
Causal Repair of Learning-Enabled
Cyber-Physical Systems

Pengyuan Lu
Computer and Information Science

University of Pennsylvania
Philadelphia, PA, USA

pelu@seas.upenn.edu

Ivan Ruchkin
Electrical and Computer Engineering

University of Florida
Gainesville, FL, USA
iruchkin@ece.ufl.edu

Matthew Cleaveland
Computer and Information Science

University of Pennsylvania
Philadelphia, PA, USA
mcleav@seas.upenn.edu

Oleg Sokolsky
Computer and Information Science

University of Pennsylvania
Philadelphia, PA, USA
sokolsky@cis.upenn.edu

Insup Lee
Computer and Information Science

University of Pennsylvania
Philadelphia, PA, USA

lee@cis.upenn.edu

Abstract—Models of actual causality leverage domain knowl-
edge to generate convincing diagnoses of events that caused an
outcome. It is promising to apply these models to diagnose and
repair run-time property violations in cyber-physical systems
(CPS) with learning-enabled components (LEC). However, given
the high diversity and complexity of LECs, it is challenging
to encode domain knowledge (e.g., the CPS dynamics) in a
scalable actual causality model that could generate useful repair
suggestions. In this paper, we focus causal diagnosis on the
input/output behaviors of LECs. Specifically, we aim to identify
which subset of I/O behaviors of the LEC is an actual cause for a
property violation. An important by-product is a counterfactual
version of the LEC that repairs the run-time property by fixing
the identified problematic behaviors. Based on this insights, we
design a two-step diagnostic pipeline: (1) construct and Halpern-
Pearl causality model that reflects the dependency of property
outcome on the component’s I/O behaviors, and (2) perform
a search for an actual cause and corresponding repair on the
model. We prove that our pipeline has the following guarantee:
if an actual cause is found, the system is guaranteed to be
repaired; otherwise, we have high probabilistic confidence that
the LEC under analysis did not cause the property violation.
We demonstrate that our approach successfully repairs learned
controllers on a standard OpenAI Gym benchmark.

Index Terms—actual causality, control policy repair, cyber-
physical system.

I. INTRODUCTION

When a person’s leg hurts, they seek detailed diagnosis from
a physician regarding the pain’s cause, which would lead to an
effective intervention as a “repair”. Similarly, when a closed-
loop cyber-physical system (CPS) violates a desirable property
at run time, the violation needs diagnosis — a procedure that
identifies the cause for the violation, and by fixing the identi-
fied cause, the CPS can be repaired. Traditionally, researchers
conduct this kind of analysis from statistical inference on
observations [1], [2] . However, statistical diagnosis is prone
to mistaking correlation for causation: when a student always
wears a green jacket and fails several exams, such algorithms
are likely to conclude it is the green jacket’s fault due to

the perfect correlation. Therefore, in this paper, we focus on
stronger causal reasoning and repair on CPS failures.

Researchers have explored the concept of actual causality
that leverages domain knowledge to produce well-defined and
convincing causal explanations. Informally, an actual cause for
an outcome is a minimal set of variable assignments, which
represent an event, that changes the outcome if assigned some
counterfactual values. Finding an actual cause requires the
construction of an actual causality model, such as a Halpern-
Pearl model, which rigorously defines actual causes for events
and precisely assigns responsibility and blame [3]–[5]. With
these models, we can encode common knowledge that, for
instance, the student’s bad grade can be either due to not study-
ing hard enough or misunderstanding some concepts in class.

Although actual causality is promising for analyzing and
fixing CPS failures, causal analysis and repair have been
complicated by the growing popularity of learning-enabled
components (LECs) [6]–[8]. First, LECs usually consist of
numerous internal continuous parameters, such as weights
and biases in deep neural networks. Second, LECs take a
large diversity of forms, from basic statistical models such
as linear regressors and support vector machines to complex
deep architectures, lacking a shared struture of a parameter
template. Furthermore, sometimes the internal structures of
LECs are black-boxes protected as intellectual properties, and
are invisible to testing engineers. Under these scenarios, it is
hard to build a causal model based on the internal information
flow of these components. Related to diagnosis and repair are
the efforts in explainable AI [9], [10] and formal methods [11],
[12], where researchers build frameworks to explain behaviors
of learned agents. However, to our knowledge, these strands
of work have yet to connect to actual causality.

Since the internal parameters of LECs are hard to analyze,
we take a step back and analyze the LEC I/O behavior
instead. Our intention in this paper is to leverage actual
causality to efficiently identify the granular I/O behaviors of

ar
X

iv
:2

30
4.

02
81

3v
2

 [
ee

ss
.S

Y
]

 2
6

A
pr

 2
02

3

a suspected LEC for a run-time property violation. We intend
to identify these behaviors in the form of fine-grained input-
output mappings, so that a precise repair can be made for CPS
to satisfy the desired property.

To achieve this goal, we first construct an Halpern-Pearl
(HP) causality model to encode the dependency of property
outcome on the suspected LEC’s behaviors. Then, we design
an algorithm to search for an actual cause and corresponding
repair on this HP model. This algorithm either concludes that
an actual cause does not exist within the LEC’s behaviors
with high confidence , or outputs the set of behaviors that
are causing the violation, along with a counterfactual repair.
Experiments on the mountain car, a standard OpenAI Gym
benchmark [13], demonstrates the capability of our method.

To summarize, our contributions are:
1) A novel use of HP causality model to identify problematic

LEC I/O behaviors that cause a run-time property viola-
tion, and produce repair suggestions, without touching the
component’s internal information flow, and

2) Experiments on an OpenAI Gym benchmark that show
our solution’s utility for learning-enabled CPS repair.

II. BACKGROUND AND RELATED WORK

A. Learning-enabled Components (LEC)

Learning-enabled components (LECs) are functional com-
ponents of larger systems that are learned from data, either of-
fline or online. One example is the perception unit, with neural
networks able to complete difficult vision tasks that generally
cannot be accomplished by traditional first-principles algo-
rithms, such as tracking moving objects at 100 fps [6]. More-
over, deep reinforcement learning has provided useful control
policies on various tasks as a substitute for conventional
controllers [14], [15]. Due to LECs’ performance, the state-of-
the-art in CPS has a growing enthusiasm of these statistically
generated agents, with automated design tools built for CPS
with LECs [7], as well as analysis on their assurance on run-
time properties such as safety [8]. Consequently, we need to
consider the presence of LECs when diagnosing faults in CPS.

B. Repair

A repair is a procedure to change or replace parts of
a system to achieve a desirable performance, of which the
system previously fell short. This term has been widely used in
traditional embedded systems. For example, researchers have
studied repair on hardware components such as DRAM [16],
[17] or noisy sensors [18]. Also, repair has been performed on
software; for example, assembly program can be transformed
to decrease resource consumption below a threshold [19].

In modern CPS with LEC, the topic of repair interests many
researchers. Learned agents, such as deep neural networks,
may lead the system to unsafe states [20] or unplanned
paths [21]. Therefore, repair is necessary to recover desirable
behaviors. Repair of neural networks is an active area of
research [22], [23]. For instance, network parameters can be
repaired by search algorithms [24] or constraint solvers [25].
More recently, researchers have studied provable repairs on

deep neural networks, with guaranteed satisfaction of a given
property after the repair [26]–[28].

Compared to the existing work on repair, we focus on the
causal relationships between the repairable elements and the
execution outcome. That is, the neural network parameters to
be repaired should be the ones that caused the system’s failure.

C. Actual Causality and Halpern-Pearl Models

Below we rephrase Halpern and Pearl’s definition of actual
causality [3], [4]. An actual causality model, or a Halpern-
Pearl (HP) model is a recursive structure, i.e., a directed
acyclic graph, such that every node represents either an
exogenous variable, whose value is determined by factors
outside this model, or an endogenous variable, whose value
is determined by other variables in this model. The edges
represent dependencies: an exogenous node has only outgoing
edges but no incoming edges, while an endogenous node may
have both. Every endogenous node is equipped with a function,
which defines how the node’s value is computed from other
nodes. In other words, this function defines the incoming edges
to the node. Formally,

1) An HP model is a tuple M = (Uendo,Uexo,V, E), where
Uendo and Uexo are finite sets of endogenous and ex-
ogenous variables, respectively, and for each variable
u ∈ Uendo∪Uexo, V(u) defines a non-empty and potentially
infinite set of values that u can take.

2) E is a set of edges, associated with dependency equations,
that defines how the value of each endogenous node u is
computed. I.e., for each eu ∈ E ,

eu :
∏

u′∈Uendo\{u}

V(u′)×
∏

u′′∈Uexo

V(u′′) 7→ V(u).

To define an actual cause in an HP modelM, we introduce
the following notation:

1) An assignment of a variable u ∈ Uendo ∪ Uexo is denoted
as u := v, for some v ∈ V(u). Assignments of multiple
variables are denoted in vector form u := v, with u =
[u1, u2, . . .], v = [v1, v2, . . .]. This assignment means a
conjunction (u1 := v1) ∧ (u2 := v2) ∧

2) A property ψ is a Boolean function of endogenous
variable assignments, e.g., ψ = (u1 := v1) ∧ (u2 :=
v2)∨(u3 := v3). The satisfaction relation (M,vcxt) |= ψ
denotes that a property holds on M given exogenous
nodes assigned with vcxt.

3) A counterfactual v′ (with respect to the “factual” v)
is an alternative value assignment on some endogenous
variables. The values of dependent nodes in v′ may be
different from v in accordance with to E . A property ψ
holds on a counterfactual that replaces the factual values
v with v′ on variables u is denoted as (M,vcxt) |= [u←
v′]ψ, or simply [u← v′]ψ.

Then, in the above terms, the Halpern and Pearl definition
of an actual cause is phrased as follows.

Definition 1 (Actual Cause). On an HP modelM with exoge-
nous node values vcxt, the assignment on a set of endogenous

variables u := v is an actual cause of ψ iff the following
conditions hold:

1) AC1: (M,vcxt) |= (u := v) ∧ ψ
2) AC2: ∃ partition Uendo = u∪u1∪u2. Denote the factual

values of u1 and u2 as v1 and v2, respectively. Then,
∃v′,v′1, such that
(a) [u← v′,u1 ← v′1]¬ψ
(b) [u← v,u1 ← v′1,u

∗
2 ← v∗2]ψ, for any u∗2 ⊆ u2 and

v∗2 is the original factual value of u∗2 (a subvector of v2).
3) AC3: @u′ ⊂ u that satisfies AC1 and AC2.

Condition AC1 ensures the suspected actual cause and out-
come are factual. Then, AC2(a) ensures a sufficient counterfac-
tual, that switching the suspect u and a circumstance u1 to that
counterfactual assignment guarantees a flipped outcome ¬ψ,
and AC2(b) states that switching the circumstance alone does
not change the outcome - as long as the suspect remains the
factual value assignments. Finally, AC3 guarantees minimality
of the actual cause. Detailed explanation for this definition can
be found in the original publications [3], [4].

Researchers have applied actual causality and HP model to
CPS diagnosis. For instance, Ibrahim et al. have designed a
SAT solver to practically compute actual causes to explain
undesirable CPS behaviors [29], [30]. However, the solver is
restricted to finite V(u) for variables and their HP model de-
sign only captures discrete events like ”there exists a Byzantine
fault” or ”the system is on autopilot mode”. Unfortunately, this
design does not extend to diagnosis of LECs, which generally
have continuous value spaces for I/O and internal variables,
and their internal information flows are not interpretable.

III. PROBLEM FORMULATION

A. System Setting

We formalize the system setting as follows. We have an
exact dynamical system model S, which describes how the
components of the agent interact with each other, as well as
how the agent interacts with the environment. This closed-
loop model is assumed to be deterministic. In other words,
the agent’s trajectory only depends on the initial state, the
environment dynamics, and the component designs. These as-
sumptions are often satisfied in model-based CPS engineering
and can be relaxed in future research.

The system aims to satisfy a given specification/property
ϕ that takes Boolean values (true/satisfied/1, false/violated/0),
e.g., the linear temporal logic (LTL) [31] or signal temporal
logic (STL) [32] formula. In this paper, we focus on STL.

We observe a trajectory on a given initial state s0, where
the system failed to satisfy ϕ and we suspect one of its
components C, such as a controller, is at fault for the violation.
The component C’s internal design is invisible to us, but we
can observe its input/output (I/O) behavior, which we denote
by function f : X 7→ Y , with its domain and codomain being
continuous and bounded metric spaces (X , dX) and (Y, dY),
respectively. Therefore, we can replace this behavior by any
counterfactual f ′ : X 7→ Y . We denote the counterfactual
system that uses f ′ in place of f , with everything else

remaining the same, as S(f ′). We use S(f ′) |= ϕ and
S(f ′) 6|= ϕ to denote that the property will be satisfied or
violated under S(f ′). With this notation, the factual outcome
is S(f) 6|= ϕ. Next, we formalize the distance between two
choices for the behaviors of component C.

Definition 2 (Distance between I/O behaviors). For any two
I/O behaviors f1, f2 : X 7→ Y , we define distance || · ||df

as

||f1 − f2||df
= max

x∈X
||f1(x)− f2(x)||dY (1)

We then make the following assumptions.

Assumption 1. We can check the outcome of ϕ on the given
initial state s0 when substituting different f ′ in place of the
component by calling a simulator,

SIMULATEs0 : (X 7→ Y) 7→ {0, 1}, (2)

which encodes the knowledge of S and ϕ. For simplicity, we
assume a fixed s0 in the remainder of this paper, and the
simulator is denoted as simply SIMULATE.

Assumption 2. The behavior f is Lipschitz-continuous, with
an unknown Lipschitz constant. This is a common property of
many types of learning models, such as neural networks.

Assumption 3. The property outcome is robust against small
changes from the factual I/O behavior f , i.e., ∀f ′ : X 7→ Y ,

||f − f ′||df
≤ ε =⇒ SIMULATE(f) = SIMULATE(f ′), (3)

for some small ε > 0.

We expect Assumption 3 to hold in most practical cases.
Suppose the distance of the factual f to the decision boundary
of the simulator outcome on I/O behaviors is δ. If δ > 0, there
exists an arbitrarily small ε < δ where the assumption holds.
The only case that Assumption 3 does not hold is when δ = 0,
i.e., the factual behavior is right on the decision boundary, but
this event would usually have a probability measure of 0.

B. Problem Statement

In the above setting, we want to identify a subset of I/O
behaviors of the suspected component C — that is, a set of
input-output tuples of f — that indeed caused the property
violation, as well as the counterfactual outputs on these inputs
that can repair the system.

Main Problem. Upon the observation of a property vio-
lation on a runtime trace, S(f) 6|= ϕ, how can we use HP
causality to identify a subset of the suspected component C’s
I/O behaviors (modeled as f) that caused this violation?

1) Sub-problem 1. Encode the dependency structure of C’s
behaviors on ϕ using an HP model.

2) Sub-problem 2. On the encoded HP model, design a
search algorithm for an actual cause, such that, upon
success, provide a repair suggestion in form of a coun-
terfactual f∗ : X 7→ Y that S(f∗) |= ϕ. Upon failure,
quantify the confidence that the property violation is not
caused by the I/Os of C.

Fig. 1: Workflow of our causal repair approach, which con-
structs an HP model to encode the I/O behaviors of a suspected
LEC and search for a repair by causal analysis.

To solve these problems, we employ the following work-
flow, which is visualized in Figure 1: (1) Extract the behaviors
of C as an I/O table. (2) Encode the dependency of the property
outcome on the I/O behaviors with an HP model (Section
IV). (3) Search for a counterfactual model value assignment,
revealing an actual cause and a repair (Section V). (4) Decode
the found assignment as a counterfactual component behavior.
(5) Replace C with an alternative component that performs this
counterfactual behavior to repair the system.

The entire workflow is implemented on an OpenAI Gym
example in Section VI.

IV. HALPERN-PEARL MODEL DESIGN

We first describe a naive way of encoding the dependency
of ϕ on component C’s I/O behaviors in Section IV-A. This
results in an HP model with an infinite number of nodes. To
alleviate this issue, we describe a method for constructing an
HP model with a finite number of nodes in Section IV-B.

To fulfill the minimality in AC3 of Definition 1, we will
need to distinguish which counterfactuals are closer to the
factual behavior. This requires a partial order on I/O behaviors
that aligns with some partial order on the HP node values.
Unfortunately, the naive finite HP model does not admit fine
enough partial orders over its node values. Thus, we will refine
our HP model to support suitable partial orders and make it
amenable to the counterfactual search.

A. Infinite HP Model

Intuitively, a naive way to build the HP model to model
the dependency of property outcome on I/Os of C is to
model every input x ∈ X as an endogenous node, and its
corresponding output y ∈ Y as its value. We illustrate this
model in Figure 2 and refer to it as the infinite HP model.

This model encodes the component C’s implemented I/O
behaviors as an exogenous node (yellow), and the behaviors
for each input x ∈ X , as well as the property outcome as
endogenous nodes. Since we assume the full knowledge of the
C’s I/Os, we can extract the input-output tuples by tabulating

Fig. 2: Infinite HP model.

Algorithm 1: Discretize HP Model
Input : Factual behavior f : X 7→ Y , continuous

bounded spaces X and Y , initial cell width
∆init

x , ∆init
y

Output: Partitioned cells X1, . . . ,Xm, Y1, . . . ,Yn, a
map g : {1, . . . ,m} 7→ {1, . . . , n} from input
cells to output cells

1 ∆x ← ∆init
x ;

2 ∆y ← ∆init
y ;

3 do
4 Partition Y with cell width ∆y;
5 ∆y ← ∆y/2;
6 do
7 Partition X with cell width ∆x;
8 ∆x ← ∆x/2;
9 while ∃Xi that cannot be completely mapped

into some Yj ;
10 g ← the current mapping between cells;
11 fr ← RECON(g);
12 while SIMULATE(fr) 6= SIMULATE(f);

them. Then, based on Assumption 1, the outcome can be
obtained by calling SIMULATE on the I/Os. This design is
illustrated in Figure 2. Each node has its variable name at the
top and a value at the bottom.

Recall that the input space X is continuous. Therefore, an
obvious drawback of this infinite HP model is that it has
infinitely many nodes for each x ∈ X , and thus an infinitely
large search space for an actual cause given by Definition 1.

B. Discretized HP Model

To create a finite HP model, we partition the input space X
and output space Y into sufficiently fine-grained, but finitely
many cells X =

⋃m
i=1 Xi and Y =

⋃n
j=1 Yj , and then consider

functions that map all x ∈ X1 to the center of one Yj . The
partitioning procedure is detailed in Algorithm 1.

Algorithm 1 splits the input space and output space into
hypercube cells. The cell size keeps shrinking until the two
conditions, respectively in line 10 and line 13 are met. We

Fig. 3: Discretized HP model. We illustrate this with an
example value assignment of nodes.

define the reconstruction method RECON at line 12 as follows.

RECON(g) = fr, where ∀x ∈ Xi, fr(x) = center(Yj), j = g(i)

That is, it reconstructs an I/O behavior from the discrete map
g, which approximates the factual I/O behaviors as a mapping
among cells, by mapping every x in an input cell to the center
of the corresponding output cell. This algorithm is guaranteed
to terminate by the following theorem.

Theorem 1 (Termination of Discretization). Algorithm 1 is
guaranteed to terminate.

For the proof, please refer to Appendix A. Proofs of later
theorems can also be found there.

Upon the termination of Algorithm 1, we obtain a function
fr = RECON(g) that represents f by (1) having arbitrarily
close outputs on the same inputs and (2) having the same
property outcome. Then, our causal analysis is established on
the family of functions like fr, i.e.,

Definition 3 (Representative Component Behavior Space).
Given the cell partition X =

⋃m
i Xi and Y =

⋃n
j Yj , we

define the representative component behavior space as a finite
subset of (X 7→ Y) as

Fr = {f ′ ∈ (X 7→ Y) | ∀i, ∀x ∈ Xi,∃j, f ′(x) = center(Yj)}
(4)

Notice that if we wrap up the generation of g from f
in Algorithm 1 as a method DISCRETIZE, the two methods
DISCRETIZE and RECON are inverse to each other if the
behaviors are restricted within Fr.

With this shrunken space of behavior choices, we modify
our HP model to the next version, called the discretized HP
model, as in Figure 3. Here, we have one endogenous node
per input cell, and its value is the mapped output cell. This
HP model has m + 2 nodes and can express every behavior
choice in Fr. Notice that in place of TABULATE, we now have
DISCRETIZE since the nodes are now representing the discrete
map g, and the SIMULATE method requires RECON on the
discrete map first.

Generally, we want to pick a counterfactual for C that repairs
the system S, i.e., flipping the outcome from 0 to 1, that is

closest to the factual. This is motivated by the minimality of
actual causes in AC3 in Definition 1. Therefore, we first define
a partial order on I/O behaviors.

Definition 4 (Partial Order on Behaviors). For a factual
behavior choice f : X 7→ Y , we define a partial behavior
order 4f on (X 7→ Y) as

f1 4f f2 ⇐⇒ ∀x ∈ X ,∀j ∈ {1, . . . ,dim(Y)},
(f(x)[j] ≤ f1(x)[j] ≤ f2(x)[j])

∨(f(x)[j] ≥ f1(x)[j] ≥ f2(x)[j])

(5)

where [j] denotes the j-th dimension of a vector.

In plain words, f1 4f f2 iff f1 has closer outputs to the
factual f than f2 does on all dimensions and on all inputs.

However, one drawback of this discrete HP model and
the partial order from Definition 4 is that we cannot tell
the difference between two counterfactual I/O behaviors in
terms of the sets of “disagreeing” nodes compared to the
factual v = DISCRETIZE(fr) , which is something we need
for reasoning about (AC3) in Definition 1. For example, in
Figure 3, assume that two counterfactuals f1 and f2 change
the mapping on X1 from the factual Y2 (as in fr) to Y3 and Y4,
respectively. With this mapping change, both flip the outcome
to 1. In the discretized HP model, the number of “disagreeing”
nodes under both assignments is 1, but Y4 may be further from
the factual Y2 than Y3. In plain words, we cannot answer
“which one is more different from fr: f1 or f2?” by simply
comparing the two sets of nodes they modify from the factual
value assignment.

C. Propositional HP Model

We now present a partial order, 4v, over node value
differences and define how 4v relates to partial order 4f from
Definition 4. We then present an HP model construction tech-
nique, starting from the discretized HP model, that preserves
4v and 4f .

For the new partial order, if the subset of nodes that differ
between assignments v2 and factual v contains the subset of
nodes that differ between v1 and v, we say that v1 is closer
to v than v2 does. We formulate this as another partial order,
on value assignments of a subset of endogenous nodes Uio ⊆
Uendo. The value space of Uio is denoted as Vio.

Definition 5 (Partial Order on HP Node Values). On a set of
HP model nodes U and its value space V , given the factual
value assignment v ∈ V , we can define a partial order 4v

that
v1 4v v2 ⇐⇒ diffU (v,v1) ⊆ diffU (v,v2), (6)

where diffU (·, ·) denotes the subset of nodes in U that has
different values by two assignments. Equality =v holds iff
diffU (v,v1) = diffU (v,v2).

With this partial order, we can determine if an assignment
v1 differs more from the factual v than assignment v2 does.

Consequently, a larger change from the factual I/O behavior
needs to be reflected in a larger set of differing nodes, i.e., the

partial order 4v needs to preserve the partial order 4f . We
define partial order preservation as follows:

Definition 6 (Partial Order Preservation). Consider a rep-
resentative behavior space Fr ⊂ (X 7→ Y) with a fac-
tual representative component fr and the induced partial
behavior order 4fr . Consider also a subset of endogenous
nodes, Uio ⊆ Uendo, with the value space of this subset
Vio. An encoding of a representative I/O behavior onto the
nodes Uio, ENCODE : Fr 7→ Vio, preserves partial order iff
ENCODE(fr) = v, and

∀f1, f2 ∈ Fr, f1 4fr f2 ⇐⇒ ENCODE(f1) 4v ENCODE(f2)
(7)

Finally, we define a finer-grained HP model that preserves
these two partial orders based on Definition 6.

First, we first define an output bin of Y . As illustrated in
Figure 4, if the output space is partitioned into 4×4 hypercube
cells, we can index the cells from Y11 to Y44. We therefore
have 4 bins along dimension 1 and 4 bins along dimension
2. Formally, if we index the dim(Y) = d-dimensional output
cells as Yk1k2...kd

, we have

Definition 7 (Output Bins). The k-th output bin along dimen-
sion j is binY(j, k) =

⋃
{Yk1k2...kd

| kj = k}

We denote the total number of bins along the j-th dimension
as nj , and therefore kj ∈ {1, . . . , nj}. Next, we can define the
lower bound of binY(j, k) in j-th dimension as lo(binY(j, k)).
Notice that along a fixed dimension j, we have a total order
of lower bounds of bins based on k.

We are now ready to construct the final, propositional HP
model, created by Algorithm 2. In contrast to the discretized
HP model, now the endogenous nodes that encode the I/O
behaviors (Uio in the algorithm) take propositional values.
Node uijk encodes whether for input x ∈ Xi the output cell
for the j-th dimension is in at least the k-th output bin. In
the example illustrated in Figure 5, we have 1-dimensional X ,
with X1 = [0, 1] and X2 = [1, 2]. We also have 2-dimensional
Y = ([5, 6] ∪ [6, 7]) × ([10, 11] ∪ [11, 12]). The example
value shows that the representative function fr of f maps all
x ∈ [0, 1] to the center of [6, 7] × [10, 11], and all x ∈ [1, 2]
to [5, 6] × [10, 11]. Under this propositional HP model, the
encoding ENCODE : Vio 7→ Fr is simply evaluating the node
propositions based on the component behavior, and DECODE
is first identifying the discretized mapping between cells, and
then calling RECON. Notice that ENCODE and DECODE are
inverse to each other if we restrict the behavior choices in Fr.

With m input cells, d output dimensions and nj bins along
a dimension j, this HP model has m

∑d
j=1 nj + 2 nodes,

with |Uio| = m
∑d

j=1 nj . However, the total number of
value assignments on Uio is not 2|Uio|, because some value
assignments are not allowed. For example, we cannot let
f(x) ≥ 5 be false and f(x) ≥ 6 be true. The total number
of valid assignments is (

∏d
j=1 nj)

m = nm, the same as the
discretized HP model.

Fig. 4: An example indexing of cells and output bins when
both X and Y are 2-dimensional.

Algorithm 2: Construct Propositional HP Model
Input : Input space X and output space Y of

component behaviors and their indexed cells,
simulator SIMULATE, encoder ENCODE,
decoder DECODE

Output: HP model M = (Uendo,Uexo,V, E)
1 Uexo ← {ucomp};
2 Uendo ← {uϕ};
3 V(ucomp)← (X 7→ Y);
4 Uio ← ∅;
5 E ← {SIMULATE ◦ DECODE, ENCODE};
6 for i = 1, . . . ,m do
7 for j = 1, . . . , d do
8 for k = 1, . . . , nj do
9 uijk ← (x ∈ Xi =⇒ f(x)[k] ≥

lo(binY(j, k));
10 V(uijk)← {0, 1} ;
11 Uio ← Uio ∪ {uijk};
12 end
13 end
14 end
15 Uendo ← Uio ∪ Uendo;

Fig. 5: An example of the propositional HP model. We use
red and green colors to show the nodes with 0 and 1 values.

Theorem 2 (Propositional Encoding Preserves Partial Order).
The encoding ENCODE : Fr 7→ Vio specified by evaluating the
proposition of every uijk ∈ Uio, as constructed in Algorithm
2, preserves the partial order as defined in Definition 6.

V. THE CAUSAL REPAIR ALGORITHM

A. Satisfactory Counterfactual Search

Based on the constructed propositional HP model, we
look for an actual cause. The idea is to first search for a
counterfactual v′io on Uio that leads to a satisfactory outcome,
i.e., S(f ′r) |= ϕ and f ′r = DECODE(v′io). The subset of nodes
with different value assignments between the factual vio and
counterfactual v′io is not necessarily an actual cause yet (it
may not be minimal as per condition AC3), and in the next
subsection, we will look for a different v∗io that fulfills the
actual cause conditions from this v′io. Here, we focus on the
search for v′io.

Since a brute-force search on all nm possible value assign-
ments takes exponential time, we leverage random sampling
as follows in Algorithm 3.

Algorithm 3: Counterfactual Random Sampling
Input : HP model M, probability threshold p,

significance level α ∈ [0, 1], simulator
SIMULATE, decoder DECODE, probability
distributions D1, D2

Output: Either a counterfactual value assignment v′io
on Uio with SIMULATE(DECODE(v′io)) = 1, or
a statement
PrD2

[PrD1
[SIMULATE(DECODE(v′io)) = 1] ≤

p] ≥ 1− α
1 N ← d(1/p− 1)Q(1− α/2)2e;
2 for 1 . . . N do
3 v′io ← uniform sampling from all nm settings;
4 ϕ← SIMULATE(DECODE(v′io));
5 if ϕ then
6 Return v′io ;
7 end
8 end
9 Return PrD2 [PrD1 [SIMULATE(DECODE(v′io)) = 1] ≤

p] ≥ 1− α;

The distribution D1 is a distribution on different value as-
signments in the value space Vio. For example, it can be a uni-
form distribution on the propositional node values. Distribution
D2 is the induced distribution on a sampled value assignment’s
success rate, i.e., p = PrD1

[SIMULATE(DECODE(v′io) = 1] ,
which is treated as another random variable. In line 1, the
function Q(·) means the quantile on standard normal distribu-
tion. Starting from line 2 to 8, we uniformly sample different
value assignments v′io until we find one v′io that produces
satisfactory ϕ by SIMULATE or we reach a maximum number
of samples. If we fail to find a satisfactory value assignment,
we report that the probability of finding a satisfactory v′io with
uniform sampling, i.e., the portion of satisfactory v′io in the

entire search space, is at most p with confidence 1−α at line
9. We show our probabilistic failure statement at line 9 holds
with the following theorem.

Theorem 3 (Probabilistic Guarantee on Search Failure). Given
an HP model constructed by Algorithm 2, a probability
threshold p ∈ [0, 1] and a confidence 1− α ∈ [0, 1], the final
statement at line 9 of Algorithm 3 holds.

Upon N consecutive failures, this search algorithm states
that with some confidence a counterfactual assignment that
flips the outcome is unlikely to be found. This suggests
that the actual cause for the run-time property violation lies
elsewhere: possibly the environment, the behaviors of another
component, or the suspected component together with another
component — but not the I/O behaviors of this component
alone. This confidence is based on a substantial number of
samples without finding a successful counterfactual. For exam-
ple, for p = 0.001 and α = 0.05, one would need to uniformly
sample at least N = 3838 failed counterfactuals in a row.

B. Node Value Interpolation for Actual Cause

Suppose we have successfully obtained a satisfactory v′io on
Uio, from Algorithm 3. The final step is to find a counterfactual
v∗io that can flip the outcome and is as close to the factual vio
as possible, starting from v′io. This step is required to satisfy
the minimiality condition (AC3) of Definition 1.

We therefore perform a deterministic interpolation between
v′io and vio in Algorithm 4, which starts from the found
satisfactory counterfactual assignment v′io. In this algorithm,
the counterfactual value assignment steps towards the factual
vio by flipping the differing value assignments one-by-one.
This procedure continues until there are no nodes it can
flip while still satisfying ϕ. Because the total number of
nodes in Uio is m

∑d
j=1 nj , Algorithm 4 is guaranteed to

output an actual cause with a satisfactory counterfactual within
O(m

∑d
j=1 nj) time. The complexity is linear in terms of m

and n, allowing for efficient computation.
We visualize the process of searching for v∗io as Figure 6.

Without loss of generality, consider only the top left input cell.
The factual behavior f = DECODE(vio) maps inputs in this
cell to some output cell and this behavior produces a property
violation. The sampling by Algorithm 3 finds a satisfactory
counterfactual f ′ = DECODE(v′io), which is an alternative
mapping. Next, the interpolation Algorithm 4 flips the nodes
disagreed by vio and v′io one-by-one towards vio. This flipping
is equivalent to stepping through the output cells one by one.
Eventually, the algorithm reaches a node assignment where
any steps towards f result in ϕ becoming violated, at which
point it returns the current node assignment. Depending on the
dimensions, we can take different paths in stepping, i.e. we can
end up either in cell (1) or cell (2), from interpolating in the
vertical or horizontal dimension first, respectively. Mapping
the input cell to either of these two cells represents a valid
I/O behavior of f∗.

Notice that Algorithm 4 incrementally steps towards the
factual vio from v′io by flipping nodes one-by-one. A more

Algorithm 4: Actual Cause Search by Incremental
Interpolation

Input : HP model M, factual vio, satisfactory
counterfactual v′io, simulate function
SIMULATE

Output: Satisfactory counterfactual v∗io such that its
difference from vio is an actual cause as per
M

1 v∗io ← v′io;
2 diff∗Uio

← diffUio(vio,v
′
io);

3 for i = 1, . . . ,m do
4 for j = 1, . . . , d do
5 for k = 1, . . . , nd do
6 if uijk /∈ diff∗Uio

then
7 Continue;
8 end
9 vtemp ← v∗io with value assignment on uijk

the negation as in v∗io;
10 if SIMULATE(DECODE(vtemp)) = 1 then
11 v∗io ← vtemp;
12 diff∗Uio

← diff∗Uio
\{uijk}

13 end
14 end
15 end
16 end

Fig. 6: An example of finding actual cause by interpolation,
with two-dimensional X and Y . Red cells in Y denote property
violation, green denotes satisfaction, and blue denotes cells
where satisfaction is not relevant to the example.

efficient variant is to do a binary search between these
two value assignments. We denote these two approaches
as incremental interpolation and binary search interpolation,
respectively. Both are evaluated in Section VI.

Next, we show that the output is indeed an actual cause
based on HP model M in Theorem 4.

Theorem 4 (Output is Actual Cause). Let HP model M
constructed in Algorithm 2 be given with factual node value
assignment vio. Let v′io be a counterfactual node value as-
signment from Algorithm 3. The node values on Uio where
assignments vio and v∗io disagree in Algorithm 4 are an actual
cause of S(f) 6|= ϕ as per M constructed in Algorithm 2.

VI. EXPERIMENTAL EVALUATION

A. Setup

We test our diagnosis on the mountain car from the OpenAI
Gym [13], which has become a common benchmark for
learning-enabled CPS [33], [34]. The car starts in the valley
between two mountains with the task is to drive it to the top
of the right mountain within a deadline. The system has two
one-dimensional state variables: position and velocity, and a
one-dimensional control signal, as follows.

pos(t+ 1) = pos(t) + vel(t)

vel(t+ 1) = vel(t) + 0.0015ctrl(t)− z cos (3pos(t))

ctrl(t) = f(pos(t), vel(t))

(8)

where z = 0.0025 is the steepness of the hill. The vari-
ables are bounded, such that pos(t) ∈ [−1.2, 0.6], vel(t) ∈
[−0.07, 0.07] and ctrl(t) ∈ [−1, 1]. The initial condition is
(pos(0), vel(0)) = (−0.5, 0), i.e., staying still at the bottom
of the valley. The controller is a learning-based function f , for
which we use a pre-trained deep neural network. The run-time
property can be specified as an STL [32] formula

ϕ = Ft≤110(pos(t) ≥ 0.45), (9)

i.e., reaching pos(t) ≥ 0.45 before the deadline of t = 110.
Due to its limited power, the car cannot reach its goal directly,
and the challenge is to first climb the left mountain to gain
enough momentum.

As the controller function f , we use a pre-trained rectan-
gular deep neural network with shape 8 × 16 with sigmoid
activations. The run-time property ϕ is violated on initial state
(pos(0), vel(0)) = (−0.5, 0) , and we suspect it is caused by
this learned controller. Therefore, we run our diagnosis step-
by-step to find an actual cause and observe its effect on system
repair. All experiments are run on a single core of Intel Xeon
Gold 6148 CPU @ 2.40GHz.

B. Results

Based on the setup, the input space and output space of the
suspected controller are X = [−0.6, 1.2] × [−0.07, 0.07] and
Y = [−1, 1]. We first run Algorithm 1 and find that the cell
width is of size 0.1×0.01 on X and 0.1 on Y . In other words,
position is split into (1.2 − (−0.6))/0.1 = 18 equally sized
intervals, velocity into (0.07 − (−0.07))/0.01 = 14 intervals
and control into (1 − (−1))/0.1 = 20 intervals. Therefore,
there are 18× 14 = 252 input cells and 20 output cells.

By using Algorithm 2, we constructed an HP model, with
every uik ∈ Uio representing a Boolean statement “on this
input cell Xi of (position, velocity), the output control is at
least in output bin binY(1, k)”. We do not have j here because
the output space is one-dimensional. Then, using Algorithm 3,
we found three counterfactuals v1

io, v2
io, and v3

io that lead to
the satisfaction of ϕ. We then applied Algorithm 4 to find
the minimal modification needed from factual vio to these 3
counterfactuals, with the interpolated counterfactuals denoted
as v1∗

io , v2∗
io and v3∗

io , respectively.

Fig. 7: Control functions, approximated by mapping between cells, visualized as heatmaps on the position-velocity space. The
functions from left to right are the factual f , the searched counterfactual f ′1 and interpolated counterfactual f∗1 between the
first two.

Fig. 8: Mountain car traces: one before repair and three
causally repaired. The red dashed line means pos = 0.45, i.e.,
the target. The car stops immediately after target is reached.

Figure 7 shows the control functions f , f ′1 = DECODE(v1
io),

and f∗1 = DECODE(v1∗
io) as heatmaps. There are 153 (out of

252) input cells that map to a different output cell between f
and f∗1 . Consequently, our diagnosis pipeline concludes that
the actual cause is “the control signals on these 153 input
cells given by the factual controller f”, with a corresponding
repair “had these 153 cells been mapped by f∗1 instead of f ,
the system would have satisfied ϕ”.

After we found a counterfactual behavior, we used both the
incremental and binary search interpolations. The computation
time is listed in Table I. We can see the time overhead is pre-
dominantly from running the simulator, and that interpolation
with binary search does reduce this overhead.

To validate that these modifications indeed repair the sys-
tem, we replace the controller with interpolated control func-
tions f∗1 , f∗2 and f∗3 . The re-runs give satisfactory results as
shown in Figure 8, showing the utility of our causal diagnosis.

VII. DISCUSSION AND CONCLUSION

Our diagnosis and repair pipeline has several advantages.
First, we are able to leverage domain knowledge of the system,
such as how to simulate the outcome of the given STL
property, and well-defined actual causality models to reason
about the causes. Second, the actual cause we identify reflects
a minimal subset of the component’s I/O behaviors that cause
the problem under our defined partial order. Therefore, we
avoid changing the complex and possibly unavailable internal
structure of components and blaming unrelated, “innocent” be-
haviors. Finally, as the experiments demonstrate, our approach
produces practically useful repair suggestions.

Limitations do exist in our current pipeline, so future
research is required. First, the HP model construction and
component behavior encoding in Section IV-C is only one
way of preserving the partial order on behaviors. There may
be more effective ways with fewer HP model nodes and
therefore smaller memory and time overhead. Second, the
search algorithm in Section V-A draws uniformly random
samples from an exponentially large search space, and even if
we are confident to report the satisfactory portion is relatively
small and hence the search fails, that portion may still be
large in an absolute sense. For example, a fraction of 10−6

on a space size of 1020 is still very large. Therefore, there
is potential for making the search algorithm smarter, such as
leveraging prior knowledge of the STL property. Moreover,
we perform a repair on only one initial condition, which may
violate the property on the others.

To summarize, this paper uses a novel construct of the
Halpern-Pearl model to search for an actual cause for a run-
time CPS property violation and provide a repair, without
changing complex internal structures of LECs. Our diagnostic
pipeline consists of two steps: (1) construct the propositional
HP model and (2) search for different variable assignments on
the model until we reach an actual cause. Our causal pipeline
provides repair guarantees and can generate useful fixes to
deep neural network controllers.

Interpolation Total time (s) Simulator time (s) Stepping time (s) # of operations
Incremental 9148.77 9148.76 0.003 1231

Binary 4965.03 4965.02 0.001 880

TABLE I: Computation time of interpolation from counterfactual f ′1 to factual f . An “operation” is a combination of executing
SIMULATE and stepping the counterfactual towards the factual behavior.

ACKNOWLEDGEMENT

This work was supported in part by ARO W911NF-20-
1-0080 and AFRL and DARPA FA8750-18-C-0090. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do
not necessarily reflect the views of the Air Force Research
Laboratory (AFRL), the Army Research Office (ARO), the
Defense Advanced Research Projects Agency (DARPA), or the
Department of Defense, or the United States Government.

REFERENCES

[1] S. Wang, A. Ayoub, B. Kim, G. Gössler, O. Sokolsky, and I. Lee, “A
causality analysis framework for component-based real-time systems,”
in International Conference on Runtime Verification. Springer, 2013,
pp. 285–303.

[2] J. Schumann, P. Moosbrugger, and K. Y. Rozier, “R2u2: monitoring and
diagnosis of security threats for unmanned aerial systems,” in Runtime
Verification. Springer, 2015, pp. 233–249.

[3] J. Y. Halpern and J. Pearl, “Causes and explanations: A structural-model
approach. part i: Causes,” The British journal for the philosophy of
science, 2005.

[4] J. Y. Halpern, Actual causality. MiT Press, 2016.
[5] H. Chockler and J. Y. Halpern, “Responsibility and blame: A structural-

model approach,” Journal of Artificial Intelligence Research, vol. 22,
pp. 93–115, 2004.

[6] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with
deep regression networks,” in European conference on computer vision.
Springer, 2016, pp. 749–765.

[7] C. Hartsell, N. Mahadevan, S. Ramakrishna, A. Dubey, T. Bapty,
T. Johnson, X. Koutsoukos, J. Sztipanovits, and G. Karsai, “Model-based
design for cps with learning-enabled components,” in Proceedings of the
Workshop on Design Automation for CPS and IoT, 2019, pp. 1–9.

[8] C. E. Tuncali, J. Kapinski, H. Ito, and J. V. Deshmukh, “Reasoning
about safety of learning-enabled components in autonomous cyber-
physical systems,” in Proceedings of the 55th Annual Design Automation
Conference, 2018, pp. 1–6.

[9] T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati, “Plan
explanations as model reconciliation: Moving beyond explanation as
soliloquy,” arXiv preprint arXiv:1701.08317, 2017.

[10] B. Krarup, M. Cashmore, D. Magazzeni, and T. Miller, “Model-based
contrastive explanations for explainable planning,” 2019.

[11] V. Raman and H. Kress-Gazit, “Explaining impossible high-level robot
behaviors,” IEEE Transactions on Robotics, vol. 29, no. 1, 2012.

[12] “Towards minimal explanations of unsynthesizability for high-level
robot behaviors,” in 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems. IEEE, 2013, pp. 757–762.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[14] X. Qi, Y. Luo, G. Wu, K. Boriboonsomsin, and M. Barth, “Deep
reinforcement learning enabled self-learning control for energy effi-
cient driving,” Transportation Research Part C: Emerging Technologies,
vol. 99, pp. 67–81, 2019.

[15] D. Cao, J. Zhao, W. Hu, N. Yu, F. Ding, Q. Huang, and Z. Chen, “Deep
reinforcement learning enabled physical-model-free two-timescale volt-
age control method for active distribution systems,” IEEE Transactions
on Smart Grid, vol. 13, no. 1, pp. 149–165, 2021.

[16] R. McConnell and R. Rajsuman, “Test and repair of large embedded
drams. i,” in Proceedings International Test Conference 2001 (Cat. No.
01CH37260). IEEE, 2001, pp. 163–172.

[17] Y. Zorian, “Embedded memory test and repair: Infrastructure ip for soc
yield,” in Proceedings. International Test Conference. IEEE, 2002, pp.
340–349.

[18] D. Cazes and M. Kalech, “Model-based diagnosis with uncertain
observations,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 03, 2020, pp. 2766–2773.

[19] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest, “Automated repair
of binary and assembly programs for cooperating embedded devices,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 1, pp. 317–
328, 2013.

[20] U. S. Cruz, J. Ferlez, and Y. Shoukry, “Safe-by-repair: a convex opti-
mization approach for repairing unsafe two-level lattice neural network
controllers,” arXiv preprint arXiv:2104.02788, 2021.

[21] R. Peddi and N. Bezzo, “Interpretable run-time prediction and planning
in co-robotic environments,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 2504–2510.

[22] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep neural
networks: Fix patterns and challenges,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp.
1135–1146.

[23] K. Majd, S. Zhou, H. B. Amor, G. Fainekos, and S. Sankaranarayanan,
“Local repair of neural networks using optimization,” arXiv preprint
arXiv:2109.14041, 2021.

[24] J. Sohn, S. Kang, and S. Yoo, “Search based repair of deep neural
networks,” arXiv preprint arXiv:1912.12463, 2019.

[25] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. S. Păsăreanu,
“Nn repair: constraint-based repair of neural network classifiers,” in
Computer Aided Verification: 33rd International Conference, CAV 2021,
Virtual Event, July 20–23, 2021, Proceedings, Part I 33. Springer, 2021,
pp. 3–25.

[26] X. Lin, H. Zhu, R. Samanta, and S. Jagannathan, “Art: abstraction
refinement-guided training for provably correct neural networks,” in
Formal Methods in Computer-aided Design, vol. 1. TU Wien Academic
Press, 2020, pp. 148–157.

[27] D. Cohen and O. Strichman, “Automated repair of neural networks,”
arXiv preprint arXiv:2207.08157, 2022.

[28] F. Fu, Z. Wang, J. Fan, Y. Wang, C. Huang, X. Chen, Q. Zhu, and
W. Li, “Reglo: Provable neural network repair for global robustness
properties,” in Workshop on Trustworthy and Socially Responsible
Machine Learning, NeurIPS 2022.

[29] A. Ibrahim, S. Rehwald, and A. Pretschner, “Efficient checking of
actual causality with sat solving,” Engineering Secure and Dependable
Software Systems, vol. 53, p. 241, 2019.

[30] A. Ibrahim, S. Kacianka, A. Pretschner, C. Hartsell, and G. Karsai,
“Practical causal models for cyber-physical systems,” in NASA Formal
Methods Symposium. Springer, 2019, pp. 211–227.

[31] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). ieee, 1977, pp. 46–57.

[32] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[33] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee,
“Verisig 2.0: Verification of Neural Network Controllers Using Taylor
Model Preconditioning,” in Computer Aided Verification. Cham:
Springer International Publishing, 2021, pp. 249–262.

[34] I. Ruchkin, M. Cleaveland, R. Ivanov, P. Lu, T. Carpenter, O. Sokol-
sky, and I. Lee, “Confidence composition for monitors of verification
assumptions,” in 2022 ACM/IEEE 13th International Conference on
Cyber-Physical Systems (ICCPS), 2022, pp. 1–12.

[35] R. G. Newcombe, “Interval estimation for the difference between
independent proportions: comparison of eleven methods,” Statistics in
medicine, vol. 17, no. 8, pp. 873–890, 1998.

APPENDIX A

In this appendix, we provide the proofs of the following
theorems from paper “Causal Repair of Learning-Enabled
Cyber-Physical Systems”: Theorem 1 from Section IV-B,
Theorem 2 from Section IV-C, Theorem 3 from Section V-A,
and Theorem 4 from Section V-B.

First, we prove that Algorithm 1 is guaranteed to terminate.

Theorem 1 (Termination of Discretization). Algorithm 1 is
guaranteed to terminate.

Proof. Within an input cell Xi of width ∆x, for any two x1,
x2 inside this cell, we have

||x1 − x2||dX ≤
√

dim(X)∆x, (10)

i.e., any two points within this cell must be smaller than the
main diagonal length of cell Xi.

Next, by Assumption 2, the behavior of factual component
f is Lipschitz-continuous, so ∃ Lipchitiz constant c > 0, that

∀x1, x2 ∈ X , ||f(x1)− f(x2)||dY ≤ c||x1 − x2||dX . (11)

Therefore, when these inputs are mapped into the output space
by f , we have

||f(x1)− f(x2)||dY ≤ c
√

dim(X)∆x, (12)

which means there exists a cubic output cell Yj of width ∆y ≥
c
(√

dim(X)/
√

dim(Y)
)

∆x such that every input from Xi

can be mapped to Yj .
In this cell partition , the maximal difference between any

output y ∈ Yj and its cell center center(Yj) is bounded by
half of the main diagonal length, i.e.,

||y − center(Yj)||dY ≤
√

dim(Y)∆y. (13)

Since every output is represented by its cell center, by Defi-
nition 2,

||f − fr||df
≤
√

dim(Y)∆y. (14)

Recall that Assumption 3 states that the outcome of SIMULATE
maintains the same when two functions has a separation
smaller than ε. Therefore, we shrink ∆x (in lines 7-10) until√

dim(Y)∆y ≤ ε, so that the representative function fr leads
to the same outcome, i.e. runtime property violation, as the
factual behavior f .

Therefore, we are able to find the representative function fr
constructed at line 12.

Next, we prove that the propositional HP model constructed
by Algorithm 2 preserves the partial order from Definition 6.

Theorem 2 (Encoding Preserves Partial Order). The encoding
ENCODE : Fr 7→ Vio specified by evaluating the proposition
of every uijk ∈ Uio,as constructed in Algorithm 2, preserves
the partial order as defined in Definition 6.

Proof. We start by proving the forward direction =⇒ in
Definition 6. Suppose we have two arbitrary behavior choices
choices f1, f2 ∈ Fr. The factual behavior is represented by
fr and we have f1 4fr f2.

By Definition 4, this partial order 4fr means that f1 has an
output in between that of fr and f2 in every output dimension,
i.e.,

∀x ∈ X ,∀j ∈ {1, . . . , dim(Y)},
(fr(x)[j] ≤ f1(x)[j] ≤ f2(x)[j])

∨ (fr(x)[j] ≥ f1(x)[j] ≥ f2(x)[j])

(15)

We pick an arbitrary input x ∈ input cell Xi, and an arbitrary
output dimension j. By Equation 15, we know that the output
bins that fr(x), f1(x) and f2(x) in dimension j must be in
either non-decreasing, or non-increasing order. Without loss
of generality, we consider non-decreasing order here. That is,

fr(x) ∈ binY(j, kr)

f1(x) ∈ binY(j, k1)

f2(x) ∈ binY(j, k2)

kr ≤ k1 ≤ k3

(16)

Therefore, we have lo(binY(j, kr)) ≤ lo(binY(j, k1)) ≤
lo(binY(j, k2)). Now we consider the encoded node values
on the subset of nodes Uio(i, j) ⊆ Uio, which are the nodes
that encodes the behaviors of input cell Xi on dimension j,
i.e., Uio(i, j) = {uijk | k = 1, . . . , nj}. The value assignments
on Uio(i, j) given by the three behavior choices are denoted
as vr(i, j), v1(i, j) and v2(i, j) ∈ Vio(i, j), respectively.

Based on the order lo(binY(j, kr)) ≤ lo(binY(j, k1)) ≤
lo(binY(j, k2)), evaluating the node propositions, i.e., the
encoding function ENCODE(), results in

vr(i, j) = 111...1︸ ︷︷ ︸
kr

000...0︸ ︷︷ ︸
nj−kr

v1(i, j) = 111...11︸ ︷︷ ︸
k1

00...0︸ ︷︷ ︸
nj−k1

v2(i, j) = 111...111︸ ︷︷ ︸
k2

0...0︸︷︷︸
nj−k2

(17)

From the evaluated assignments, we can see the two susbets
of differing nodes between vr and v1 and between vr and v2

are

diffUio(i, j)(vr,v1) = {uijk | kr + 1 ≤ k ≤ k1}
diffUio(i, j)(vr,v2) = {uijk | kr + 1 ≤ k ≤ k2}

(18)

And we can see

diffUio(i, j)(vr,v1) ⊆ diffUio(i, j)(vr,v2) (19)

The same set containment holds when we use ≥, i.e. non-
increasing order.

Notice that the three integers kr, k1 and k2 denote the
number of nodes flipped to 1 in Uio(i, j) by these 3 behavior
choices. Therefore, we can as well denote them as kr(i, j),
k1(i, j) and k2(i, j). Since Equation 15 applies for all in-
put cells Xi and output dimensions j, we have kr(i, j) ≤
k1(i, j) ≤ k2(i, j) (or ≥) for each pair of i and j. Therefore,

on all i, j, diffUio(i, j)(vr,v1) ⊆ diffUio(i, j)(vr,v2) holds.
Consequently,

diffUio(vr,v1) =
⋃
i,j

diffUio(i, j)(vr,v1)

⊆
⋃
i,j

diffUio(i, j)(vr,v2) = diffUio(vr,v2)
(20)

By Definition 5, we have v1 4vr v2, and the forward direction
=⇒ is proved.

To prove the backward direction⇐=, we can use a symmet-
rical approach as above. That is, we still split Uio into multiple
Uio(i, j). Since we assume diffUio(vr,v1) ⊆ diffUio(vr,v2),
we must have ∀i, j, diffUio(i, j)(vr,v1) ⊆ diffUio(i, j)(vr,v2).
Consequently, we can show that f1(x)[j] ≤ f2(x)[j] (or ≥) on
arbitrary input space x ∈ Xi and output dimension j based on
the construction in Algorithm 2, and therefore f1 4fr f2. This
encoding indeed preserves partial order in both directions.

Next, we prove the validity of the probabilistic statement
reported by Algorithm 3 when it cannot find a suitable counter
example.

Theorem 3 (Probabilistic Guarantee on Search Failure). Given
an HP model constructed by Algorithm 2, a probability
threshold p ∈ [0, 1] and a confidence 1− α ∈ [0, 1], the final
statement at line 9 of Algorithm 3 holds.

Proof. Let D1 denote the uniform distribution on value
assignments on Uio, i.e., all propositional assignments on
the binary nodes. Consider random variable v ∼ D1. Let
s = SIMULATE(DECODE(v)) denote whether S is safe or
not when component C is replaced by a counter factual
f ′ = DECODE(v). Note that s is a Bernoulli random variable,
as it has value 1 when S is safe and 0 otherwise and that
PrD1 [s = 1] is the number of safe assignments divided by
the total number of feasible assignments nm.

For a Bernoulli distribution, the number of successes, de-
noted Ns, from N sequential samples follows a Binomial
distribution. If Ns = 0 we can apply the Wilson score interval
[35] to get an upper bound on the success probability of the
Bernoulli random variable:

z = Q(1− α

2
)

Pr[success] ∈
Ns + z2

2

N + z2
± z

N + z2

√
Ns(N −Ns)

N
+
z2

4

=
z2

2N + 2z2
± z2

2N + 2z2

= [0,
z2

N + z2
]

(21)

Equation (21) means that, if we do not see any success in
N Bernoulli trials, then with 1−α confidence we estimate that
the probability of a success in one trial is less than z2/(N +
z2), with z being the (1 − α/2)-quantile of standard normal
distribution.

Therefore, given an upper-bound probability estimation p,
we can compute N in terms of p and α.

p =
z2

(N + z2)

=⇒ N = (
1

p
− 1)z2 = (

1

p
− 1)Q(1− α

2
)2

(22)

Therefore, if we sample at least (1/p− 1)Q(1− α/2)2 value
assignments without any success, we can make the claim in
line 9, supported by Wilson score interval. Notice that this
minimal number of sampling is met at line 1. Consequently,
the statement at line 9 holds.

In the end, we prove the output of Algorithm 4 is an actual
cause given HP model M.

Theorem 4 (Output is Actual Cause). Let HP model M
constructed in Algorithm 2 be given with factual node value
assignment vio. Let v′io be a counterfactual node value as-
signment from Algorithm 3. The node values on Uio where
assignments vio and v∗io disagree in Algorithm 4 are an actual
cause of S(f) 6|= ϕ as per M constructed in Algorithm 2.

Proof. First, the encoding of the factual function, vio gives
property violation ¬ϕ based on Algorithm 1 and 2. Therefore,
AC1 holds.

Second, if we partition Uendo into U1 = diff∗Uio
∪{uϕ},

U2 = ∅ and U3 = Uendo \ U1, we can check this partition
on AC2. The subset U3 does not have counterfactual values
in these assignments so there is no difference between the
counterfactuals in AC2(a) and AC2(b). In fact, the existence
of this partition means AC2 holds.

Finally, there does not exist a subset diff∗∗Uio
⊂ diff∗Uio

such
that by using counterfactual values on this smaller subset only
gives satisfaction of ϕ, as then Algorithm 3 would have output
the node value assignment corresponding to that counterfactual
instead of outputting v′io.

Since all the three conditions hold, the factual value assign-
ments on the disagreeing nodes, i.e., diff∗Uio

, is an actual cause
of the property violation.

	I Introduction
	II Background and Related Work
	II-A Learning-enabled Components (LEC)
	II-B Repair
	II-C Actual Causality and Halpern-Pearl Models

	III Problem Formulation
	III-A System Setting
	III-B Problem Statement

	IV Halpern-Pearl Model Design
	IV-A Infinite HP Model
	IV-B Discretized HP Model
	IV-C Propositional HP Model

	V The Causal Repair Algorithm
	V-A Satisfactory Counterfactual Search
	V-B Node Value Interpolation for Actual Cause

	VI Experimental Evaluation
	VI-A Setup
	VI-B Results

	VII Discussion and Conclusion
	References
	Appendix A

