SLAM-BASED 3D OUTDOOR RECONSTRUCTIONS FROM LIDAR DATA

Ivan Caminal, Josep R. Casas, Santiago Royo

Dept. d’C)ptica 1 Optometria
Dept. de Teoria del Senyal 1 Comunicacions
Universitat Politecnica de Catalunya

ABSTRACT

The use of depth (RGBD) cameras to reconstruct large out-
door environments is not feasible due to lighting conditions
and low depth range. LIDAR sensors can be used instead.
Most state of the art SLAM methods are devoted to indoor
environments and depth (RGBD) cameras. We have adapted
two SLAM systems to work with LIDAR data. We have com-
pared the systems for LIDAR and RGBD data by performing
quantitative evaluations. Results show that the best method
for LIDAR data is RTAB-Map with a clear difference. Addi-
tionally, RTAB-Map has been used to create 3D reconstruc-
tions with and without photometry from a visible color cam-
era. This proves the potential of LIDAR sensors for the recon-
struction of outdoor environments for immersion or audiovi-
sual production applications.

Index Terms— LIDAR cameras, mapping, time-of-flight,
SLAM, 3D imaging, point-cloud processing

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the com-
putational problem of building a map of an unknown environ-
ment while simultaneously keeping track of an agent’s loca-
tion within it. Mapping allows to localize the sensor whereas
a location estimate is needed to build the map. Some SLAM
scenarios focus on location, such as in automotive where the
map uses to be known beforehand, while in audiovisual and
special effects the focus is rather on mapping, i.e. reconstruc-
tion of the scene environment. LIDAR imaging [|1]] is a power-
ful measurement technique where a laser pulse is shone onto
an object and the beam reflected back is recovered at some
solid-state detector. The time elapsed is measured, allowing
for an automated measurement of the distance to the target,
without any further calculation. The concept is also referred
to as ladar or time-of-flight imaging. Popular applications in-
volve landing aids, object recognition or self-guided vehicles.

This paper focuses on adapting two state of the art SLAM
strategies to work with LIDAR sensors. The two strategies are
evaluated quantitatively with one real LIDAR dataset and two

RGBD datasets (one real and the other synthetic). This eval-
uation allows to objectively compare the two systems. The
best system is used to obtain 3D reconstructions even without
photometric images, just with a LIDAR sensor developed at
Beamagine (a spin-off of UPC developing LIDARSs based on
proprietary technology).

The paper is organized as follows. Section 2] reviews the
state of the art in 3D SLAM systems. Section [3| explains the
adaptations of SLAM systems to LIDAR data. Sections@d]and
[provide evaluation results and conclusions.

2. STATE OF THE ART

The basics of SLAM systems capable of creating three dimen-
sional maps were investigated in the form of 3D grids [2] and
3d geometric features [3[]. The first 3D SLAM systems used
mono cameras [4], stereo cameras 5] or 3D LIDARs [6].
More recently, the availability of real-time dense depth sen-
sors (RGBD) has eased the live reconstruction of real scenes.
Microsoft develops Kinect Fusion [7]] in 2011, an algorithm
allowing 3D reconstructions at 30fps taking advantage of the
recently launched Kinect matricial depth sensor. One year
later, PCL [[8] incorporates a similar open-source tool known
as KinFu [9]. Both systems use a voxelized representation
of the scene named TSDF model (Truncated Signed Distance
Function model [10]]), where each voxel stores the distance to
the closest surface and a confidence weight. The main limita-
tion of these systems is the inability to map areas larger than
the model. This limitation was eliminated at the same time by
Kintinuous [[11]] and KinFu large-scale [[12].

Kintinuous implements an unbounded mapping of the envi-
ronment on top of KinFu. Precisely, it incorporates the abil-
ity to virtually translate the TSDF model when new estimated
camera poses exceed a dimension independent threshold. Kin-
tinuous was improved to be more robust against challenging
scenes [13]], such as large camera displacements or lack of
3D depth features, while also aiming to eliminate the accumu-
lated drift of previously registered frames [|14f]. The drift elim-
ination is known as loop closure. It happens when the sen-
sor revisits a previous location by optimizing all the affected
transformations with a pose optimizer (iISAM) and a non-rigid

method that corrects the reconstruction. KinFu large-scale is
now a simpler tool similar to the original Kintinuous without
the real-time map extraction.

RGB-D SLAM [15]] is another real-time system with Robot
Operating System (ROS) support [16]]. The transformations
between poses are obtained by detecting key-points of incom-
ing frames, computing features and finding correspondences
with older ones. The system also does loop closure with a
pose optimizer (g20). The OctoMap framework is used to cre-
ate reconstructions using the optimized trajectory. The system
was improved [17] and now includes: a beam-based environ-
ment measurement model (EMM) that validates the estimated
transformations according to occlusion probabilities, a selec-
tion strategy of candidate frames for comparisons based on
exploring the geodesic graph neighborhood of the previous
frame, and the use of key-frames to simplify the search.
ElasticFusion [18]] is another real-time system developed by
some of the authors of Kintinuous. It is based on a surface
model instead of TSDF, the loop closure is done without a
pose optimizer by non-rigidly deforming the affected surfaces.
RTAB-Map is another real-time system with ROS support
that can work with 2D LIDARs and stereo setups (apart from
RGBD cameras). It is based on a graph of links and nodes.
The nodes contain information about the poses of the robot
and the links store rigid transformations between nodes. The
transformations are obtained using 3D visual words corre-
spondences and maintained with TORO (Tree-based netwORk
Optimizer) allowing to propagate the error through links after
loop closures. Additionally, RTAB-Map incorporates a prox-
imity module to find loop closures with 2D LIDARs that helps
in situations when the RGBD cameras do not have enough
information. The strong point of RTAB-Map is a memory-
efficient loop closure detection approach.

3. LIDAR ADAPTATION

From the SLAM strategies explored in the previous section,
we have selected both Kintinuous and RTAB-Map (available
on Github) to work with LIDAR data. The reasons are that
Kintinuous is supposed to perform better than ElasticFusion
with noisy LIDAR data and that RTAB-Map is expected to
improve RGB-D SLAM with LIDAR, since the EMM of RGB-
D SLAM assumes dense depth measurements, and the loop
closure approach of RTAB-Map seems to be more efficient.
We have adapted the SLAM algorithms to LIDAR data, and
we describe the adaptations according to the specific sensor
setup of the LIDAR dataset and Beamagine data.

3.1. Adaptation of LIDAR dataset

The KITTTI dataset [[19] is the one chosen for the adaptation
of SLAM algorithms to LIDAR data as it allows quantitative
evaluation. It consists of 22 sequences about diverse traffic
environments (highway, rural and city). Regarding the sen-

Fig. 1: Depth image obtained after the projection of a KITTI
LIDAR scan, with its corresponding color image below. Pix-
els without depth values in the LIDAR scan are colored in
blue in the depth image to ease visualization.

sor setup, it is composed of: 2x gray-scale and color cam-
eras, 1x rotating 3D LIDAR and 1x inertial and GPS unit. In
this adaptation, we only use the images of the left color cam-
era and the scans of the LIDAR from the already rectified,
undistorted and synchronized version of the dataset. Both the
projection transformation to the rectified cameras and the ex-
trinsic transformation from 3D LIDAR coordinates to camera
coordinates are provided in [[19].

In the first part of the adaptation, we converted the eleven
KITTI sequences with available ground-truth to the PNG for-
mat of the RGB-D SLAM dataset [[20]. This was done with
a tool that basically projects the 3D LIDAR scans to the se-
lected camera (in our case the left one with color) and cal-
culates its depth values. Then, every value is quantized to a
16-bit unsigned representation considering the maximum LI-
DAR range (120 meters). The resulting quantization step is
much lower than the one provided by the manufacturer (1.8 <
20 millimeters). Given the LIDAR properties and the camera
FOVs, only about 32% of the points of a complete scene are
projected to the camera plane within the sequence dependent
image size, where half of these points are front-projected. A
result for the depth projection from a LIDAR scan is shown
along with the corresponding color frame in figure[T]

The remaining parts of the adaptation specific for each system
are described below.

3.1.1. Kintinuous applied to KITTI data

The implementation of Kintinuous uses log files in KLG for-
mat as input. This format consists of storing in a single file
all the information of a sequence: the timestamps and a com-
pressed version of the depth and color images. The main au-
thor of Kintinuous provides some tools to create KLG log
files directly from data-streams of sensors like Kinect and
Xtion Pro Live. That said, a conversion from PNG RGB-
D SLAM format to KLG format was needed. Fortunately,

the implementation of this conversion was already done in
a GitHub repository [21]. This repository contains a tool
called png_to_klg that essentially creates a KL.G log file from
the frame pairs provided by an associations text file, converts
the timestamps from seconds to micro-seconds and the scaled
depth measurements to millimeter units.

The core of Kintinous is the cubic TSDF model that, in its
default configuration, has a side length in voxels of 512 and
a real world equivalence of 6 meters. The converted LIDAR
data has a theoretical maximum range of 120 meters. These
two statements make the system and the data incompatible.
The only two ways to solve this is by adapting the data to Kin-
tinuous or Kintinuous to the data. Regarding the system adap-
tation, increasing the number of voxels of the cubic TSDF
model may be an option, but it requires a complex code mod-
ification and is expected to fail due to low density of points
within the model. This lack of points would be produced by
the low number of LIDAR points (100K per scan) and the low
scan-rate (10 Hz) related to the average LIDAR movement
(car motion). On the other hand, the data adaptation could
be achieved either by increasing the real world equivalence of
a single voxel or scaling the real world dimensions, both of
them at the cost of losing precision. The second option was
chosen, and implemented by scaling the dataset with a world
scale factor, which was implicitly introduced along with the
depth quantization factor in the png_ro_klg tool. This allows
the generation of KLG files with different world scale factors.
After some testing, the definitive world scale factor was set to
20 (1 scaled meter for the algorithm corresponds to 20 world
meters). This comes from the fact that the actual maximum
depth of LIDAR scans was about 80 m. and the depth limit
that Kintinuous implementation allows to project is 4m. (as it
considers that larger Kinect depths are too noisy).

When executing Kintinuous, we set the shifting threshold
to 16 voxels (maximum according to the author) since the dis-
tance traveled by the camera at different frames is larger, due
to high velocity (car in KITTI vs hand-held cameras in RGB-
D SLAM data) and low frame rate (30 vs 10 fps). Also, the
parameter subsample pose graph was deactivated to export all
optimized poses of the graph when loop closure is enabled.

3.1.2. RTAB-Map applied to KITTI data

The RTAB-Map implementation uses images stored in regular
files as input, thus not requiring the png_to_klg tool. The im-
ages need to be already associated in disc since it does not ac-
cept an associations text file as synchronization information.
Luckily, the administrator of RTAB-Map already provides a
modified version of the RGB-D SLAM associations tool that,
instead of exporting the pairing information in a text file, cre-
ates directories and moves the synchronized images resulting
from the association process.

In this case, the world scale was unnecessary since RTAB-
Map system is not restricted to the ranges of structured light
sensors. Nevertheless, we decided to execute both versions,
thus allowing to verify the correct implementation of the world
scaling factor and its effect. We had to locally modify the
RTAB-Map implementation to allow for a depth scale fac-
tor lower than 1 step/millimeter which was the case when
using the converted version of the dataset with kitty_to_png.
We used the RGB-D dataset command-line tool for execut-
ing with RTAB-Map instead of the GUI interface. This tool
saves a SQLite database with all the information related to the
SLAM and exports the poses in the selected format. The maps
can be created without RTAB-Map GUI using the export ex-
ample (available in the examples folder of the Github repos-
itory) implemented by one author (thanks to Mathieu Labbé)
after asking a question in the official RTAB-Map forum.

3.2. Adaptation of Beamagine data

Unlike the KITTTI dataset, Beamagine data comes from a sin-
gle sensor: a 3D LIDAR with its infrared light based range
measurements, without a registered color camera. This LI-
DAR, different from the one in KITTI, is static and front-
facing, and its main specifications are 5 Hz, 0.5Mpoints/s,
FOV: 54.5° h, 20° v, range 165m., 200x600 sampling points.
The lack of a photometric camera in the Beamagine set-up
opens the challenge to test SLAM systems without exploiting
photometric RGB data in a dense, regularly sampled raster
image. Visual SLAM detects singular image points to find
correspondences between frames to be registered. At this
point, we propose to replace the dense photometric informa-
tion by the infrared intensity of the LIDAR points. This idea
was implemented in a tool called beamagine_to_klg similar
to the one implemented for KITTI. Basically, it reads the LI-
DAR scans (stored in separated pcd files), converts the metric
units from millimeters to meters, projects the points to a sim-
ulated camera plane and calculates their associated depth and
intensity values. As camera parameters, we only used a focal
value for each dimension (to account for perspective projec-
tion) and the image size, since no intrinsic LIDAR calibra-
tion was available. The image size was selected simulating
the highest sampling frequency in each dimension. It was
directly set to 200 pixels vertical, and 1364 pixels horizon-
tal, since the off-center points have higher resolution than the
center ones (in angular measures: 0.04° vs. 0.15°) due to de-
sign constraints of the sensor. Then, the two focal parameters
were obtained considering both the image dimensions and the
two LIDAR FOVs. Given the simulated camera parameters,
about 99% of points are correctly projected. After projection,
each value is quantized to unsigned 16-bits considering the
dynamic range of the measure. The depth quantization step is
2,5 mm (a bit larger than KITTT’s), but again it is considered
to be sufficient. A result for the depth calculation is shown in

figure[2]

Fig. 2: Depth image obtained from the projection of the point
cloud of a Beamagine LIDAR scan. Pixels without depth val-
ues are set to blue in the depth image to ease visualization.
The photo below was taken some days after the captures from
a similar point of view.

Fig. 3: Infrared values from a Beamagine scan projected in
an image plane before and after interpolation. Pixels with no
value are set to blue in the upper image to ease visualization.
The content within the red boxes corresponds to the same im-
ages without eliminating the saturated and null values of the
distribution that produced high spatial frequencies.

Furthermore, in order to obtain infrared data similar to
a dense raster image (without holes), the generated intensity
images were post-processed with an inpainting stage. This
was done to fulfill the SLAM systems requirements and to
ease the detection of singular points for correspondences. For
the inpainting, we used the 8- connectivity version of a mor-
phological interpolation technique [22]], that preserves the orig-
inal infrared values of the projected points and its transitions,
thanks to the use of geodesic distance. This technique is ef-
ficiently implemented as an iterative process: first, the set
of initial pixels are propagated using geodesic dilation and,
then, the transitions generated are recovered by applying the
morphological Laplacian, where the average values are used
along with the originally projected ones for propagation in
subsequent iterations. After applying the inpainting stage,
some sensor noise with a high spatial frequency between the
saturated and null values was discovered in the infrared val-
ues of the Beamagine sensor. The noise was eliminated by
discarding the two histogram peaks which implied to end up
using about 30% of the dynamic range.
In order to evaluate the effect of using the intensity of the
points instead of the color images, the same adaptation was
done in the png_ro_klg tool for the KITTI dataset. Figures 3]
and [4] show a frame and its interpolated version for Beamag-
ine and KITTI data, respectively.

Fig. 4: Infrared image before and after interpolation from a
KITTI LIDAR scan.

The specific adaptation for each SLAM system is similar
to the one explained in section [3.1] since the generated data
format is the same.

4. RESULTS

In this section, we present and discuss quantitative results of
evaluating the systems with the LIDAR adaptation mentioned
in section [3.1] and the evaluation done with RGBD datasets
both natural and synthetic. Qualitative results obtained for the
LIDAR adaptation of section [3.2]are also shown.

4.1. Trajectory evaluation

The quantitative trajectory evaluation was done with the Ab-
solute Trajectory Error metric (ATE) for both real Kinect
and LIDAR data modalities using ground-truth available in
RGB-D SLAM and KITTI datasets.

4.1.1. Estimated Trajectories on the RGB-D SLAM dataset

Depending on the system, we performed different tests switch-
ing the loop closure component and varying parameters of
SLAM algorithms. For Kintinuous, we tried all possible cost-
combinations except FOVIS alone (that could not be set). The
combinations are: /CP, RGB-D, FOVIS/ICP, FOVIS/RGB-D,
FOVIS/ICP+RGB-D and ICP+RGB-D. For RTAB-Map, we
tried to modify its key-point and feature descriptor extrac-
tors, always using frame-to-map odometry and 3D to 3D mo-
tion estimation. This includes: surf, sift, orb, kaze, brisk,
gftt/brief, gftt/orb, gftt/freak, fast/freak, fast/brief, surf/brief
and surf/orb.

The default behavior of RTAB-Map when it cannot com-
pute a transformation (minimum of 20 inliers by default) for
an incoming frame is to discard it. Conversely, the default
behavior of Kintinuous is to repeat the last pose. This fact,
renders the trajectory evaluation of both systems somewhat

Sequence Kintinuous | RTAB-Map
desk 0,052 0,082
room 0,224 0,128
desk2 0,073 0,045
large no loop 0,465 0,332
pioneer slam2 2,186 -

long office household 0,048 0,037
AVERAGE 0,172 0,125

Table 1: Best RMSE results of ATE [23]] on the Kinect RGB-
D SLAM dataset (best results per sequence in bold).

biased. The way we approached a fair comparison was by ex-
ecuting RTAB-Map in a fixed and an adaptive form, and using
only the fixed form for the comparison. The fixed form con-
sists of setting a maximum inlier distance of the feature corre-
spondences to a fixed value for all the sequences and discard-
ing the executions where the system is not able to compute the
transformation for any of the sequence frames. The same was
applied for the executions where Kintinuous outputs repeated
transformations. The adaptive form consists of starting with
a low inlier distance and, if at any frame of the sequence the
transformation cannot be computed, the inlier distance value
is increased by a factor and starts again, until success or un-
til reaching a maximum value. While this later form tends
to give more accurate results, it is sequence dependent and
would not be applicable to real-time situations.

From all the evaluations we run, we picked the best per-
forming combination of parameters for each system, based on
the average RMSE of the sequences. For Kintinuous, the best
combination was ICP+RGB-D, while for RTAB-Map, it was
a tunned version of the gftt/brief combination. Loop closure
was enabled in both cases. Specifically, the parameters modi-
fied where the quality level of the gftr (good features to track)
key-point extractor, that was set to 0.005, and the minimum
Euclidean distance between detected corners, set to 5 pixels.
The results are shown in table|l} where RTAB-Map performs
about 40% better in average than Kintinuous in trajectory es-
timation. And this happens consistently in all sequences but
for the pioneer slam 2 sequence, where it is not able to com-
pute all the transformations when the inlier distance is fixed
at 0.1 meters. This fact happens with all tested combinations
and only yields results when RTAB Map is executed with
the adaptive modality that allows for a greater inlier distance.
Also note that, in this sequence, Kintinuous is able to com-
pute the trajectory but with an average RMSE of about 2m,
with values in a range of [0,196m, 3,614m]. Note that RTAB-
Map is more accurate than Kintinuous for about one fourth
of the trajectory length, whilst, in the remainder, Kintinuous
maintains its performance while RTAB-Map drifts.

4.1.2. Estimated Trajectories on the KITTI dataset

Unlike for the previous dataset, here we evaluated the trajec-
tory for all ten sequences with available ground-truth. For
RTAB-Map, we switched again the loop closure component
but only considering the combination that gave best results
(gftt/brief) in the Kinect trajectory baseline. The quality level
of the gftt key-point extractor was changed from 0,005 to
0,0005 and the minimum Euclidean distance between detected
corners was increased by one pixel. Again, we executed all
cost-combinations for Kintinuous.

In the evaluation of this LIDAR dataset, the best cost-
combination for Kintinuous was the RGB-D independent one,
whether executed with or without loop closure, while the one
for RTAB-Map is with loop closure enabled. Table 2] com-
pares these results. Note that RTAB-Map is about 5 times bet-
ter than Kintinuous in average in trajectory estimation. Apart
from this, in figure [5| we show a plot from sequence 07 com-
paring the translational part of the estimated trajectory with
its corresponding ground-truth. The plot visually proves that
the trajectory is better estimated by RTAB-Map than by Kinti-
nuous. The projection does not allow to visualize the vertical
component of the differences.

4.2. Evaluation of the 3D reconstructed map

For the quantitative evaluation of the 3D mapping generation
functionality of SLAM algorithms we have chosen to use the
tool provided by the main author of Kintinuous. This tool
computes as metric the point-to-point distance between the
ground-truth and the estimated maps on a synthetic dataset of
living-room sequences known as ICL-NUIM [24].

4.2.1. Evaluation of the mapping for the ICL-NUIM dataset

All the four living-room sequences Ir kt0..3 were used with
and without simulated Kinect noise. For RTAB-Map, we used
the same best combination found in the trajectory baseline of
section [4.1.1] with and without the loop closure component.
Regarding the RTAB-Map reconstruction extraction, and in
order to perform a comparison, a voxel grid filter with the
same leaf size as the one used by Kintinuous (6/512) was
used. For the creation of the point clouds, the same maximum
length as Kintinuous is used (4 meters) and a decimation in
the color image by a factor of 9 was applied to obtain a similar
number of points for the maps of both systems. Additionally,
for the version of the dataset with noise, a local smoothing
filter was tried in RTAB-Map but, as the computational time
for extraction increased and some fine walls of the reconstruc-
tions were filtered before the removal of some noisy parts, it
was not included for the comparison. Again, for Kintinuous,
all cost-combinations were tried, filtering the noisy extracted
points from the zero crossing surface of the slices with a min-
imum voxel weight threshold of 8 (default).

Sequence | Kintinuous | Kintinuous, LC | RTAB-Map | RTAB-Map, LC
00 149,7 149,7 30,9 11,5
01 488.,6 489,1 - -
02 289,8 289,8 34,5 29,0
03 2,3 2,3 6,9 7,3
04 11,8 11,9 11,7 11,7
05 93,3 93,4 21,7 18,5
06 203,8 203,7 - -
07 21,9 21,9 3,2 2,2
08 65,1 65,1 30,0 26,6
09 77,1 71,2 17,9 15,7
10 38,0 38,1 8,8 8,5
AVERAGE 83,2 83,3 18,4 14,6

Table 2: Best RMSE results of ATE [23]], with and without loop closure (LC), on the KITTI LIDAR dataset (best results per

sequence in bold).

150

— difference
— ground truth
100} — estimated
50+
E
N
ok
—50F
~100 . I I I I
—-200 -150 -100 -50 0 50
x[m]
(@)

150

— difference
— ground truth
100 — estimated
50
E
~N
0
-50
~100 . L I . I
—-200 -150 -100 -50 0 50
X [m]
(b)

Fig. 5: Differences between the estimated trajectories of sequence 07 (in green) and the ground truth (in black) projected to the

xz plane: (a) Kintinuous, (b) RTAB-Map.

Table 3] summarizes the results for both data modalities
(with and without noise). The best results for Kintinuous are
obtained with ICP cost and with loop closure. However, the
sequence Ir kt0 is considered without loop closure, since the
deformation graph failed without saving any result for Kinti-
nuous in the original version of the sequence, and for RTAB-
Map it improved more than double without loop closure. Sim-
ilarly, for RTAB-Map all results are picked with loop closure
except for the first sequence.

4.3. Reconstructions

As final qualitative results for this section, we present the ob-
tained RTAB-Map reconstructions with 3D LIDAR data for
both the KITTI and Beamagine scaled datasets.

Sequence Kintinuous | RTAB-Map | Kintinuous | RTAB-Map
Modality Original Original Noise Noise
AVG points 471K 555K 441K 863K

Ir kt0 44 12,7 6,4 50,2

Ir kt1 5,6 4,7 8,9 69,9

Ir kt2 4,3 7.8 9,0 51,0

Ir kt3 74,2 6,3 77,2 58,5

Table 3: RMS point-to-point distance for evaluation of the
reconstructed 3D map in the ICL-NUIM dataset (in bold, best
technique results for each modality).

4.3.1. 3D reconstruction for the KITTI dataset

For this dataset 3D reconstructions are generated for the eleven
sequences evaluated in section 4.1.2] The export tool men-
tioned in section[3.1.2]is used in place of the RTAB-Map with

Fig. 6: RTAB-Map reconstructions for sequence 07 unscaled,
from a similar point of view to the one of the intensity, depth
and color frames showed in section [3.1] figure[I] The recon-
structions modes are: (a) Mesh (b) Point Cloud.

Fig. 7: RTAB-Map reconstruction for sequence 08 unscaled.
The snapshot on the left shows a biker in front of the car, with
the 3D overall reconstruction of the trajectory on the right.
The central image shows a zoom in on the red rectangle, with
the darker trace of the moving bike clearly visible.

GUTI installation, having as input the databases generated with
the same configuration that produced the compared trajectory
results. As a reminder, for those comparisons, we used the
left color camera and the 3D LIDAR of the car sensor setup.
Due to the large number of reconstructions and the difficulty
of showing the 3D reconstructions in a paper report, we only
show a few of them.

For example, figure[§] shows a detail of the reconstruction
of sequence 07. Sequence 08 is one of the most complex and
large. A top view of its 3D reconstruction is shown in figure[7}

As mentioned in section [3.2} we also tried to discard the
photometric information and use only the LIDAR data pro-
vided in the KITTI dataset. Unfortunately, we could not ob-
tain any good reconstruction at the time of writing this report.

4.3.2. 3D reconstruction for the Beamagine data

In this case, we used the adaptation described in section [3.2]
with a dataset of 8 sequences, where each one contains a hun-
dred frames. As a reminder, in these sequences, we only had
data coming from the 3D LIDAR. In spite of this situation, we
were able to obtain some reconstruction results. For instance,
figure [8a] shows part of a reconstruction that corresponds to
the photo on the side (8b). The photos were taken some days
after the dataset capture from a similar point of view. Also,
the point of view is similar to the one of the depth and inten-
sity frames from figures 2] and 3]

(a) (b)

Fig. 8: RTAB-Map unscaled reconstructions, (a) Mesh recon-
structed from LIDAR infrared and depth data, and (b) Photo
taken some days after the capture (for comparison purposes).

5. CONCLUSIONS

We have successfully adapted two SLAM systems (Kintinuous
and RTAB-Map) to work with LIDAR data. We have obtained
a quantitative baseline with indoor RGBD data by evaluating
the mapping (reconstruction) and location (trajectory) perfor-
mance of both systems. Besides this, we have carried out a
trajectory evaluation with outdoor LIDAR data. All these ob-
jective evaluations have been performed on publicly available
datasets with annotated ground-truth.

Additionally, we have tested the best system in a LIDAR
dataset lacking a visible color camera, thus only exploiting
the metric information of the LIDAR and the infrared val-
ues of the projected scan points. We propose an interpola-
tion method for the empty areas to allow for feature detectors
needed by SLAM algorithms for correspondence matching.
With this challenging data we have obtained some reconstruc-
tions from the streets of Terrassa, a city near Barcelona where
UPC has one of its campuses. We would like to highlight the
following points resulting from our exploration:

e In indoor real scenarios RTAB-Map is slightly better
than Kintinuous for trajectory estimation. However,
based on point-to-point map differences, Kintinuous is
better in 3D reconstruction for synthetic indoors with
simulated Kinect noise, probably thanks to its TSDF
model. For outdoor real data RTAB-Map undoubtedly
performs better based on ATE.

e With the scan projections done in the KITTI dataset
about 84% of the available 3D points are lost, hence,
the obtained reconstructions have low density of points
in the parts that are not captured by the camera FOV.

e For data captured with less than 6DoF (like KITTI), the
cubic shape of the TSDF volume (used in Kintinuous)
is a waste of resources, since a large part of it is never
used.

e The use of a sparsely sampled infrared image in place
of a high resolution visible image makes the SLAM
problem more difficult, but simplifies the sensor setup.

e Dynamic movements of objects break the assumption
of a static world producing duplications in the map.

As future work, we would like to continue with: a precise
intrinsic calibration of the Beamagine LIDAR, a registration
of a hi-res color camera with the Beamagine LIDAR data,
and exploiting the advantages of the real-time ROS wrapper
for RTAB-Map.

6. REFERENCES

[1] P. . McManamon, “Review of ladar: a historic, yet
emerging, sensor technology with rich phenomenol-
ogy,” Optical Engineering, vol. 51, no. 6, 2012.

[2] H. Moravec, “Robot spatial perception by stereoscopic
vision and 3d evidence grids,” Perception, 1996.

[3] N. Ayache and O. D. Faugeras, “Building, registrating,
and fusing noisy visual maps,” The International Jour-
nal of Robotics Research, vol. 7, no. 6, pp. 45—65, 1988.

[4] E. Eade and T. Drummond, “Scalable monocular slam,”
in Computer Vision and Pattern Recognition, vol. 1.
IEEE Computer Society, 2006, pp. 469—476.

[5] M. A. Garcia and A. Solanas, “3d simultaneous localiza-
tion and modeling from stereo vision,” in Robotics and
Automation ICRA’04, vol. 1. 1EEE, 2004, pp. 847-853.

[6] H. Surmann, A. Niichter, and J. Hertzberg, “An au-
tonomous mobile robot with a 3d laser range finder
for 3d exploration and digitalization of indoor environ-

ments,” Robotics and Autonomous Systems, vol. 45, no.
3-4, pp. 181-198, 2003.

[7] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges,
and A. Fitzgibbon, “Kinectfusion: Real-time dense sur-
face mapping and tracking,” in IEEE Intl. Symposium on
Mixed and Augmented Reality, Oct 2011, pp. 127-136.

[8] “Point cloud library.” Available:

/Ipointclouds.org/

[Online]. http:

[9]1 M. Pirovano, “Kinfu - an open source implementation of
Kinect Fusion+ case study: implementing a 3d scanner
with PCL,” UniMi, Tech. Rep., 2012.

[10] B. Curless and M. Levoy, “A volumetric method for
building complex models from range images,” in 23rd
Annual Conference on Computer Graphics and Interac-
tive Techniques. New York: ACM, 1996, pp. 303-312.

[11] T. Whelan, M. Kaess, and M. Fallon, “Kintinuous: Spa-
tially extended kinectfusion,” RSS Workshop on RGB-D:
Advanced Reasoning with Depth Cameras, p. 7, 2012.

[12] F. Heredia and R. Favier, “Kinect Fusion extensions to
large scale environments,” 2012. [Online]. Available:
http://www.pointclouds.org/blog/srcs/fheredia/

[13] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard,
and J. McDonald, “Robust real-time visual odometry
for dense RGB-D mapping,” IEEE Intl. Conference on
Robotics and Automation, pp. 5724-5731, 2013.

[14] T. Whelan, M. Kaess, J. J. Leonard, and J. McDonald,
“Deformation-based loop closure for large scale dense
RGB-D SLAM,” IEEE/RSJ Intl. Conference on Intelli-
gent Robots and Systems, pp. 548-555, 2013.

[15] F. Endres, J. Hess, N. Engelhard, and J. Sturm, “An
evaluation of the RGB-D SLAM system,” ICRA, vol. 3,
no. ¢, pp. 1691-1696, 2012.

[16] “ROS.org | Powering the world’s robots.” [Online].
Available: http://www.ros.org/

[17] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Bur-
gard, “3-D Mapping With an RGB-D Camera,” IEEE
Trans. on Robotics, vol. 30, no. 1, pp. 177-187, 2014.

[18] T. Whelan, S. Leutenegger, R. Salas Moreno,
B. Glocker, and A. Davison, “ElasticFusion: Dense
SLAM Without A Pose Graph,” Robotics: Science and
Systems XI, 2015.

[19] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision
meets robotics: The KITTI dataset,” Journal of Robotics
Research, vol. 32, no. 11, pp. 1231-1237, 2013.

[20] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers, “A benchmark for the evaluation of RGB-
D SLAM systems,” IEEE International Conference on
Intelligent Robots and Systems, pp. 573-580, 2012.

[21] L. Jacky, “png-to_klg.” [Online]. Available:
//github.com/HTLife/png_to_klg

https:

[22] J.R. Casas, P. Salembier, and L. Torres, “Morphological
interpolation for texture coding,” IEEE Intl. Conference
on Image Processing, vol. 1, pp. 526-529, 1996.

[23] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers, “A benchmark for the evaluation of RGB-
D SLAM systems,” IEEE International Conference on
Intelligent Robots and Systems, pp. 573-580, 2012.

[24] A. Handa, T. Whelan, J. McDonald, and A. J. Davison,
“A benchmark for RGB-D visual odometry, 3D recon-
struction and SLAM,” IEEE International Conference
on Robotics and Automation, pp. 1524-1531, 2014.

http://pointclouds.org/
http://pointclouds.org/
http://www.pointclouds.org/blog/srcs/fheredia/
http://www.ros.org/
https://github.com/HTLife/png_to_klg
https://github.com/HTLife/png_to_klg

