
HAL Id: hal-04227335
https://hal.science/hal-04227335

Submitted on 3 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System of Systems Modelling: Recent work Review and
a Path Forward

Charaf Eddine Dridi, Belala Faiza

To cite this version:
Charaf Eddine Dridi, Belala Faiza. System of Systems Modelling: Recent work Review and a Path
Forward. ICAASE’20, Oct 2020, Constantine, DZ, France. �hal-04227335�

https://hal.science/hal-04227335
https://hal.archives-ouvertes.fr


System of Systems Modelling: Recent work Review
and a Path Forward

1st Charaf Eddine DRIDI, 2nd Zakaria BENZADRI, 3rd Faiza BELALA
Constantine2-Abdelhamid Mehri University

LIRE Laboratory
Constantine, Algeria

{charafeddine.dridi, zakaria.benzadri, faiza.belala}@univ-constantine2.dz

Abstract—Systems-of-Systems (SoSs) stand out from mono-
lithic systems, because of their composed nature, their large
scale, their decentralized control mechanism, their evolving
environments, and their large number of stakeholders. Due to
the varied methodologies and domains of applications in existing
literature, there does not exist a single unified consensus for
processes involved in System-of-Systems Engineering (SoSE). The
purpose of this article is to provide a cursory description of the
SoS basic concepts on the one hand, and then to analyse the main
challenges in its development. Finally, we report the literature
review showing various techniques and methods that have been
modified from the conventional systems engineering to better fit
the needs of SoSs design. We hope the findings of this work may
encourage and inform the community researchers of the creation
of a more holistic and unified engineering process that is tailored
for the demands of these large-scale systems. Thus, the complexity
of the SoS development lends itself nicely to a Model-Based
Systems Engineering (MBSE) which provides communication and
verification that transcends the levels of development. MBSE uses
a model or set of models to document and communicate from the
system requirements level down to the software implementation
level.

Index Terms—Literature Review, System-of-Systems, SoS En-
gineering, Model-Based Systems Engineering.

I. INTRODUCTION

In the last decades, large-scale systems (LSS) and more
recently SoSs appeared as new software technologies that
integrate a set of various Constituent System (CSs) from
different subfields, and which offer a reliable and more natural
alternative to build very LSSs, thus giving some solutions to
the current research community issues. The subsystems were
not designed to work together, each CS may be of different
age and technology. This is one of the many reasons that make
the SoSE process quite different from that of the traditional
System Engineering (SE) in which software systems can only
be implemented from scratch. SoSE not only requires to
focus on system specification and verification but also requires
additional consideration for overall SoS context, individual
CSs characteristics, issues solving and integration process.

The term SoSE process refers to the application of engi-
neering principles to SoS development. It consists of activities
for managing the creation of SoS, including identifying and
selecting CSs based on stakeholder requirements analysis,
designing conceptual architectures, integrating and assembling
the selected CSs and updating the SoS as CSs evolve with

newer versions over time. SoSE can also significantly reduce
development cost, time and improve efficiency, reliability and
overall quality of SoS. The literature review shows vari-
ous methods that have been modified from the conventional
systems development to better fit the needs of SoS design.
However, each of these methods favors one aspect of SoS
over another. To our knowledge, there is so far no consensus
to specify the engineering process for this type of LSS. Hence,
developing a unified approach to model different aspects of
SoS is a very critical research challenge and has aroused great
interest in academia and industrial researchers.

The main objective of this work is threefold: (1) provide a
cursory description of the SoS basic concepts and analyze the
main challenges in its development; (2) report the literature
review showing various techniques that have been modified
from the conventional SE to better fit the needs of SoS design;
and (3) knowing that traditional SE seeks to optimize an
individual CS, whereas SoSE seeks to optimize the network
of the various interacting and new systems, brought together
to satisfy multiple objectives, we propose an effective SoSE
methodology allowing decision-makers to design informed
architectural solutions for the most SoSs challenges. In such a
complex scenario, this paper survey is directed to those who
want to approach this complex discipline and contribute to its
development.

The remainder of this paper is as follows. section II presents
the state-of-the-art in SoS and its main application domains. In
section III, challenges for SoS design are analyzed and clas-
sified. Then in section IV, several SoS modelling approaches
are reviewed, comparing their methods and tools. We analyze
in section V the reasons behind the lack of acceptance in
these methodologies, as well as the features that could have
considered for better acceptance. We conclude in section VI,
suggesting new directions for SoSs Engineering.

II. SOS BASICS: DEFINITION AND APPLICATION
DOMAINS

The term SoS is mainly used to describe an integrated force
package of interoperable systems acting as a single system to
achieve a mission capability [1]. Existing literature offers a
rich set of definitions of SoS and their characteristics, among
them, [2] defines a SoS as a set of distributed and complex CSs
interacting in a network structure, whose CSs are physically



and functionally heterogeneous, and perform a unified capabil-
ity that contributes to the system function. Moreover [3], de-
fines five main characteristics of SoS: operational/managerial
independence, geographic distribution, emergent behavior, and
evolutionary development (see Table I).

TABLE I
SOSS MAIN CHARACTERISTICS.

Description

Operational
independence

Every CS works independently to achieve its own
individual goals and collaborating with the other CSs
to accomplish the SoS global goal.

Managerial
independence

Every CS belongs to a specific company and it can be
managed independently by the company to which it
belongs.

Geographic
distribution

CSs are dispersed, i.e. that they can exchange only
information with one another and not substantial
quantities of mass or energy.

Emergent
behaviour

SoS global behaviours are emergent properties
of the entire SoS and cannot be localized to any CS.

Evolutionary
Evolutionary

The SoS structures, functions and purposes are subject
to several requirements, functionalities and evolutions
of its CSs.

Relying on the governance and management complexity,
the first categorization for SoSs was proposed by Maier in
1990’s specifying three SoS types: Virtual, Collaborative, and
Directed, a fourth SoS type Acknowledged was identified
in [4].The following characteristics of CSs are the main
distinguishing characteristics between SoSs and other types
of systems.

A system that does not have these five characteristics is
therefore not considered to be a SoS. Every SoS can be
recognized, treated and classified in accordance with one of
the four SoS types. In addition, there is no doubt that today’s
SoSs can be found everywhere and it is easy to see that their
applications are increasingly covering a variety of domains
(see Table II).

III. SOS CHALLENGES

In this section, we introduce the most relevant challenges
of SoSs (see Fig. 1).

Fig. 1. SoSs Challenges.

A. Challenges behind SoSs characteristics

In general, the complexity of the SoSs characteristics in-
creases with the:

• Safety: This property refers to the ability of a SoS to
not cause any harm, hazard or risk inside or outside of
its. The authors of [5] have indicated that safety is a
very complex challenge that can be derived to ten major
challenges.

• Availability: We can define SoS availability as the prop-
erty of a SoS and its CSs to be continuously operational
even when faults occur.

• Efficiency: Refers to a peak level of performance that
uses the least amount of resources to achieve the highest
number of specified functionalities.

• Sustainability: Is a key attribute of robustness that en-
ables a SoS to continue to operate effectively throughout
its mission cycle.

B. Challenges in SoSs quality attributes

Q.A are defined as the supplement purpose of SoSs:

• Flexibility: Defined as the degree of ease of effecting
change(s) to the SoS, in response to external or internal
changes, in order to maintain its mission [6].

• Evolvability: Refers to the capability of a SoS to incor-
porate the required design changes to meet new require-
ments that arise over time [17].

• Integrability: Refers to the ability of different CSs parts,
linked in a one larger SoS, to significantly communicate
with each other.

• Interoperability: Refers to the ability of the SoS and its
CSs to work together, exchange information and interpret
this information to provide specified capabilities [10].

• Composability: A highly composable SoS means that it
may easily and systematically be combined with other
CSs.

C. Management and oversight challenges

This task ensures that stakeholders, leaders, and authorities
are used for the intended purposes:

• Stockholders heterogeneity: Stakeholders are inherently
heterogeneous due to multiple users, their viewpoints,
business processes, platforms, environments. . . etc. [18]
[19].

• Leadership: Multiple independent stakeholders with
their heterogeneity require strong leadership to identify
and assess technical and development and application
options [19].

• SoS authorities: Lack of a single cross-cutting authority
in SoS remains a major challenge.

• Certification and accreditation: C&A processes in SoS
are given by dynamic standards and protocols that are
defined by a series of tests, guidelines, policies. . . etc.



TABLE II
CATEGORIES OF SOSS, THEIR LEVEL OF CENTRAL AUTHORITY, AND THEIR APPLICATION DOMAINS [7] [8] [9].

SoS Definition Authority Application domain

V
ir

tu
al

This SoS emerges from the interaction between CSs, whereas the
objectives are unknown. CSs are independently managed in
a distributed and uncoordinated environment where mechanisms
to maintain the whole SoS are not evident.

Non existent
-Internet.
-Automated high-speed algorithmic trading.
-National economies.

C
ol

la
bo

ra
tiv

e

The CSs collaborate to fulfil the central objectives.
CSs voluntarily collaborate more or less to address
shared or common interests.

offers standards
to enable the
collaboration of CSs.

-Regional area crisis response system [1].
-Public Transport Information [8] [11] [12] [13].
-The Global Financial .
-Intelligent Transport .
-Internet Engineering Task Force.

A
ck

no
w

le
dg

ed

Goals, management, resources, and central
authority of the SoS are all recognized, but the CSs
still retain their independent management.

is based upon
negotiation between
CSs and the SoS
as a whole.

-Smart City [8] [14].
-NATO Alliance.
-SESAR-Single European Sky (EU).

D
ir

ec
te

d The system is built for a specific purpose. CSs can
have their operational and managerial
independence, but their behaviour is subordinated to
a central authority and its purposes.

its specific main
purposes are
evident and drive
CSs.

-Health care SoS [8] [15]
. -Mars Science Laboratory (MSL).
-Military Command and Control [16] [17].
-NexGen – US Air Traffic Management.
-Army’s Future Combat systems in the US DoD.

D. SoSs architecture and design challenges
Several challenges related to the architecture and the design

of SoSs are identified:
• Dynamic adaptation: SoS/CSs dynamicity is a major

complexity in the run-time of a SoS and it may be caused
by many reasons.

• Self-organization: It forms the collaboration between the
CSs which adapt their internal structure in response to
external circumstances.

• Anticipation needs: For an effective performance, we
need reliable new design and modelling approaches
which can be formulated only on the basis of accurate
forecasts.

• Emergence: It is impossible to understand SoS without
thinking that simple CSs in one way or another will give
complex behaviours.

E. Implementation challenges
Here we will review some of the most important SoS

implementation challenges:
• Environment changes: CSs should not be parts of the

SoS but a change in any of them can produce a change
in the state of SoS [20].

• Test and evaluation: Full SoS level testing can be costly
and it can be very difficult to create test environments that
realistically represent the expected results [19] [21].

• Verification and Validation: Verification when applied
to the SoS, have issues creating an agreement on the
standard. Validation recognizes the essentially subjective
nature of the evolutionary goals.

F. Synthesis
SoSE considered as a set of developing process, tools, and

methods for designing, re-designing and deploying SoSs, has

new characteristics and challenges that particularly distinguish
them from other systems in several aspects, by requiring:
a high degree of strength of SoSs inherent characteristics,
a need for certain QA and other derived characteristics to
meet certain non-functional requirements, a need for efficiency
and cost-effective architecture and design, especially for SoS
dynamicity and evolution, and also a need to introduce a
new implementation solution taking into account other related
challenges.

These two last requirements are what prompted the software
engineering community to explore the need for a compre-
hensive methodology to analyze, design and build in the
engineering process of LSS. Indeed, their complexity lends
itself nicely to a model-centric approach, especially a model
that can represent the independence of the CSs that comprise
the SoS.

Thus, MBSE constitutes a promising approach as it provides
communication and verification that transcends the levels of
development. It uses a set of models to document and commu-
nicate from the requirements level down to the implementation
level. The models are connected and dependent on each other
so that, changes in one model automatically require the update
of the set of models.

IV. STATE OF RESEARCH IN MODELLING SOSS

We present in this section a review and analysis of the mod-
elling approaches that address SoS architectural modelling.
Within the area of academic modelling and simulation, several
studies have been carried out in the context of modelling SoSs.
We classify the approaches found in the literature into seven
main classes: MDA, MD, SOA, Ontology, ADL, Bigraph and
Hybrid.



A. (Model-Driven Architecture) MDA-based approaches
MDA-1. The aim of [22] was to define an abstract view

with all the possible information in the configuration and de-
ployment processes. A meta-model which represents a number
of possible configurations was also produced.

MDA-2. The authors of [23] have adopted a MDE approach
to define a DSML that was used to model SoS security
architectures.

MDA-3. The authors of [24] have defined a SoS profile
that extends on the SysML reference meta-model with specific
language constructs. They have also introduced an extension
of this work in [25].

MDA-4. In our previous paper [26] we have provided a
MDA method that simplifies SoSs complexity by increasing
their abstraction level.

B. (Model-Driven) MD-based approaches
MD-1. Authors of [27] have proposed a formalism for re-

lating basics SoS concepts by means of a UML class diagram.
They have identified a set of basic concepts to describe a
modelling approach for distributed collaborative SoSs.

MD-2. The goal of [28] was to show how SysML models
can be used to support a set of needs that are essential for a
SoS.

MD-3. In [29], the authors have investigated through a case
study in the construction domain the interplay between SoS
and CS architectures.

MD-4. The paper [30] has provided an approach to support
design activities in the SoS development process.

C. (Services-Oriented Architecture) SOA-based approaches
SOA-1. The authors of [31] have proposed an approach to

assist the SE community during the integration among CSs of
a SoS and to use as a basis for the composition of Directed
SoS.

SOA-2. The authors of [32] , have proposed a service-based
architecture, which they named MV-SoSA, that serves as a
basis when composing new Mixed-type SoSs.

SOA-3. The authors of [33] have realized a modular recon-
figurable SoS based on a platform of reusable distributed CSs
integrated within a SOA.

D. Ontology-based approaches
Ont-1. The authors of [34], have described a SE method-

ology using a UML-like representation of SoS. UML has
assisted the authors to develop the required elements of SoS
ontologies.

Ont-2. The aim of this paper [35], was to provide a method
for approaching the first two levels “Needs and boundary
conditions” and “SoS Capabilities” of the SoS-process and
generating a SoS design space using ontology.

Ont-3. The authors [36] have proposed an approach to build
a SoS conceptual model and a foundational ontology adapted
from DOLCE to depict SoS interoperability context [37].

Ont-4. The authors of [38] have proposed a SoS cyber
effects ontology that outlines the requirements for a series of
ontologies necessary to model the SoS effects of cyber-attacks.

E. (Architecture Description Language) ADL-based ap-
proaches

ADL-1. This approach [39] suggests a Maude-based formal
and executable model where communications and relationships
architecture are well defined.

ADL-2a. The authors of [40] have presented SosADL,
an ADL based on a π-Calculus with Concurrent Constraints
specially designed for describing SoS architectures.

ADL-2b. The extended work [41] enables the description of
evolutionary architectures, which maintain emergent behaviour
supporting dynamic reconfigurations.

ADL-2c. And in [42], they have focused on the description
of SoS architecture to support automated verification.

F. Bigraph-based approaches
Big-1. In [43], the authors have proposed a novel method-

ology based on the formal technique of BRS with an inspiring
vision from multi-scale modelling.

Big-2. The authors of [44] and [45] have demonstrated
how bigraph-based approaches can engage with SoS through
abstract relationships that allow for dynamic interaction.

Big-3. In [46], the authors have presented a tool for bigraph
matching and transformation. They have implemented a solu-
tion based on an investigation of formal approach reaction
rules that have been used to rewrite bigraphs for modelling
and simulation of SoS.

G. Hybrid approaches
Hyb-1. In [47] where the authors have exploited different

models and in particular executable models from SysML
specifications.

Hyb-2. This work [48] has focused on developing a concep-
tual meta-model called M2SoS that represents SoS ontologies.

Hyb-3. The authors of [49] have presented a hybrid mod-
elling method based on service-oriented and ontology-based
modelling.

Hyb-4. The authors of [50], have presented a MDA for
service-oriented SoS architecting, modelling and simulation.

Hyb-5. The authors of [51], have used a hybrid approach
with both Colored Petri Nets and Object Process Method
modelling languages to create executable architecture models
for SoSs.

H. Comparison
It is important in this regard to review and compare the

previously mentioned studies and see to what extent they
can encourage better consideration of the SoSs top-down
development and conduct their different engineering processes
(see Table III). Therefore, various processes are involved in
the development lifecycle of SoSs. The processes refer to
activities that can guide SoSs development from the system
requirements level down to the software implementation level,
and naturally, by coordinating the various processes for the
development of a project.

In fact, SoSE adopts a structured, main three-process engi-
neering to develop projects from Analysis through Implemen-
tation that permits releasing an efficiently finished SoS that



TABLE III
CHARACTERISTIC TABLE OF THE STUDIED APPROACHES.

Ref/Pub Formalism /
language

Static modelling Dynamic modelling Integ /
deploy

Application
domainEnti-

ties
Media-

tors
Organi-
zation

Evol-
ution

Intera-
ctions

Beha-
viour

Reconf
iguration

MDA-1: 2012 MDA CS,S ports - - 1 -/+ - -/+

MDA-2: 2016 MDA CS,G ports - - - - - - Smart Campus

MDA-3: 2016 SysML Profile CS,G interface - -/+ 1 -/+ -/+ - Smart Grid

MDA-4: 2020 MDA CS,R,G,C roles hierarchy - 1 to 5 - - - Aircraft Emergency

MD-1: 2012 UML CS,R,S,G ports composition -/+ 1,2,3 -/+ -/+ -/+ Fire Fighting

MD-2: 2012 SySML C,S Interface - + 1 -/+ - - Crisis Response

MD-3: 2019 UML C,M -/+ hierarchy - 1 - - industry 4.0

MD-4: 2018 SysML CS ,R,M - - - 3,4 - - - Crowd Management

SOA-1: 2018 SOA CS,S,G interface - -/+ 1 -/+ - -/+

SOA-2: 2016 SOA CS,R,S interface - - 1 -/+ -

SOA-3: 2013 PDE services - - -/+ -/+ - - Residential sector

Ont-1: 2006 UML CS,M,SC -/+ - - 1 - - -/+ Maritime Protection

Ont-2: 2019 OWL CS,C - -/+ - 1 - - - Search and Rescue

Ont-3: 2014 ODPs CS - - - 1 - - - Traffic Management

Ont-4: 2015 CS - -/+ - 1 - - - Defense

ADL-1: 2018 Maude CS,R -/+ hierarchy -/+ 1,3 -/+ Maritime Transport

ADL-2a: 2016 π-calculus CS -/+ - -/+ 1 -/+ -/+ - Flood Monitoring
and Emergency
ResponseADL-2b: 2016 π-calculus CS -/+ - -/+ 1 + -/+ -

ADL-2c: 2016 π-calculus CS -/+ - + 1 -/+ -/+ -

Big-1: 2017 CS - - 1 - + - Smart Buildings

Big-2: 2014 CS ports - - 1 + - - e-learning manag

Big-3: 2017 BRS CS ports -/+ - 1 + - - Cargo Information

Hyb-1: 2017 SysML+CPN -/+ -/+ -/+ -/+ 1 -/+ -/+ Observation

Hyb-2: 2018 MDA+Onto CS,G,C,S -/+ -/+ - 1,2 -/+ - -/+ Mass Casualty Incid

Hyb-3: 2012 SOA+Onto CS, C, S - -/+ - 1 - - - Military

Hyb-4: 2014 MDA+SOA+DEVS CS,C,S,M Services composition - 1 - - - Airport

Hyb-5: 2015 CPN+OPN CS,C - - - 1 + - -/+ FILA
+ : aspect taken into account; +/- : relatively considered aspect; - : aspect not taken into account; CS: Constituent-System; R: Role; C: Capability;

S: Service; G: Goal; M: Mission; 1:SoS-CS relationship; 2:globalGoal-subGoal relationship; 3:Role-Role relationship;
4:Capability-Role relationship; 5:Role-Goal relationship.

satisfies stakeholders and performs as required. In this section,
we present a comparative study according to the main three
SoSE processes as follow:

• Conceptual Analysis: addresses high-Level SoS
Requirements, distinguishes relationships and analyses
mission capability assessment.

• Architectural Design: refers to both static (Entities,
Mediators and Organization) and dynamic (Evolution,
Interactions, Behaviour and Reconfiguration)
architectural aspects.

• Integration and Implementation: investigate the Inte-
gration, configuration and deployment of SoS.

I. Synthesis

Several attempts to deal with the SoSE process and design
the SoS architectural description have been published over the
years, in order to establish a generic and reusable solution
for elaborating SoSs architectures and verify their properties.
The majority of the approaches have some advantages and
disadvantages .i.e. all of them are only limited to dealing
with some SoS concepts, not to mention a complete SoSE
process or the overall SoSE processes. To the best of our
knowledge, almost all the cited approaches do not offer
support to deal with the Conceptual Analysis process of SoS
system. Namely, by taking into account the high-Level SoS
requirements, Understanding the CSs and their relationships
and interdependencies, effective mission capability, etc.



About the last two remaining operations, the comparison
study examines different techniques that can be applied to
SoSs design and implementation approaches. These techniques
come from a wide range of backgrounds, ranging from SoSs
aspects and principles to formal methods, conceptual models,
hybrid methods, etc. These techniques face a number of
different challenges:

• Some focus on describing the SoS as a whole, addressing
structural organizations, ignoring how the CSs interoperate.

• Some handle complexity with numerous heterogeneous
CSs and interactions in terms of interfaces or services.

• Others express the SoS at different levels of abstraction
which is broad enough to cover the different aspects of SoS.

• And in the same context, other techniques express the SoS
at different levels of abstraction and provide links between
these levels.

• More still target the reasoning focusing less on detecting
CSs behaviour and more on how the goals and requirements
change at runtime.

• Clarify how viewpoints can express different parts of SoS
characteristics and map these viewpoints to each other.

• Others determine how the combination of some techniques
can be used to improve the specification and analysis of the
static and dynamic aspects of SoS.

V. ENHANCED APPROACH FOR MODEL-BASED
SOS ENGINEERING

SoS development does not follow the normal system devel-
opment process. SoS capability is based on the contributions of
the individual CSs. This interdependence between the SoS and
the CSs makes a document-centric development impractical
as an exorbitant effort is required to maintain [52]. In such
a complex scenario, three important activities are involved in
the SoS development process (see Fig. 2):

• Conceptual design and CSs selection.
• Architectural design.
• Integration and deployment.
In this section, we take a first step towards achieving a

unified MBSE methodology, allowing decision-makers to de-
sign informed architectural solutions for the SoSs challenges.
In a SoS, the systems contributing to the SoS objectives are
typically in place when the SoS is established, and the SoS
systems engineer needs to consider the current state and plans
of the individual systems as important factors in developing
an architecture for the SoS.

We aim to solve some of the aforementioned issues and
challenges by giving a set of models to document and commu-
nicate from the system requirements level down to the software
implementation level. At each stage of the SoSE process (see
Fig. 2), we propose a set of specific models that are connected

Fig. 2. SoS Engineering process.

and dependent on each other so that changes in one model
automatically require the update of the set of models. This
interdependence among the models provides the extra level of
verification.

A. Conceptual Analysis

In the context of our ongoing work, we have envisaged
that the conceptual analysis requires an advanced methodology
that solves the analysis-related problems and at the same time
bridges the gap between SoS level requirements engineering
and SoS architectural design.

In [26], we have introduced the first step forward toward
MBSE methodology via an MDA technique. We have only
targeted the SoS architectural analysis phase where a method
to obtain a high-level designing and reasoning of SoS analysis
has been defined. We have presented in this part the MeM-
SoS(Fig. 3), an abstract meta-model to deduce models that
allow the graphical and ambiguous specification.

This abstract and generic meta-model defines a logical
structure of all elements involved in any SoS (for example:
CSs, Roles, Capabilities, Goals, etc.), and permits to describe
all the SoS features at a same high-level of abstraction (for
example: components’ Hierarchical and Goals organizations,
CSs, relationships, Roles interactions, CSs interdependencies,
etc.).

Thereby, in the SoSE context, we have found that the
MDA methodology can be leveraged to distinguish SoSs
elements, analyzing the conceptions they refer to and abstract
their conceptual analysis-related problems, and with the end
of this work, the adoption of Meta-Modelling techniques to
design SoSs architectures was an intrinsic step in the MDA
approach providing a common, unambiguous, structured and
accurate SoS architectural analysis that will help different SoSs



stakeholders to understand a certain degree of SoS challenges
and its potential solutions at the architectural design activity
in both further research and prototype development.

Fig. 3. An extract of MeMSoS.

B. Architectural Design

According to the study of various previous works, the
concept of a design pattern, as a set of proven solutions to
a recurring problem within a context, has not yet been ad-
dressed. Reusing patterns, combined with the deduced models
of the first step, therefore, yields better-quality software within
reduced time frames.

To this end, we propose to apply a design pattern-based
methodology as an architectural framework for modelling
SoSs in a modular way. Therefore, organizational patterns
are developed to increase the value of specific organizational
principles and structures for certain classes of software. In this
context, a design pattern formalizes knowledge and experience
in the SoSE area. Its primary purpose is to simplify SoS soft-
ware architecture design and reuse, capturing and exploiting
the knowledge used to design a SoS.

The design patterns-based approach seems the most suitable
to meet SoSs different challenges and to model both structural
and behavioral aspects of SoSs. Structurally, the goal is to
design a general structural pattern that allows defining the
architectural elements of a SoS, their CSs, spatial distribution
and interactions between its different components. Dynami-
cally, it will show via a modular architecture its ability to
model the dynamic aspects of SoSs, in particular, the auto-
adaptive behaviors of CSs and their evolutionary development.

C. Integration and Deployment

Integration, configuration and deployment of SoS is often a
complex task because this system is always distributed on dif-
ferent geographic areas, composed of hundreds of components,
running under multiple hardware constraints, on different
resources, and subject to mission-critical requirements. In this
step, we plan to offer a complete tool support implementation
platform dedicated to design static and dynamic architectures.

This platform will allow presenting the result of integrating
the hybrid modelling approaches and to validate them by
presenting a complete formal environment for modelling SoSs
and verifying their behavior.

As a result, it will open a window to several formal
specification and verification formalisms in order to provide
generic models that will be dedicated to automatically run and
formally check the SoS models. This will offer more formal
verification of various related properties and avoid ambiguities
limiting their correct usage in application support tools.

VI. CONCLUSION

This paper aimed to provide a state of the art of work carried
out on the modelling of different aspects in SoSs. We first
discussed the definition of SoSs, their main characteristics,
prevalent types, practical applications and some common SoSs
challenges.

We conducted a literature review based on a set of research
studies in the domain of SoSE and the contribution of each
concerning the main SoSE processes. These studies agree on
the fact that the development of such systems must allow joint
engineering of SoS specifications and must take into account
the most development-related challenges. However, and as
it was expected to make an important impact on our future
research works, there are still several key points to clarify and
formalize which allow us to position our incoming path.

While keeping in mind that our work is generalist, modular
and reusable. This study allowed us, on the one hand, to better
understand the difficulties linked to the modelling of SoSs,
and on the other hand, to choose the methodology of MBSE
which seems to us to be the best suited to the description
of such systems allowing decision-makers to design informed
architectural solutions for the most SoSs challenges.

REFERENCES

[1] Leading Edge magazine, Naval Surface Warfare Center, Dahlgren Divi-
sion, Dahlgren,Virginia, Feb.2013

[2] Kotov, V. (1997). Systems of systems as communicating structures (Vol.
119). HP Labs.

[3] Maier, M. W. (1998). Architecting principles for systems-of-systems.
Systems Engineering: The Journal of the International Council on
Systems Engineering, 1(4), 267-284.

[4] Dahmann, J. S., & Baldwin, K. J. (2008, April). Understanding the
current state of US defense systems of systems and the implications for
systems engineering. In 2008 2nd Annual IEEE Systems Conference
(pp. 1-7). IEEE.

[5] Harvey, C., & Stanton, N. A. (2014). Safety in System-of-Systems: Ten
key challenges. Safety science, 70, 358-366.

[6] Chin, K. S., Yau, P. E., Wah, S. K., & Khiang, P. C. (2013). Framework
for managing System-of-systems ilities. DSTA HORIZONS, 14.



[7] Ncube, C., & Lim, S. L. (2018, August). On systems of systems engi-
neering: A Requirements engineering perspective and research agenda.
In 2018 IEEE 26th International Requirements Engineering Conference
(RE) (pp. 112-123). IEEE.

[8] Assaad, M. A., Talj, R., & Charara, A. (2016, July). A view on Systems
of Systems (SoS).

[9] Thesis: Support à la conception architecturale de systèmes-de- systèmes
reconnus à logiciel prépondérant

[10] Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on
concepts, applications, and challenges in cyber-physical systems. KSII
Transactions on Internet & Information Systems.

[11] DeLaurentis, D. (2005, January). Understanding transportation as a
system-of-systems design problem. In 43rd AIAA Aerospace Sciences
Meeting and Exhibit (p. 123).

[12] Nielsen, C. B., Larsen, P. G., Fitzgerald, J., Woodcock, J., & Peleska,
J. (2015). Systems of systems engineering: basic concepts, model-based
techniques, and research directions. ACM Computing Surveys (CSUR),
48(2), 1-41.

[13] Jamshidi, M. O. (2008). System of systems engineering-New challenges
for the 21st century. IEEE Aerospace and Electronic Systems Magazine.

[14] Aljohani, T. M. (2018). Analysis of the Smart Grid as a System of
Systems. arXiv preprint arXiv:1810.11453.

[15] Wickramasinghe, N., Chalasani, S., Boppana, R. V., & Madni, A. M.
(2007, April). Healthcare system of systems. In 2007 IEEE International
Conference on System of Systems Engineering (pp. 1-6). IEEE.

[16] Lane, J. A., & Epstein, D. (2013). What is a System of Systems and
why should I care?. University of Southern California.

[17] Dahmann, J. (2015). Systems of systems characterization and types.
NATO Lecture Series on Systems of Systems Engineering, 1-14.

[18] Cavalcante, E., Cacho, N., Lopes, F., Batista, T., & Oquendo, F. (2016,
December). Thinking smart cities as systems-of-systems: A perspective
study. In Proceedings of the 2nd International Workshop on Smart (pp.
1-4).

[19] Dahmann, J. (2014, July). 1.4. 3 system of systems pain points. In
INCOSE International Symposium (Vol. 24, No. 1, pp. 108-121).

[20] Ackoff, R. L. (1971). Towards a system of systems concepts. Manage-
ment science, 17(11), 661-671.

[21] Dahmann, J., Lane, J. A., Rebovich, G., & Lowry, R. (2010, June). Sys-
tems of systems test and evaluation challenges. In 2010 5th International
Conference on System of Systems Engineering (pp. 1-6). IEEE.

[22] Barbi, E., Cantone, G., Falessi, D., Morciano, F., Rizzuto, M., Sabbatino,
V., & Scarrone, S. (2012). A model-driven approach for configuring and
deploying systems of systems. 2012 7th International Conference on
System of Systems Engineering (SoSE).

[23] El Hachem, J., Pang, Z. Y., Chiprianov, V., Babar, A., & Aniorte,
P. (2016). Model driven software security architecture of systems-
of-systems. 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC).

[24] Mori, M., Ceccarelli, A., Lollini, P., Bondavalli, A., & Fromel, B. (2016).
A holistic viewpoint-based SysML profile to design systems-of-systems.
2016 IEEE 17th International Symposium on High Assurance Systems
Engineering (HASE). https://doi.org/10.1109/hase.2016.21

[25] Mori, M., Ceccarelli, A., Lollini, P., Frömel, B., Brancati, F., & Bon-
davalli, A. (2017). Systems-of-systems modelling using a comprehensive
viewpoint-based SysML profile. Journal of Software: Evolution and
Process, 30(3), e1878.

[26] Dridi, C. E., Benzadri, Z., & Belala, F (2020, June). System of
Systems Engineering: Meta-Modelling Perspective. In 2020 IEEE 15th
International Conference of System of Systems Engineering (SoSE).
IEEE.

[27] Gezgin, T., Etzien, C., Henkler, S., & Rettberg, A. (2012). Towards a
rigorous modelling formalism for systems of systems. 2012 IEEE 15th
International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops.

[28] Lane, J. A., & Bohn, T. (2012). Using SysML modelling to understand
and evolve systems of systems. Systems Engineering, 16(1), 87-98.

[29] Axelsson, J., Fröberg, J., & Eriksson, P. (2019). Architecting systems-
of-systems and their constituents: A case study applying industry 4.0 in
the construction domain. Systems Engineering.

[30] Cherfa, I., Sadou, S., Belloir, N., Fleurquin, R., & Bennouar, D. (2018).
Involving the application domain expert in the construction of systems
of systems. 2018 13th Annual Conference on System of Systems
Engineering (SoSE).

[31] Vargas, I. G., Gottardi, T., & Braga, R. T. (2018). An approach to
integrate systems towards a directed system-of-systems. Proceedings of
the 12th European Conference on Software Architecture Companion
Proceedings - ECSA ’18.

[32] Braga, R. T. V., Vargas, I. G., & Gottardi, T. (2016). A service-based
architecture for virtual and collaborative system of systems. In Anais.
Porto Alegre, RS: SBC.

[33] Kaur, N., McLeod, C., Jain, A., Harrisson, R., Ahmad, B., Colombo, A.,
et al. (2013). Design andsimulation of a SOA-based system of systems
for automation in the residential sector. IEEE.

[34] J. Osmundson, T. Huynh, and P. Shaw, ”Developing Ontologies for
Interoperability of Systems of Systems”,SOSECE, 2006

[35] Knöös Franzén, L., Staack, I., Jouannet, C., and Krus, P., “An Onto-
logical Approach to System of Systems Engineering inProduct Devel-
opment,”in proceedings of the 10th Aerospace Technology Congress,
Swedish Society of Aeronautics andAstronautics, Stockholm, 2019, pp.
35–44

[36] H. Benali, N. B. B. Saoud, and M. B. Ahmed, “Context-basedontology
to describe system-of-systems interoperability,” in2014 IEEE/ACS
11th International Conference on ComputerSystems and Applications
(AICCSA). IEEE, 2014, pp. 64–71.

[37] Yang, L., Cormican, K., & Yu, M. (2019). Ontology-based systems
engineering: A state-of-the-art review. Computers in Industry, 111, 148-
171.

[38] Ormrod, D., Turnbull, B., & O’Sullivan, K. (2015, December). System
of systems cyber effects simulation ontology. In 2015 Winter Simulation
Conference (WSC) (pp. 2475-2486). IEEE.

[39] Seghiri, A., Belala, F., Benzadri, Z., & Hameurlain, N. (2018). A Maude
based specification for sos architecture. 2018 13th Annual Conference
on System of Systems Engineering (SoSE).

[40] Oquendo, F. (2016). Formally describing the software architecture
of systems-of-systems with SosADL. 2016 11th System of Systems
Engineering Conference (SoSE).

[41] Oquendo, F. (2016). Formally describing the architectural behavior of
software-intensive systems-of-systems with SosADL. 2016 21st Inter-
national Conference on Engineering of Complex Computer Systems
(ICECCS).

[42] Oquendo, F. (2016). π-calculus for sos: A foundation for formally
describing software-intensive systems-of-systems. 2016 11th System of
Systems Engineering Conference (SoSE).

[43] Gassara, A., Bouassida Rodriguez, I., Jmaiel, M., & Drira, K. (2017). A
bigraphical multi-scale modelling methodology for system of systems.
Computers & Electrical Engineering, 58, 113-125.

[44] Stary, C., & Wachholder, D. (2016). System-of-systems support—A
bigraph approach to interoperability and emergent behavior. Data &
Knowledge Engineering, 105, 155-172.

[45] Wachholder, D., & Stary, C. (2014). Bigraph-ensured interoperability for
system(-of-Systems) emergence. On the Move to Meaningful Internet
Systems: OTM 2014 Workshops, 241-254.

[46] Gassara, A., Bouassida, I., & Jmaiel, M. (2017, April). A tool for mod-
elling sos architectures using bigraphs. In Proceedings of the Symposium
on Applied Computing (pp. 1787-1792).

[47] Rao, M., Ramakrishnan, S., & Dagli, C. (2008). modelling and sim-
ulation of net centric system of systems using systems modelling
language and colored petri-nets: A demonstration using the global earth
observation system of systems. Systems Engineering, 11(3), 203-220.

[48] Baek, Y., Song, J., Shin, Y., Park, S., & Bae, D. (2018). A meta-
model for representing system-of-systems ontologies. Proceedings of
the 6th International Workshop on Software Engineering for Systems-
of-Systems - SESoS ’18.

[49] Zhang, Y., Liu, X., Wang, Z., & Chen, L. (2012). A Service-Oriented
Method for System-of-Systems Requirements Analysis and Architecture
Design. JSW, 7(2), 358-365.

[50] Hu, J., Huang, L., Chang, X., & Cao, B. (2014, March). A model driven
service engineering approach to system of systems.In 2014 International
Systems Conference Proceedings IEEE.

[51] Wang, R., Agarwal, S., & Dagli, C. H. (2015, April). OPM & color
petri nets based executable system of systems architecting: A building
block in FILA-SoS. In 2015 Annual IEEE Systems Conference (SysCon)
Proceedings (pp. 554-561). IEEE.

[52] Dod, U. (2008). Systems engineering guide for systems of systems.
Washington, DC, US Department of Defense, Office of the Deputy
Under Secretary of Defense for Acquisition and Technology.


