
so a script is needed for each layer (e.g properties like strong
passwords, encryption and load balancer completely lack the
support of monitoring tools).
These outcomes lead us to harmonize different monitoring
tools and customized scripts in an EGM to support all the
properties in table II. In section V we describe our solution and
give some implementation ideas for additional scripts needed
to monitor a property which is not covered by these monitoring
tools.

V. EVIDENCE GATHERING MECHANISM DESIGN

Based on the evaluation shown in table II and discussed
in the previous sections it can concluded that there is not
one single tool that can support the assurance methodologies.
Motivated by this result, we propose an EGM (Evidence Gath-
ering Mechanism) to harmonize monitoring solutions across
the layers with respect to the assurance methodology. The

Fig. 1. Evidence Gathering Mechanism Framework Design



TABLE II
MONITORING TOOLS THAT SUPPORT EVALUATED SECURITY PROPERTIES

Nagios Sensu Munin PCMONS Zabbix Zenoss Script
I T S I T S I T S I T S I T S I T S I T S

Concurrent Session Control ∗ x +
Confidentiality Strong Passwords + + +

Encryption + + +
Data Error Correnction ∗ ∗ ∗ +

Integrity Information Data Consistency ∗ x x
Data Alteration Prevention ∗ + +
Load Balancing + + +

Availability Resource Utilization x x x x x x x x x x x
Live Backup ∗ ∗ +

Note: With “x” is marked the layer if the particular tool has the ability to monitor the property. With “*” is marked the layer where an
existing unofficial plug-in already exists to monitor the specific security property and with “+” when an additional script is needed to
monitor the respective layer of the property.

EGM, shown in Fig 1 is designed to acquire, store and analyze
security related evidence and support Assurance Evaluation
Framework (AEF) [2]. The main purpose is to use simulta-
neously the information obtained by existing monitoring tools
and customized scripts. The proposed architecture consists of
the following components:

• Target System represents the infrastructure, tenant or
service resources monitored by a monitoring tool or a
scripts.

• Monitoring Tool represents the investigated open-source
monitoring tools evaluated in section III.

• Custom Script represents pieces of code from scratch or
customized existing plug-ins.

• EGM is designed to gather, store and analyze monitoring
data from monitoring tools and custom scripts.

• Bitwise Security Properties Representation represents
the evaluated properties in section II.

• Monitoring Source Component provides the source
of each security property mapped in the corresponding
security standard catalogue.

• Component Dependencies represents the way how com-
ponents are linked with each other.

• The Assurance Evaluation Framework is an ongoing
work for the project introduced in one of SECCRIT
outputs [2].

• Adaptors are designed to make readable the data ob-
tained from each component for further analysis.

Based on the result shown in table I and II it can be seen
that 50% of the properties could be monitored by different
existing tools. We propose EGM, a design that will allow to
do that or alternatively to use customized scripts where need
be. The harmonization of existing tools allows unified view
via the bit mask (which is only an implementation detail for
EGM), and aggregation via logical operations and policies.

A. Security Property Implementation
We give an example on how a security property (SP) can

be measured based on the results obtained from the table II.
SP - Concurrent Session Control
• General Definition: Concurrent session control restricts

users to log-in more than one session in different

browser/machine or even a different browser/terminal
within the same machine.

• Engineering Definition: This property defines the number
of logged sessions for a user. If the user is limited to
a session count equal or smaller than three (based on
table III) concurrent session control is defined as strong.

TABLE III
CONCURRENT SESSION CONTROL LOGICAL STATE

Logical State Infrastructure Tenant Service
0 MaxSessions > 1 MaxSessions > 1 MaxSessions > 3
1 MaxSessions = 1 MaxSessions = 1 MaxSessions=3

• Definition Source: NIST Special Publication 800-53 :IA-5 [5]

TABLE IV
CONCURRENT SESSION CONTROL IMPLEMENTATION

Name File Line
SSH configuration /etc/ssh/sshd config ´́ UsePAM yes `̀
PAM configuration /etc/security/limits.conf ´́ *hard maxlogins 1 `̀

• Implementation Possibility: This property can be moni-
tored by checking the number of logged in sessions. For
assuring concurrent session control at the infrastructure,
tenant and service layer a script can be developed that
will check sshd config or pam limits module in the /etc
directory as showed in table IV.

Based on table II, Munin can monitor this property at the
tenant layer and Nagios at the service layer. The Nagios plugin
check weblogic sessions will check the sessions of a web
application in a specific time frame. Once the plugin is running
the OpenSessionsCurrentCount will be checked to determine
if it is greater than the maximum sessions specified. In case it
is less or equal to the maximum concurrent session specified,
it will return the message:
[OK] 2 concurrent sessions less than or equal to 3
In case it is greater than the maximum concurrent session
specified, it will return a CRITICAL state with a message:
[CRITICAL] 4 concurrent sessions greater than 3

The described Nagios plugin can be customized to show
the logical state 0 for [CRITICAL] and 1 for [OK]. Thus,
to monitor concurrent session control we need to install
Munin for tenant layer, adapt Nagios plugin for service layer
and develop an additional script for infrastructure layer. This



outcome leads us to harmonize different monitoring tools and
customized scripts in an EGM, due to the fact that one single
tool can not cover all the layers of a specific security property.

B. Gathering Security Property Information

Fig. 2. A simplified use case for information harmonization

Fig. 2 shows three components (Ci) contributing to a cloud
service. For each component Ci the binary state of a security
property can be derived from the monitoring artifacts as
illustrated earlier. This allows a multitude of ways to aggregate
this information, e.g. overall properties of the same type;
or all components; or via dependency trees – but this is
subject to assurance policy development [1], [2] for which
the harmonization presented in here serves as a foundation.

VI. CONCLUSION

This paper presents an analysis of the state of the art in
cloud monitoring with respect to high assurance. It discusses
existing cloud monitoring solutions, which are evaluated based
on their ability to support high assurance clouds. Each solution
is assessed based on monitoring type and the ability to monitor
a specific property at a specific layer. Our analysis has shown
that existing tools can be used but a harmonization between
them is needed. We found that individual existing tools can
monitor some but not all properties. In this paper the set of
security properties associated with specific security classes
(i.e. confidentiality, integrity and availability) are analyzed at
various layers (i.e. infrastructure, tenant and service). Further,
it is is investigated and measured to what extent a considered
component of the cloud services fulfills the required assurance
level. Considering the outcome of section IV, an Evidence
Gathering Mechanism (EGM) is proposed. It is designed
to gather, store and analyze monitoring data. The proposed
architecture represents a practical approach and adopts open-
source tools whenever feasible, e.g. an OpenStack platform
and open-source monitoring tools to collect, store and analyze
monitoring data. The architecture fulfills the requirements by
providing an architecture that harmonizes monitoring tools
and customized scripts to support assurance methodologies
for cloud based services. The EGM architecture has been
designed for a representative set of properties and shows that

for high assurance environments appropriate harmonization
is needed. Moreover, this work is promising as it gives
a common viewpoint over heterogeneous and independent
monitoring elements that can then be used for assurance across
the infrastructure. Especially from a legal point of view the
assurance framework seems very promising as it can ensure
compliance with contractual duties and also provides evidence
of possible negligent behavior.

As further work we are currently evaluating EGM by
extending the approach to support additional properties and
classes. EGM is used for monitoring at the infrastructure, ten-
ant and service layer for the evaluated classes and properties,
and also to support additional classes e.g auditability. EGM
will not only be used for open-source but also for commercial
cloud infrastructures in order to evaluate assurance.

ACKNOWLEDGEMENT
The research has been funded by the European Commission,

in the context of the Seventh Framework Programme (FP7)
project SECCRIT (Grant No.312758).

REFERENCES

[1] A. Hudic, M. Tauber, T. Loruenser, M. Krotsiani, G. Spanoudakis,
A. Mauthe, and E. R. Weippl, “A multi-layer and multi-tenant cloud
assurance evaluation methodology,” in International Conference on
Cloud Computing Technology and Science (CloudCom-2014), 2014.

[2] A. Hudic and M. Tauber, “D5.2 Cloud assurance profile and evaluation
method,” Tech. Rep., January 2015.

[3] R. Ross et al., “NIST sp 800-53, revision 4,” Security and Privacy
Controls for Federal Information Systems and Organizations, 2013.

[4] R. Ross, S. Katzke, A. Johnson, M. Swanson, G. Stoneburner, G. Rogers,
and A. Lee, “Recommended security controls for federal information
systems,” NIST Special Publication, vol. 800, p. 53, 2005.

[5] I. ISO and I. Std, “ISO 27002,” Information Technology-Security
Techniques-Code of Practice for Information Security Management. ISO,
2005.

[6] G. Sivathanu, C. P. Wright, and E. Zadok, “Ensuring data integrity in
storage: Techniques and applications,” in Proceedings of the 2005 ACM
workshop on Storage security and survivability. ACM, 2005, pp. 26–36.

[7] S. NIST, “800-44 version 2,” Guidelines on Securing Public Web
Servers, 2007.

[8] I. ISO and I. Std, “ISO 15408-2: 1999,” Information Technology-Security
Techniques-Evaluation Criteria for IT security. ISO, 1999.

[9] S. A. De Chaves, R. B. Uriarte, and C. B. Westphall, “Toward an
architecture for monitoring private clouds,” Communications Magazine,
IEEE, vol. 49, no. 12, pp. 130–137, 2011.

[10] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring:
A survey,” Computer Networks, vol. 57, pp. 2093–2115, 2013.

[11] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,
“A survey of cloud monitoring tools: Taxonomy, capabilities and objec-
tives,” Journal of Parallel and Distributed Computing, vol. 74, no. 10,
pp. 2918–2933, 2014.

[12] R. B. Uriarte and C. B. Westphall, “Panoptes: A monitoring architecture
and framework for supporting autonomic clouds,” in Network Operations
and Management Symposium. IEEE, 2014, pp. 1–5.

[13] M. Andreolini, M. Colajanni, and M. Pietri, “A scalable architecture
for real-time monitoring of large information systems,” in Network
Cloud Computing and Applications (NCCA), 2012 Second Symposium
on. IEEE, 2012, pp. 143–150.

[14] J. S. Ward and A. Barker, “Observing the clouds: a survey and taxonomy
of cloud monitoring,” Journal of Cloud Computing, vol. 3, no. 1, pp.
1–30, 2014.

[15] A. Hudic, T. Hecht, M. Tauber, A. Mauthe, and S. C. Elvira, “Towards
continuous cloud service assurance for critical infrastructure it,” in 2014
2nd International Conference on Future Internet of Things and Cloud
(FiCloud). IEEE, 2014, pp. 175–182.


	Introduction
	Property Analysis and Evaluation
	Confidentiality Properties
	Integrity Properties
	Availability Properties

	Monitoring Overview and Related Work
	Cloud Monitoring Solutions
	Cloud Monitoring Scientific Work

	Overview of Security/Assurance Support in Existing Monitoring Tools
	Evidence Gathering Mechanism Design
	Security Property Implementation
	Gathering Security Property Information 

	Conclusion
	References

