
This article is the draft version for publication in 2013 International Conference on IC3INA. Content may change prior to final

publication. The final version can be obtained from http://ieeexplore.ieee.org/ under the same title.

Application Distribution Model In Volunteer

Computing Environment Using Peer-to-Peer

Torrent Like Approach

Yustinus Eko Soelistio

Faculty of Information and Communication Technology

Universitas Multimedia Nusantara

Tangerang, Indonesia

yustinus.eko@umn.ac.id

Abstract—Volunteer computing has been known as an

alternative solution to solve complex problems. It is

acknowledged for its simplicity and its ability to work on

multiple operating systems. Nonetheless, setting up a server for

volunteer computing can be time consuming and relatively

complex to be implemented. This paper offer a model which can

ease the effort of setting up a server by making the agent works

two ways, as seeder and leecher, like P2P torrent approaches.

The model consists of measurement units to manage applications

to be distributed, system hierarchy, and basic procedures for the

server and the agent. The model has been tested in four

scenarios using 2,000,000 to 3,000,000 integer data employing up

to six nodes. The tests demonstrate speedup in three of the
scenarios.

Keywords— volunteer computing, torrent, P2P

I. INTRODUCTION

Volunteer computing has been known as one alternative to
solve high complexity problems. Its user friendliness for
volunteers increases its popularity, especially in solving
scientific computations like [1]-[4]. Many improvements have
been suggested to improve the functionality of volunteer
computing [5]-[14]. Some works focus on increasing its
simplicity and availability to volunteers [5]-[9]. One method is
by using P2P platform to further extend its capability [8]-[9].
Based on this idea, this paper explores one possibility to make
volunteers not only able to crunch tasks from servers, but also
able to publish their problem sets easily to another volunteers.
The model proposed in this paper employ P2P idea and focus
on managing application and data in the cloud.

II. RELATED WORK

Previous work [9] suggests a volunteer computing P2P
agent model to distribute and work on task shared in the cloud.
The agent can host and publish a task which will be run by
another agent. These pull and push communications happened
completely on P2P network overlay thus overcome the
restrictions imposed by firewalls and NA(P)T. It provides an
easy to implement volunteer computing server model.

The idea from this work will be further explored in this
paper. The model will introduce measurement units to inform
volunteers about jobs being offered, connectionism model,
system hierarchy, and basic communication procedures
between agents. In the future studies, the model can be adapted
to facilitate hosts running on coarse grain connectionism by
employing mirroring jobs and splitting databases to clients.

III. MODEL

The model starts by defining that all nodes (O) in this P2P
torrent cloud send information of its available application (A)
to be shared, and receive information regarding available
applications and their descriptions. For every A in O, each O
can acts either as a seeder (Os) when it offers A, or a leecher
(Ol) when works on A.

A. Applications Management

Unlike processes in P2P torrent such as BitTorrent which
progresses can be easily measured in terms of sizes, measuring
application complexity in volunteer computing can be tricky.
Complexity in volunteer computing mostly measured by how
many flops needed to complete one application with a set of
data. This is troublesome since we need to go through the code
and algorithm to find out flops requirement for a particular
application. Furthermore it is not practically doable in the
torrent like environment with thousands of applications waiting
to be run. Therefore this paper proposes using multiple units of
measurement to assess applications’ complexity. These units
are data size, popularity, and average working time. These
units are saved in servers and the information will be made
public to all volunteers.

B. Measurement Model

Data size, popularity, and average working time are units to
measure the goodness of an application in the proposed
volunteer computing torrent cloud. The net values of these
units will be published as consideration tools for volunteers to
whether run the application or not.

This article is the draft version for publication in 2013 International Conference on IC3INA. Content may change prior to final

publication. The final version can be obtained from http://ieeexplore.ieee.org/ under the same title.

Data size (d) is the sum of application’s size (dapp) and its

data’s size (ddata) which processed by application A. Each A
can have multiple ddata thus

0 0

y i

A a p p d a ta
d d d (1)

Popularity (p) is the number of nodes work on A. If A has
been running for multiple time then

1

i

A i
p fr e q u e n c y A (2)

Average working time (w) is the average time needed for O
to finish working on A. If A has been running for more than
once then

1

i

i

A

A

t im e A

w
p

 (3)

Units p and w are unrelated to size to better provide
comprehensive information to volunteers regarding the
applications. To approximate complexity of A, volunteers can
use units d and w. In general, combination of high d and low w
can indicate low complexity. Moreover, high value of p and w
with low d can suggest high complexity.

C. System Model

This volunteer computing model adopts structure like
hybrid P2P model in [15]. All volunteers run an agent that
connect to tracking server. When succeed, the agent send
information about its offered application Aself. If it has
multiple Aself then it send a list of Aself(i) to the server. In return,
server will send information regarding available A in the cloud,
including their host identities. Fig. 1 illustrates the model’s
information flow.

Volunteer X

List(Ai)List(Ai)

Server

Volunteer Y

Info(AX) Info(AY)

AX, AY

DX, DY

RX, RY

Fig. 1. Volunteer computing P2P model’s information flow

When a volunteer choose to run another volunteer’s
application, it directly contact the application host. For
example in Fig. 1, if volunteer X wishes to work on AY, then it
will connect to volunteer Y to get the application and data DY
(if available). Volunteer X will work on AY and will determine

values of d and w. When completed, volunteer X send result
RY along with its d and w. Volunteer Y will then validate the
result. If RY is valid then volunteer Y will notify server about
the work status including its d and w. Finally, the server will
update and publish the result back to the cloud.

D. Validation Model

Tracking server maintains list of Ai by updating its
timestamp. Application AY will be preserved in the list only if
volunteer Y periodically updates its status to the server. When
tracking server does not receive update status from volunteer Y
in a certain amount of time (t) for a maximum number of f
times, then information about AY will be removed from the list.
Since volunteer X’s works are based on the list, then it will
discard AY, DY, and RY.

Result RY from volunteer X will be validated by volunteer
Y as the host. This model adapts validation technique like [5]
that introduced majority voting to determine whether RY is
valid. The maximum and minimum number of node to validate
are denoted by mmax ≥ m. For volunteer Y to verify that RY is
valid, it needs at least mmin nodes working on AY. Consequently
(1), (2), and (3) become

m in

0

m in

1

m in

1

y i

a p p d a ta

o

i

i

i

i

d m d d

p m fr e q u e n c y A

w m tim e A p

 (4)

Any malicious RY will be discarded and its status will not be
updated by the server.

E. Server and Agent Model

Tracking server consists of three modules which are
connection module, tracker module, and synchronizer module.
Connection module receives and sends messages to volunteers
for any updates on applications list. Tracker module is
responsible for checking applications and their host
availability. Tracker verifies host availability by sending
periodic message to hosts through connection module.

Applications are verified base on information from
volunteers. Updates on valid hosts and applications from
tracker will be saved to applications list by the synchronizer.
Afterward, this list will be published to volunteers by the
connector. Fig. 2 shows relations between modules.

This article is the draft version for publication in 2013 International Conference on IC3INA. Content may change prior to final

publication. The final version can be obtained from http://ieeexplore.ieee.org/ under the same title.

Synchronizer

Application

list
Server

Tracker

Connector

Worker

Agent

Tracker

Connector

Run

Application

Available

Application

Fig. 2. Server-agent modules model.

Similar to the server, an agent contains a connector and
tracker to manage connection to the server and application
host. In addition, an agent has a worker that run application A.
The connector serves two ways; first as an application host it
informs any new information on Aself (including updated status
on d(Aself) and w(Aself)) to the server, send Aself and DA to
volunteers, and confirms availability check from the server.
Second, as a volunteer it receives A and D from O(A) and sends
R to O(A). The tracker also acts as host and volunteer. As
host, tracker distributes and manages Aself and DA to volunteers
via connector. As volunteer, tracker tracks any change on the
applications list and inform connector or worker about the
changes. For example, when tracker find out that application
host has drop its Aself then tracker will immediately notify the
worker to drop the application as well.

F. Directory Structure

The agent’s working directory adopts [16] with some
modifications. It works on two separate directories, seed
directory and leech directory. Seed directory is maintained by
the tracker. It contains all applications Aself, problem data, and
their results. Leech directory contains all other hosts
applications, data, and results that the worker worked on. All
files in leech directory are temporary. Once an application is
finished, the directory in which the application worked on will
be removed after the result is sent to its host. Fig. 3 shows
directory structure of the agent.

/Agent

/Seed /Leech

/<App 1> /<App 2> /<App n>

/<Application>

/<Data>

/<Result>

/<App 1> /<App 2> /<App n>

/<Application>

/<Data>

/<Result>

/<Validator>

/<Tracker>

/<Time>

Fig. 3. Agent’s directory structure

G. Procedures Model

Tracker server has three communication procedures, three
tracking procedures, and two synchronizing procedures.
Communication procedures are PING for availability check,
PUSH to send applications list, and RECV to collect messages
from volunteers. Returned results from PING and RECV will
be passed to tracker. Tracking procedures consist of VAL to
validate the availability of application hosts, INIT to send
initial applications list to new volunteers, and INFO to inform
synchronizer about availability, information update, or changes
in application hosts. Synchronizing procedures consists of
WRITE to update applications list and READ to read
applications list.

PING has two parameters, t and f like mentioned in chapter
II.D. RECV can treat a list of blocked clients as parameter. By
default VAL receives status, either true or false, from PING
and messages from RECV. VAL will tell INFO to update
application list if the status it received is true. VAL can be
customized to call another function to complement PING. For
instance, it can put a client that has low availability into a black
list so any message from this client will be rejected and all
applications from this client will be dropped. If VAL receives
initialization message from RECV then VAL will call INIT to
push application list to the client. INIT stores temporary
applications list which will be updated periodically based on a
timer. When it reaches its timeout, INIT will request a READ
from synchronizer to get the latest list. To update the list with
new information, VAL passes the messages from RECV to
WRITE.

Agent has two communication procedures, five tracking
procedures, and eight working procedures. Communication
procedures consist of RECV to receive messages from server
and result from volunteers, and SEND to send messages to
server and application hosts. Tracking procedures consists of
EVAL to keep track number of mmax and mmin, DIST to
distribute applications and data trough communicator, STAT to
update valid works information to server, VAL to check
whether the results received are valid, and TAIL to keep track
of volunteers including work timeout. When results are valid
then VAL will inform EVAL to increase mmin. TAIL tracks
volunteers and their works by saving and checking the log in
/Seed/App/Data/Tracker directory. Working procedures
consists of REQ to request application and data from
application host, SCAN to scan the size of application and data,

This article is the draft version for publication in 2013 International Conference on IC3INA. Content may change prior to final

publication. The final version can be obtained from http://ieeexplore.ieee.org/ under the same title.

RUN to start running the application, TIME to evaluate
working time of each application, COLLECT to collect
information about running applications from TIME and SCAN,
SAVE to write the result in /result, LOAD to read back the
result, and STOP to drop an application (including its data and
result). TIME keeps track of working time by saving and
updating the log in /Leech/App/Data/Time.

In agent, RECV has parameter that can be set to accept or
deny messages from certain clients. VAL can be customized
just like VAL in the server so it can call another function. This
function can be a checklist or another application that returns
Boolean status. TAIL maps application and the volunteer
working on it. TAIL has timeout parameter which is the due
time for volunteers to submit their results. If it reaches its
timeout before the volunteer submit the result, then TAIL will
call DIST and drop the volunteer ID from the mapping list.
When a client accepts to run a certain application from the list,
the agent will call REQ to request application and data. After
the download completes, REQ will call SCAN and RUN all
together. RUN will call TIME which mark the beginning and
the end of the work. When finished, COLLECT and LOAD
will be invoked to get time, size and the result. Afterwards,
data from COLLECT and LOAD will be returned to the host
by SEND. If SEND fails to submit the result then it will
inform STAT to update application list from the server. If the
application host is not on the list, then by default STAT will
immediately call STOP. Fig. 4 and Fig. 5 illustrate relation
between process. Fig. 4 shows process for managing
application hosts. Fig. 5 shows process for distributing
applications.

PUSH

RECV

SEND

VAL

Has app.

INIT

No

READ

Timeout

Yes

App. list

RECV

INFO Yes

Client

Server

WRITE

PING

SEND

RECV

VALRECV

Client

Server

WRITE

App. list End

No Yes

Start

Client

initiate

STAT
Server

update

No

End Yes

Fig. 4. Process for managing application hosts

RECV

Server

VAL

INFO

WRITE

App. list

READ

PUSH

REQ

Start

Leecher

SEND

RECV

SCAN

RUN TIME

Finish

SAVE

LOAD

COLLECT

No

Leech DB

Yes

Yes

Server

update

No

Yes

Seeder

RECV

DIST

No

TAIL

SEND

App. DB

Submit

result

No

VAL Yes

EVAL

Valid

Yes

No

Server

update
EndYes

From

EVAL

No

End

Send

failed

No

STAT

Host exist

STOP

No

Yes

Yes

Fig. 5. Application distribution process

IV. TESTING

A. Scenario I: three volunteers with one application

The test used four nodes connected to each other. One
node acted as the server, and the others as clients. One of the
clients (Os) had an application that tried to find integer prime
numbers range from 3 to 2,000,000 using exhaustion method.
The problem was divided into 2059 parts. Each part contained
a set of minimum and maximum numbers to be identified as
prime number. These parts were then distributed to two other
clients Ol(X) and Ol(Y) thus each shared approximately 1030.

For each REQ procedure Ol(X) and Ol(Y) sent to Os, Ol(X) and
Ol(Y) received application file and theirs share of data.

4
a p p

d kB and was constant through all cycles since all

cycles run the same application file. Total ddata for all 2059
parts is ~8.33 MB. Since the application file was downloaded
on each cycle then it was estimated that each Ol would received
total 8.28 MB of data.

This article is the draft version for publication in 2013 International Conference on IC3INA. Content may change prior to final

publication. The final version can be obtained from http://ieeexplore.ieee.org/ under the same title.

Validation in this test did not precisely follow majority

voting method like described in chapter II.D since the test did
not incorporate malicious volunteer. Instead, the test put
mmax=mmin=1 so each Ol repeatedly run REQ and RUN
procedures until the application successfully processed all
numbers in range.

The application was built using Python. The test was
conducted on one computer and three virtual machines. All
clients were run on virtual machines, and the server was run on
their host. The host was run on Intel i5 with 4 GB RAM. The
virtual machines configuration were one core with 524 MB
RAM. Running time from the test was compared to the one
from sequential process. Sequential process was run twice,
once on one of the clients and another on the host machine.
Table I shows the result of first test. The test shows speedup
about 1.56 against the host and about 1.73 against the virtual
machine. Number of cycle done and data received (d) on each
Ol were relatively close to the approximation. Since dapp is the
sum of all application files and its data then dapp=16.56 MB.
The p and w for this application are 2059 and 6.35 second.

TABLE I. TEST RESULT COMPARISON FROM SCENARIO I

 Seq.

host

Seq.

virtual

Parallel client

1

Parallel client

2

of cycle 2059 2059 1031 1028

Time

(hour)
2.82 3.15 1.82 1.81

Average

time-per-

cycle (s)

4.93 5.51 6.36 6.35

Data size

(MB)
8.32 8.32 8.29 8.27

B. Scenario II: three volunteers with two applications

The second test added one extra application into the cloud.
There were two clients that acted as leecher and seeder, and
one client acted as leecher to both applications (see Fig. 4 for
more detail). The second application tried to find integer prime
number from 2,000,000 to 3,000,000 which divided into 1080
parts. This time, the test shows slowdown for the first
application and speedup for the second application. However,
in general the time needed to complete both applications is
faster by about 33%. Table II shows the results’ comparison
between applications and between hosts.

TABLE II. RESULT COMPARISON FROM EXPERIMENT II

 # of cycle Time (h) Avg. (s) Size (MB)

Sequential

app. 1

Host 2059 2.82 4.93 8.32

VM 2059 3.15 5.51 8.32

Sequential

app. 2

Host 1080 6.78 21.21 4.23

VM 1080 6.73 21.66 4.23

Parallel

app. 1
Client Y 139 0.35 9.09 1.12

Client Z 1920 4.45 8.34 15.45

Parallel

app. 2
Client Y 462 4.33 33.57 3.66

Client X 618 4.48 33.56 4.89

List(Ai)List(Ai)

Client Y

AX, DX, RZ
Client Z

(Application 2)

Server

AX, DX

RX

Info(AX)
Info(AY)

AZ, DZ

RZ

AZ, DZ, RX

Client X

(Application 1)

List(Ai)

Fig. 6. Test with three volunteers and two applications information flow

C. Scenario III: scenario II with two additional leeches

This test used the same configuration as the second test
with some adjustment. Aside from hosting AX and AZ, client X
and client Z also run their own application. Table III shows
result from this test. Compared to the previous test’s result in
table II, this test affirmed speedup for application 2. Although
did not show an obvious speedup, application 1 in this test
showed shorter run time then the one in the previous test.

TABLE III. TEST III RESULT

Parallel Client # of cycle Time (h) Avg. (s) Size

App. 1

X 736 1.54 7.54 5.92

Y 635 2.88 9.14 5.11

Z 688 1.63 8.42 5.53

App. 2

X 401 3.50 31.41 3.17

Y 329 3.40 37.24 2.61

Z 350 3.41 35.04 2.77

D. Scenario IV: six volunteers with two applications

The fourth test added three more clients into the cloud.
Unlike previous test, the last three clients were another
computer (run on Intel i3 with 2GB RAM) and its two virtual
machines. This new host was connected to the first host over
100BASE-TX fast Ethernet connection. All of these new
clients run both AX and AY just like what client Y did in Fig. 4.
For simplicity these new clients were called X′, Y′, and Z′ for
their host.

Table IV shows faster run time then the one on table II.
The speedup can reach about 3.5 for application 1 and 3.3 for
application 2. Though only reach about half of the ideal linear
speedup, the test verifies that the model provides better
performance then the one performed on single core. Data size
received by each client is smaller than the one received in
previous tests. Keeping the data small can be important in
volunteer computing environment since not all volunteers
have a decent internet connection.

This article is the draft version for publication in 2013 International Conference on IC3INA. Content may change prior to final

publication. The final version can be obtained from http://ieeexplore.ieee.org/ under the same title.

TABLE IV. TEST IV RESULT

Parallel Client # of cycle Time (h) Avg. (s) Size

App. 1

X 387 0.84 7.84 3.11

Y 373 0.89 8.64 3.00

Z 380 0.84 7.99 3.06

X 290 0.87 10.79 2.33

Y 289 0.87 10.85 2.32

Z 340 0.86 9.12 2.74

App. 2

X 194 1.88 34.97 1.45

Y 196 1.88 34.62 1.47

Z 207 1.94 33.69 1.55

X 147 1.90 46.56 1.10

Y 149 1.90 45.96 1.12

Z 187 1.88 36.23 1.40

V. CONCLUSION

This paper explores one possibility to manage applications
in volunteer computing environment. The model is designed to
work under P2P torrent like cloud. The model has been tested
under different situations which are likely to happen in P2P
torrent cloud. Nearly all tests prove some degree of speedup.
Even so, further validations are still needed. Further test
should include a more comprehensive validation method to
verify its robustness against malicious volunteers and glitch in
internet connectionism.

The model proposed in this paper can be implemented
using 23 basic procedures. Each procedure has some
parameters that can be modified to fit volunteer’s requirements.
Host’s information in the application list can be developed to
hold multiple hosts ID, thus allowing the applications to be
mirrored or to be broken to pieces like regular file sharing in
torrent.

Next study can explore other measurement units to better fit
the model, improve the basic procedures, and enhance security
including ways to confine seeder’s applications from leecher’s
system.

REFERENCES

[1] D.P. Anderson, J. Cobb, M. Lebofsky, D. Werhimer, “SETI@home: an

experiment in public-resource computing”, Magazine Communication of

ACM, vol. 45 issue 11, November 2002, pp. 56-61

[2] D.P. Anderson, “Boinc: a system for public-resource computation and

storage”, 5th IEEE/ACM International Workshop on Grid Computing,

2004, pp. 4-10,

[3] C. Christensen and T. Aina, D. Stainforth, “The challenge of volunteer

computing with Lengthy Climate Model Simulation”, Proceedings of the

First International Conference on e-Science and Grid Computing, 2005,

pp. 8-15.

[4] N. Cole et al., “Evolutionary algorithms on volunteer computing

platforms: the MilkyWay@Home project”, Parallel and Distributed

Computational Intelligent, vol. 269, Springer-Verlag, 2010, pp. 63-90.

[5] L.F.G. Sarmenta, “Volunteer computing”, Ph.D. dissertation, Dept. of

Electrical Eng. and Comp. Sci., Massachusetts Institute of Technology,

2001.

[6] J.P. Morrison, J.J. Kennedy, and D.A. Power, “WebCom: a web based

volunteer computer”, The Journal of Supercomputing, vol. 18 issue 1,

Jan. 2001, pp. 47-61.

[7] N. Therning, L. Bengtsson, “Jalapeno – decentralized grid computing

using peer-to-peer technology”, Proceeding of the 2nd conference on

Computing frontiers, 2005, pp. 59-65

[8] C. Sangani, “ComP2P: application of distributed hash tables to
distributed computing” [Online], Available:

http://www.cse.iitk.ac.in/users/dheeraj/reports/comp2p.pdf [Last
accessed: Jul. 22, 2013 15:23]

[9] K. Shudo, Y. Tanaka, and S. Sekiguchi. "P3: P2P-based middleware
enabling transfer and aggregation of computational resources", IEEE

International Symposium on Cluster Computing and the Grid, vol. 1,
IEEE, 2005, pp. 259-266.

[10] D.P. Anderson, E. Korpela, and R. Walton, “High-Performance task

distribution for volunteer computing”, E-SCIENCE '05 Proceedings of

the First International Conference on e-Science and Grid Computing,

2005, pp. 196-203.

[11] N.Z.C. Fülöp, “A desktop grid approaches for scientific computation and

visualization”, Ph.D. dissertation, Dept. Comp. And Information Sci.,

Norwegian Univ. of Science and Technology, 2008.

[12] D.M. Toth, “Improving the productivity of volunteer computing”, Ph.D.

dissertation, Faculty of Worcester Polytechnic Inst., 2008.

[13] V.D. Cunsolo, S. Distefano, A. Puliafito, M. Scarpa, “From volunteer to

cloud computing: Cloud@Home”, Proceedings of the 7th ACM
international conference on Computing frontiers, 2010, pp. 103-104.

[14] S. Yi, E. Jeannot, D. Kondo and D. Anderson, “Towards real-time

volunteer distributed computing”, The 11th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, 2011, pp. 154-163.

[15] D.S. Milojicic et al., "Peer-to-peer computing", HPL-2002-57, HP

Laboratories Palo Alto, 2002.

[16] D.P. Anderson, C. Christensen, and B. Allen, “Designing a runtime
system for volunteer computing”, Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, article no. 126, 2006.

