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ABSTRACT

Recent cost aggregation strategies that adapt their weights to
image content enabled local algorithms to obtain results com-
parable to those of global algorithms based on more complex
disparity optimization methods. Unfortunately, despite the
potential advantages in terms of memory footprint and algo-
rithmic simplicity compared to global algorithms, most of the
state-of-the-art cost aggregation strategies deployed in local
algorithms are extremely slow. In fact, their execution time is
comparable and often worse than those of global approaches.
In this paper we propose a framework for accurate and fast
cost aggregation based on segmentation that allows us to ob-
tain results comparable to state-of-the-art approaches much
more efficiently (the execution time drops from minutes to
seconds). A further speed-up is achieved taking advantage of
multi-core capabilities available nowadays in almost any pro-
cessor. The comparison with state-of-the-art cost aggregation
strategies highlights the effectiveness of our proposal.

Index Terms— Stereo vision, local algorithms, cost ag-
gregation, segmentation, adaptive weights

1. INTRODUCTION

Depth from stereo is a widely researched topic, extensively
reviewed in [1, 2], aimed at inferring depth from two images
of the same scene simultaneously acquired from two different
viewpoints. Finding homologous points in the two images is
a challenging task and many algorithms have been proposed
in the last decades.

According to [1, 2] most approaches perform four steps
(cost computation, cost aggregation, disparity optimization
and refinement) and algorithms can be roughly classified in
local approaches and global approaches. The former class
mainly relies on cost aggregation and in most cases ignores
disparity optimization deploying, on a point basis, a simple
Winner Takes All (WTA) strategy. On the other hand, global
algorithms minimize iteratively on the whole image an en-
ergy function made of two terms, a point-wise matching cost
that enforces photometric consistency and a smoothness term
that takes into account the evidence that scenes are piecewise
smooth. These algorithms typically do not perform cost ag-
gregation focusing on disparity optimization. However, al-

though very effective, global algorithms are in most cases
computationally expensive and have a very large memory foot-
print. These drawbacks render these algorithms not suited to
most practical applications.

In this paper we propose a fast local algorithm based on
segmentation that allows us to obtain results comparable to
state-of-the-art approaches based on adapting weights in a
fraction of the time required by its original counterpart. Our
proposal casts an accurate algorithm based on segmentation
within a framework that enables us to exploit very efficiently
the adapting weight strategy at a coarse level. To this aim
we use a strategy that brings within an efficient and tradi-
tional correlative approach [1, 2] based on incremental calcu-
lations schemes [3, 4] the effectiveness of the adapting weight
strategy exploiting the additional cues provided by segment-
ing both images. Moreover, we further reduce the execution
time of our proposal exploiting multi-core capabilities avail-
able nowadays in almost any general purpose and embedded
processor.

2. RELATED WORK

In local algorithms robustness to noise is increased aggregat-
ing costs within a support region, a small area centered in
the examined points (one in the reference and one in the tar-
get image). In most cases the underlying implicit assumption
made by these algorithms is that each point within the support
has the same depth of the central point (i.e. frontal-parallel
assumption). However, in a sensed scene this assumption
is violated near depth discontinuities and within non frontal-
parallel surfaces. Simpler local algorithms ignore both prob-
lems; this enables very fast implementation while more ad-
vanced local approaches adapt the weight assigned to each
point within the support according to the image content. In
these approaches, weights are used to model the probability
that two pixels belong to the same object according to the
frontal-parallel assumption. Since the disparity of the pixels
in the stereo pair is not known beforehand, weights are com-
puted using the information available in the stereo pair (e.g
color, segmentation).

The adapting weight strategy allows to deal with depth
discontinuities but top-performing algorithms based on this
approach [5, 6, 7] are very slow due to the computational



Fig. 1. Support of reference and target images concerned with
the central point depicted in red. We partition the support of
size B ×B in non overlapping blocks of equal size b× b. In
this specific case, the support, of size 21 × 21, is split in 49
blocks of size 3× 3.

complexity of weight computation and cost aggregation for
large support windows. Some efficient simplified algorithms
have been proposed for [5] and [6] respectively in [8, 9] and
[10]. However, the resulting disparity maps compared to the
original counterpart are typically less accurate; nevertheless,
these simplified algorithms are suited for real-time or near
real-time implementation exploiting GPU architectures [10,
9]. In between there are approaches that adapt the shape of
the support to the image content according to different strate-
gies (see [1], [11] and [12] for a detailed review of these ap-
proaches). Some of these latter methods are fast but their ac-
curacy is clearly outperformed by approaches based and adap-
tive weights [5, 6, 7].

3. PROPOSED FAST SEGMENTATION-DRIVEN
APPROACH

Although the raw Segment Support (SS) approach [7] turned
out to be very effective its execution time of several minutes
is not suited for most practical applications. Therefore, in this
paper we propose to cast this method within a computational
framework similar to those proposed in [8]. The Fast Bilat-
eral Stereo (FBS) framework [8] provided a link between tra-
ditional fast and inaccurate correlative approaches and the ac-
curate but computationally expensive Adaptive Weight (AW)
algorithm [5]. The key idea in FBS was to determine weights
according to image content on a block basis and to compute
matching costs efficiently and accurately on a point-basis by
means of integral images [3] or box-filtering [4].

In this paper we follow this strategy computing weights
on a block-basis deploying as additional cues the segmented

Fig. 2. Segmentation-based weight computation: (left) refer-
ence or target image, (center) corresponding segment (Mean-
shift), (right) weight computation. Each block has size b× b.
[Best viewed in color]

stereo pair. For our experiments we deployed for segmenta-
tion the Mean-Shift [13] algorithm but other algorithms can
be used as well. As depicted in Figure 1, for each point be-
longing to the reference and the target image we split the sup-
ports of size B × B in non overlapping and equal regions of
size b× b. On each block within the support of each point we
compute on a point-basis and very efficiently the matching
cost by means of box-filtering [4] and assign to each block a
single weight according to the following symmetric (i.e. con-
sidering both images) strategy. Within each support of two
potential corresponding points ri in reference image R and ti
in target image T, for each block Pi centered in the central
point of the block pi, we assign weight wi = 1 if pi is on the
same segment of the central point of the support (respectively,
ri for R and ti for T). Conversely, if pi does not belong to the
same segment of the point at the center of the support (i.e. r i

for R and ti for T) the cost assigned to the block is given by

wi = exp

(
−Δ2

γ

)
(1)

being γ a constant determined empirically, and Δ the Eu-
clidean distance between corresponding RGB channels of the
point at the center of the support and the point at the cen-
ter of the examined block. The proposed block-based weight
computation strategy is depicted in figure 2; the same pro-
cedure applies to reference and target image. Correspond-
ing weights computed on each block of the reference and of
the target image are then multiplied so as to assign an over-
all weight to the matching cost (Truncated Absolute Differ-
ences (TAD)) computed on a point basis within each block.
The weighted matching cost are summed-up so as to obtain
the overall matching cost assigned to each correspondence. It
is worth observing that, compared to SS [7], this strategy re-
duces significantly (by a factor b2) the number of weight com-
putations and the number of additions and multiplications re-
quired to obtain the overall matching cost. On the other hand
it also reduces the accuracy in weight computation due to the
rough localization of each point within the blocks. However,
as will be shown in the next section, computing costs on a
point basis allows us to compensate for this behavior and to



obtain much more efficiently results equivalent to SS.

4. EXPERIMENTAL RESULTS

The Middlebury stereo evaluation website [14] provides a con-
venient framework for evaluating the accuracy of the recon-
struction by the percentage of bad pixels in the computation
of four disparity maps using four stereo pairs named Tsukuba,
Venus, Teddy and Cones. For each disparity map, Middle-
bury provides three statistics: the error rates NOCC (all points
except for occluded areas), DISC (only points near depth dis-
continuities, not including occluded areas) and ALL (all points
for which the true disparity is known). In this paper, following
a similar evaluation procedure proposed in [11], error rates
on all image points including occlusions (ALL) have not been
taken into account since the tested algorithms do not explic-
itly handle disparity retrieval for occluded points due to the
adopted WTA strategy. Since the focus of this paper is both
on accuracy and execution time, the execution time was mea-
sured with similar processors (i.e. Core Duo @2.5 GHz for
our experiments and Intel Core Duo @2.14 GHZ in [11]). In
our experiments, the measured execution time for FSD does
not include the segmentation algorithm, that for Teddy ac-
counts for less than 2 seconds (for both images).

According to the described evaluation methodology, Ta-
ble 1 shows the results for our proposal FSD and top-ranked
algorithms according1 to [11]: FBS [8], SS [7], SB [15], AW
[5], REL [16] and VW [17]. The parameters of our algorithm
have been optimized to produce the best possible results for
blocks of size 3 × 3 and 5 × 5 with B = 45 and 7 × 7 with
B = 49. The table shows that the proposed algorithm using
b = 3 and B = 45 outperforms2 (in terms of overall sum of
NOCC and DISC error) all the evaluated state-of-the-art local
stereo matching approaches. Moreover, the Table also shows
that our approach has an execution time dramatically reduced
compared to SS (about 33 seconds for FSD with b = 3 vs
39 minutes required by SS according to [11]), being this time
comparable to faster approaches (e.g VW and FBS). It wort
observing that by using larger blocks (e.g. 5×5 and 7×7) the
execution time further decreases, while the performance re-
mains comparable to state-of-the-art approaches. Therefore,
the block size parameter allows the user to trade accuracy for
speed; this feature might be useful in certain application sce-
narios (e.g videosurveillance or robotics). Figure 4 shows the
disparity maps concerned with Tsukuba for the examined al-
gorithms. Finally, although we do not report experimental
results due to the lack of space, we point out that compared to
FBS and AW, the proposed FSD algorithm, deploying an ex-
plicit segmentation step, allows us to obtain accurate results

1Complete results adn disparity maps available at:
www.vision.deis.unibo.it/spe/SPEresults.aspx

2Parameters of the FSD algorithm: γ = 22.6, TAD threshold = 45. Pa-
rameters for segmentation[13]: spatial bandwidth Sb = 5, range bandwidth
Rb = 2

Fig. 3. Execution time for the proposed FSD approach on
Teddy and Tsukuba with 1 core and 4 cores.

also with greyscale images.
We also exploited for the proposed FSD algorithm the

multi-core capabilities available in most modern processors
using the OpenMP library3. Figure 3 reports the execution
time for FSD in the three different configurations examined
deploying 1 core and 4 cores on the Teddy and Tsukuba stereo
pairs. Observing the figure, we can notice that FSD obtains
significant speed-ups taking advantage of parallel execution
and the execution time is reduced to few seconds.

5. CONCLUSIONS

In this paper we have proposed an accurate yet efficient algo-
rithm for accurate stereo correspondence. Our proposal casts
an effective algorithm based on segmentation within an effi-
cient framework for weight computation enabling to obtain
accuracy equivalent to state-of-the-art approaches with exe-
cution times comparable to those of faster, less accurate al-
gorithms. A further speed-up was obtained exploiting multi-
core capabilities available in most modern processors.
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Fig. 4. Disparity maps concerned with the Tsukuba stereo pair for the proposed FSD method (with parameters B = 45, b = 3,
B = 45, b = 5 and B = 49, b = 7), SS [7], AW [5], SB [15], FBS [8], VW [17] and REL [16]. [Best viewed in electronic
format]
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