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Abstract— The need for self-healing software to respond with updates and extensions) the adaptation mechanisms without

a reactive, proactive or preventative action as a result ofltanges  affecting the execution and deployment of the target system
in its environment has added the non-functional requiremen [7]

of adaptation to the list of facilities expected in self-maaging . . .
systems. The adaptations we are concerned with assist with With any system there is a spectrum of adaptations that

problem detection, diagnosis and remediation. Many existig Can be perform_ed. Framework_s_ like KX perform coarse-
computing systems do not include such adaptation mechanisn grained adaptations e.g. re-writing configuration files and

as a result these systems either need to be re-designed tolinte  restarting/terminating operating system processes. itnph-
them or there needs to be a mechanism for retro-fitting these per, we focus on fine-grained adaptations, those integactin

mechanisms. The purpose of the adaptation mechanisms is to ith individual t b t thod
ease the job of the system administrator with respect to marging with “individual. components, sub-systems or methods €.g.

software systems. This paper introduces Kheiron, a framewt ~ restarting/refreshing individual components or subesys, or

for facilitating adaptations in running programs in a variety of augmenting methods.

execution environments without requiring the re-design ofthe Whereas the retro-fit approach is attractive because it does
application. Kheiron manipulates compiled C programs runnng ot require a re-design of the system and it is possible ta-sep

in an unmanaged execution environment as well as programs . .
running in Microsofts Common Language Runtime and Sun rately evolve the target system and the adaptation meahanis

Microsystems’ Java Virtual Machine. We present case-stugis It iS not always easy to achieve. A major challenge is that of

and experiments that demonstrate the feasibility of using keiron  actually retro-fitting fine-grained adaptation mechanisms

to support self-healing systems. We also describe the copte and  onto existing/legacy systents

techniques used to retro-fit adaptations onto existing sysms in Managing the performance impact of the mechanisms

the various execution environments. used to effect fine-grained adaptations in the running syste

. INTRODUCTION presents an additional challenge. Since we are interacting

. I with individual methods or components we must be cognizant
System adaptatpn has been highlighted as a necesg ¥he performance impact of effecting the adaptations e.g.

feature of autonomic software systems [1]. In the reaim serting instrumentation into individual methods maywslo

sel_f—healing software we are concgrned. primarlily with adaBown the system; but being able to selectively add/remove
tations that effect_problem dlagn05|§ —via cqn&stenc;cld;le instrumentation allows the performance impact to be tuned
or ghost transaction's— and remediation — in the form Ofthroughout the system’s execution

reconflguratlon or repair. In many situations adaptatlomlslm This paper is primarily concerned with addressing the

oceur \./vh|I.e. the sy;tem exggutes S0 as to maintain some deq{ﬁgllenges of retro-fitting fine-grained adaptation medmsa
of availability. Having a critical software system operatea

d ded de i ferabl Ki h o onto existing software systems and managing the perforenanc
egraded mode s preferable 1o taking t e_syste_m OfTiNe ; pacts associated with retro-fitting these adaptationhaec
per_fqr_m scheduled (or unscheduled) reconfiguration orirepRic s In this paper we posit that we can leverage the the
aCtS'V't'eS [Zc]j' [:.3]' h | . hen i unmodified execution environment to transparently feat#it
_ys_tem esigners have two alternatives w en it cpmestﬁ% adaptations of existing/legacy systems. We descritee th
realizing software systems capable of adaptation. Adiaptat

hani be built i h d : tEe/stems we have developed for this purpd€eeiron/C ma-
mechanisms can be built into the system — as done in FTJuIates running compiled C programs on the Linux platform

K42 operating system [4] — or such functionality can bRheiron/CLR manipulates running .NET applications and

retro-fitted or]t% therg us'ﬂ.ﬁ’ externalized arcfgtecturge f“ finally Kheiron/JVM manipulates running Java applications.
KX [5] or Rainbow [6]. While arguments can be made for o contribution is the ability to transparently retro-fiva

either approach, the retrofit approach provides more flétyibi functionality (for the purpose of diagnosing problems and

Baked-in _adaptatlon_ mechanlsms_re_zstn_ct_ the analys_ld aPesolving problems where possible) onto existing software
reuse of said mechanisms. Further, it is difficult to evolia (

2For purposes of discussion we define a legacy system as atgnsjer
1A ghost transaction is a special form of a self-test/diagnéargeting a which the source code may not be available or for which it idasirable to
specific subset of subsystems or components. engage in substantial re-design and development.



systems. The techniques used to facilitate the retro-filbéixh as crash-only components supporting APIs for recovery and
negligible performance overheads on the running systems. $hutdown as proposed in [11].
nally, our techniques address effecting adaptations irriatya  There are a number of specific fine-grained adaptations
of contemporary execution environments. New functiogalitthat can be retro-fitted onto existing systems to aid problem
packaged in separate modules, collectively referred tonas @etection, diagnosis and in some cases remediation via per-
adaptation engingis loaded by Kheiron. At runtime, Kheironforming reconfigurations or (temporary) repairs. In thipga
can transfer control over to the adaptation engine, whiete describe how our Kheiron implementations can be used
effects the desired adaptations in the running application to facilitate a number of fine-grained adaptations in rugnin
The remainder of the paper is organized as follojllsmo-  systems via leveraging facilities and properties of thecaiien
tivates retro-fitting fine-grained adaptation mechanismi® o environments hosting these systems.
existing systems and presents a number of specific adaptatio These adaptations include (but are not limited bo3erting
and their potential benefit§llI-A gives a working definition or removing system instrumentation[12] to discover perfor-
of an execution environment and describes two classes ndince bottlenecks in the application or detect (and whese po
execution environments managedand unmanaged§llI-B  sible repair) data-structure corruption. The ability toncee
outlines some challenges associated with performing adagnstrumentation can decrease the performance impact on the
tions at the execution environment levglV describes the system associated with collecting informatidPeriodic re-
mechanisms and concepts used to adapt running bytecdtieshing of data-structures, components and subsystems done
based applications, using our Kheiron/JVM implementatidising micro-reboots, which could be performed at a fine gran-
and its performance overhead. Kheiron/CLR, our first adaplarity e.g., restarting individual components or subteyss,
tation framework, targets Microsoft Intermediate Languagdr at a coarse granularity e.g., restarting entire prosgsss-
(MSIL) bytecode applications and is discussed in [8], [9pdically. Replacingfailed, unavailable or suspect components
[10]. §V compares and contrasts runtime adaptation in @md subsystems (where possible) [1@jput filtering/audit
unmanaged execution environment with runtime adaptationtp detect misused APl4nitiating ghost transactions against
a managed execution environment. We also present Kheirorsdect components or subsystems and collecting the results
and discuss some experimental results of the performaret#ain more details about a probleSelective emulation of
impact imposed on target systems &WiE describes a special functions — effectively running portions of computation in an
case of adaptation — dynamically adding fault detection asginulator, rather than on the raw hardware to detect errats an
recovery to running compiled C programs via selectivelgrevent them from crashing the application.
emulating individual function§VI covers related work and m

. : . BACKGROUND
finally §VII presents our conclusions and future work.

A. Execution Environments

I1. MOTIVATION At a bare minimum, an execution environmentis responsible
for the preparation of distinguished entitiesexecutables-

The ability to adapt is critical for self-healing system$. [1 such that they can be run. Preparation, in this context vegl
However, not every system is designed or constructed with gle loading and laying out in memory of an executable. The
the adaptation mechanisms it will ever need. As a resultgthagevel of sophistication, in terms of services provided bg th
needs to some way to enable existing applications to inttediexecution environment beyond loading, depends largelyen t
and employ new self-healing mechanisms. As a hypothetiegpe of executable.
example, consider an existing computer system which period We distinguish between two types of executablemn-
ically raises questions about its stability — evidenced bgru aged and unmanagecexecutables, each of which require or
complaints concerning lost work and system unavailability make use of different services provided by the execution

A system administrator may decide to adapt the system bgvironment. A managed executable, e.g. a Java bytecode
injecting instrumentation into specific sub-systems tdhfeir program, runs in ananaged execution environmesuch as
investigate the problem. Information collected via theeitsd Sun Microsystems’ JVM whereas an unmanaged executable,
instrumentation is then routed to separate analysis coergen e.g. a compiled C program, runs in anmanaged execution
and/or visualization consoles. Analysis and visualizateads environmentwhich consists of the operating system and the
to the diagnosis hypothesis that identifies (with high prolmnderlying processor. Both types of executables consist of
ability) specific conditions of increasing resource densandhetadata and code. However the main differences are the
as the primary contributing factors. A possible post-asialy amount and specificity of the metadata present and the repre-
adaptation would be the insertion of specific monitoringecodsentation of the instructions to be executed.
to detect similar conditions coupled with the insertion of Managed executables/applications are represented in an
mechanisms, which when triggered by the monitoring codabstract intermediate form expected by the managed execu-
intercept and queue requests to specific sub-systems vihiletion environment. This abstract intermediate form cossidt
multaneously restarting these sub-systems to force tlkagel two main elementsmetadataand managed codeMetadata
of key resources — analogous tondcro-reboot[11] except describes the structural aspects of the application itregud
there is no presumption that the sub-systems were desigietasses, their members and attributes, and their reldipsis



with other classes [13]. Managed code represents the fuapplicable, rather than higher level language constrddts

tionality of the application’s methods encoded in an alestradisconnect may limit the kinds of adaptations which can

binary format known ad®ytecode be performed and/or impact the mechanism used to inject
The metadata in unmanaged executables is not as richadsptations.

the metadata found in managed executables. Compiled C/C++

i bol inf i h " IV. ADAPTING MANAGED APPLICATIONS
programs may contain symbol information, however there . .
is neither a guarantee nor requirement that it be presentKhelron/JVM leverages facilities exposed by Sun Microsys

Finally, unmanaged executables contain instructions ¢hat tems’ v1.5 implementation of the JVM, the Java HotspotVM,

be directly executed on the underlying processor unlike th dynamically attach/detach an engine capable of perfugmi

bytecode found in managed executables, which must be %Qaptatlons. Examples of adaptations include: addinguinst

terpreted or Just-In-Time (JIT) compiled into native presm mentation and_ performl.ng consstency <_:hecks to. improve
instructions problem detection and diagnosis, performing reconfigonati

. . . . such as component replacements or component swaps, and
Managed execution environments differ substantially from P P P b

unmanaged execution environmént¥he major differenti- performing repairs (where possible) to a target Java atpdic

ation points are the metadata available in each executivt\nlpllle It executes.

context and the facilities exposed by the execution envirofd. Java HotspotVM Execution Model
ment for tracking program execution, receiving notificatio  The unit of execution (sometimes referred to as a module)
about important execution events including; thread coeati in the JVM is theclassfile Classfiles contain both the metadata
type definition loading and garbage collection. In manageshd bytecode of a Java application. Two major components of
execution environments built-in facilities also exist fang- the Java HotspotVM interact with the metadata and bytecode
menting program entities such as type definitions, methedntained in the classfile during execution, thessloadeiand
bodies and inter-module references whereas in unmanageeglglobal native-code optimizer
execution environments such facilities are not as wellrgefi The classloader reads the classfile metadata and creates an
in-memory representation and layout of the various classes
B. Challenges of Runtime Adaptation via the Execution Enyfrembers and methods on demand as each class is referenced.
ronment The global native-code optimizer uses the results of the

There are a number of properties of execution environmef§tgssloader and compiles the bytecode for a method inteenati
that make them attractive for effecting adaptations on ingmn assembly for the target platform. . _
systems. They represent the lowest level (short of the hard-The Java HotspotVM first runs the program using an in-
ware) at which changes could be made to a running progra@fPreter, while analyzing the code to detect the critical h
Some may expose (reasonably standardized) facilities (¢3§Ots in the program. Based on the statistics it gatheriseit t
profiling APIs [14], [15]) that allow the state of the pro(;Jranfocuses the attention of the global native-code optimirethe
to be queried and manipulated. Further, other facilitieg. (e N0tSPots to perform optimizations including JIT-compdat
metadata APIs [16]) may support the discovery, inspecti&ﬁ‘d method inlining [17]. Compiled methods remain cached
and manipulation of program elements e.g. type definitios memory, and subsequent method calls jump directly into
and structures. Finally, there may be mechanisms which d&¢ native (compiled) version of the method. .
be employed to alter to the execution of the running system. The v1.5 implementation of the Java HotspotVM introduces

However, the low-level nature of execution environmengs NeW API for inspecting and controlling the execution of
also makes effecting adaptations a risky (and potentiaf§Va applications — the Java Virtual Machine Tool Inter.face
arduous) exercise. Injecting and effecting adaptationstm@VYMTI) [15]. JVMTI replaces both the Java Virtual Machine
not corrupt the execution environment nor the system beifgefiler Interface (JVMPI) and the Java Virtual Machine
adapted. The execution environment's rules for what consgebug Interface (JVMDI) available in older releases. The
tutes a “valid” program must be respected while guarangeeilVMT! is @ two-way interface: clients of the JVMTI, often
consistency-preserving adaptations in the target softwgs- caIIe_(_j agents can receive notifications of execution eve_nts_ln
tem. Causing a crash in the execution environment typicafiyldition to being able to query and control the application
has the undesirable side-effect of crashing the targeiappl V12 functions enhgr_ in response to events or mdepen_de_nt of
tion and any other applications being hosted. events. J\(MTI no_tn‘lcatlon events include (but are not [edlit

At the level of the execution environment the programmind@): classfile loading, class loading, method entry/exit.
model used to specify adaptations may be quite dil‘feren_tThe _Java Hotspc_>t\_/_M does not have a built in API for ma-
from the one used to implement the original system. Fgllpulatmg typ_e definitions. As a result, t_o perform opmas
example, to effect changes via an execution environmengeth such as readmg .class and method attributes, parsing method
changes may have to be specified using assembly instructigfSCriPtors, defining new methods for types, emitting/itivg

(moves and jump statements), or bytecode instructionsavh&® Pytecode for method implementations, creating new type
references and defining new strings we were required to roll

3The JVM and CLR also differ considerably even though they taoth Ow own AP_IS based_ _On _information provided in the Java
managed execution environments. Virtual Machine Specification [18].



B. Kheiron/JVM Operation Step 2of type augmentation occurs immediately after the

Kheiron/JVM is implemented as a single dynamic linkegh@dow method has been added, while still in the Class-
library (DLL), which includes a JVMTI agent. It consists off Il€LoadHook JVMTI callback. Kheiron/JVM uses bytecode-
2658 lines of C++ code and is divided into four main comf€Writing techniques to convert the implementation of the
ponents. Th&xecution Monitor receives classfile load, classCrdinal method into a thinvrapper that calls the shadow
load and class prepare events from the JVM. Metadata Method, as shown in Figure 1, transition B to C.

Helper wraps our metadata import interface, which is used Kheiron/JVM’s wrappers and shadow methods facilitate the
to parse and read the classfile formaternal book-keeping adaptation of class instances. In particular, the regtiacture
structures store the results of metadata resolutions. Byee- and single return statement of the wrapper method, seed-igur
code and Metadata Transformerwraps our metadata emit2, enables Kheiron/JVM to easily inject adaptation ingions
interface to write new metadata, e.g., adding new methodsifigo the wrapper as prologues and/or epilogues to shadow
a type, adding references to other classes and methodsolt anethod calls.

generates, inserts and replaces bytecode in existing agetho

as directed by the Execution Monitor. Bytecode changes are sampleMethod( args ) [throws NullPointerException]

committed using the RedefineClasses function exposed by the <L‘;‘;{grf°£pf°'°9>

JVMTI. Active method invocations continue to use the old  call_SampleMethod( args ) [throws NullPointerException] ,
implementation of their method body while new invocations Eﬁgyégﬁ'i(ﬁaéﬂi‘,égxcept'o” toe){...} I Source view of _SampleMethod's body

use the latest version. return valuefvoid

Kheiron/JVM performs operations on type definitions, ob-
ject instances and methods at various stages in the executio
cycl_e to make t_hem capable of interacting W.'th an a_daptan_on_l_o add a prologue to a method new bytecode instructions
engine. In particular, to enable an adaptation engine to in-

. . ; must prefix the existing bytecode instructions. The level of
te“’?‘c.t .W'th a class instance, Kh“elron/J"VM augmelnts the tyBﬁ'ﬁculty is the same whether we perform the insertion in
definition to add the necessary “hooks”. Augmenting the tyqﬁe wrapper or the original method. Adding epilogues, how-
definition is a two-step operation. ' '

Step 1 occurs at classfile load time, signaled by thEver, presents more challenges. Intuitively, we want terins

ClassFileLoadHookJVMTI callback that precedes it. At thismstructlons before conf[rol leaves a method. In the S'”.‘p'e
point the VM has obtained the classfile data but has noroc @ method has a single return statement and the epilogue

. ; can be inserted right before that point. However, for method
yet constructed the in-memory representation of the class

Kheiron/JVM adds what we cafihadow methodtor each of with multiple return statements or exception handling irceg,

the original public and/or private methods. A shadow meth(%ri]dmg every possible return point can be an arduous tagk [19

shares most of the properties — including a subset of atésbu. sing wrappers thus deI|\_/er§ a clean_er approach since we can
i o . ignore all of the complexity in the original method.

e.g. exception specifications and the method descriptotheof C - ]

corresponding original method. However, a shadow method!© initiate an adaptation, Kheiron/JVM augments the wrap-

gets a unique name. Figure 1, transition A to B, shows &' to insert a jump into an adaptation engine at ¢baetrol
example of adding a shadow methdampleMethodfor the point(s)before and/or after a shadow method call. This allows
original methodSampleMethod an adaptation engine to be able to take control before and/or

Extending the metadata of a type by adding new methoger @ method executes. Effecting the jump into the adiaptat
must be done before the type definition is installed in tH9in€ is a three-step procesiiep 1 Extend the metadata
JVM. Once a type definition is installed, the JVM willof the classfile currently executing in the JVM suc_h that
reject the addition or removal of methods. Attempts to cafl 'eference to the classfile containing the adaptation en-
RedefineClasses will fail if new methods or fields are adde@n€ i added using ouMetaDataEmit::DefineTypeRef and

Similarly, changing method signatures, method modifiers Bl€taDataEmit::DefineNameAndTypeRefmethodsStep 2 ,
inheritance relationships is also not allowed. Add references to the subset of the adaptation engine’s

methods that we wish to insert calls to, usinlleta-
DataEmit::DefineMethodRef. Step 3 Augment the bytecode

Fig. 2. Conceptual Diagram of a Wrapper

A B C ; )
e and metadata of the wrapper function to insert bytecode
Shadon Gee  fovicote instructions to transf trol to the adaptati ive b
Shadow S ytecod instructions to transfer control to the adaptation engige
Buievoce Brtecode Body | | Seeote fore and/or after the existing bytecode that calls the siwado
body body cal body method. The adaptation engine can then perform any number
T of operations, such as inserting and removing instrumiemtat

/ /\ / > caching class instances, performing consistency checks ov

class instances and components, or reconfigurations age dia
SampleMethod SampleMethod | | _SampleMethod | | SampleMethod _samplevethod | NOStiCS of components. To persist the bytecode changes made
to the method bodies of the wrappers, the Execution Monitor
uses the RedefineClasses method of the JVMTI.

Fig. 1. Preparing and Creating a Shadow Method



C. High-level Kheiron/JVM interfaces the bar on the left shows the performance normalized to dne, o
To interact with Kheiron/JVM the most important Ap|sthe penchmark running without profiling enable_d. The bar.on
are: AddModuleToObserve which informs Kheiron/JVM to the right shows the normalized performance with our profiler
intercept the the JVMTI's ClassFileLoadHook event and pefhabled. _ _
form processing on the classfile for a named class. When thé?Ur measurements show that our profiler contribut@s6
class is loaded, any necessary shadow methods are creffggme overhead when no adaptations are active, which
via the PrepareShadowmethod. This API call also allows aWe consider negligible. Note that we do not ask the Java
user to specify whether shadow methods should be creafé@fSPOtVM to notify us on method entry/exit events since
for public, private and/or inherited methodaddPrologue this can result in a slow down in some cases in excess of

is used to specify the (wrapper) method of a named claR¥- If adaptations were actually being performed then. we
to be augmented. The typical augmentation is to insert€¥pect the overheads measured to depend on the specifics of

call to a method in another named class before the wrapjJa# adaptations.

method calls the shadow methodiddEpilogue is similar to

AddPrologue except that the augmentation inserts a call to Performance comparison - normalized to wio profiler - no
a method in another named class after the wrapper method repair active

calls the shadow method. AddPrologue and AddEpilogue use
the RedefineClasses method of the JVMTI and can be called

11
1.05

2
at anytime. If the method being augmented is currently on §§ L 98.60% 98.63%
the stack, existing clients continue to use the originasieer, 2% g5 W vithout profier
whereas subsequent method invocations use the new versior % g o9 0 with profiler
[15]. E2 085

5 0.8 .
D. Preliminary Results SciMark Linpack

Benchmarks

We are able to show, that like our other framework for facil-
itating adaptations in a managed execution environmerg; Kh
iron/CLR, Kheiron/JVM imposes only a modest performance Fig. 3. Overheads when no repair active

impact on a target system when no adaptations, repairs o, . . .
reconfigurations are active. We have evaluated the perfucena Ey implementing Kheiron/JVM we are apl_q to show that
ur conceptual approach of leveraging facilities exposgd b

of our prototype by quantifying the overheads on prograﬁjl ' . o . :
execution using two separate benchmarks. e execuho_n environment, _spemflcally pro_fl_ll_ng and exiecu
ontrol services, and combining these facilities with rdata

The experiments were run on a single Pentium Il Mobil . .
b g gPIs that respect the verification rules for types, theiradata

Processor, 1.2 GHz with 1 GB RAM. The platform wa . ) : ; o
Windows XP SP2 running the Java HotspotVM v1.5 upda nd their method implementations (bytecode) is a suffiient
ﬂ\(/v—overhead approach for adapting running programs in

4. In our evaluation we used the Java benchmarks SciM . .

v2.0* and Linpack. contemporary managed execution environments.
S_ciMark_is a bencr_\mark for scie_ntific and numerical com- V. ADAPTING UNMANAGED APPLICATIONS

puting. It includes five computation kernels: Fast Fourier

Transform (FFT), Jacobi Successive Over-relaxation (SOR Effectmg_ adaptations n unmanaged .appll_cauons 1S
Monte Carlo integration (Monte Carlo), Sparse matrix mul? arkedly different from effecting adaptations in their ragad

tiply (Sparse MatMult) and dense LU matrix factorizatiorg:unterparts' since they lack many of the characteristics a

(LU). Linpack is a benchmark that uses routines for solvin cilities_ that _make runtime adar_)tation qualitativelyieas’n

common problems in numerical linear algebra includingdine omparison, in managed execution environments. Unmanaged

systems of equations, eigenvalues and eigenvectorsr;, leeest execu_'uo_n env_|r.o_nments store/_have access to limited rattad

squares and singular value decomposition. In our tests aa uf® built-in facilities for execution tracing, and less stured

a problem size of 1000. rules on well-formed programs. _ N
Running an application under the JVMTI profiler imposes In th|§ sec.tlon We.focus on using Kheiron/C to f_aC|I|ta_te

some overhead on the application. Also, the use of shad ptations in running .°°”.‘p"ed C programs, built using

methods and wrappers converts one method call into two. F andard comp|ler_ tqolkns likggee and g++, papkaggd as

ure 3 shows the runtime overhead for running the benchma ecgtable and Linking Format (ELF) [20] object files, on

with and without profiling enabled. We performed five tes € Linux platform.

runs for SciMark and Linpack each with and without profilingy  Native Execution Model

enabled. Our Kheiron/JVM DLL profiler implementation was

compiled as an optimized release build. For each benchmark,one unit of executloq in the Lmux_ opgratmg sy§tem 1S the
ELF executable. ELF is the specification of ahbject file

Shttp:/imath.nist.goviscimark2/ format Object files are binary representations of programs
Shitp:/mwww.shudo.netljit/perfiLinpack.java intended to execute directly on a processor as opposed to



being run in an implementation of an abstract machine such Rt e ord st nane;

as the JVM or CLR. The ELF format provides parallel views Bres ord ot eimer

qf a file's contents that refle_cts the differing needs of paogr e chy o

linking and program execution. T
Program loading is the procedure by which the operating -

system creates or augments a process image. A process image Fig. 4. ELF Symbol Table Entry [20]

has segments that hold its text (instructions for the pramds
data and stack. On the Linux platform the loader/linker mags function or other executable code, and SSECTION,

ELF sections into memory as segments, resolves symbaig sympols associated with a section. As we can see, the
references, runs some initialization code (found in M \heiadata available in ELF object files is not as detailed or
section) and then transfers control to timain routine in the 45 expressive as the metadata found in managed executables.
textsegment. . o For example, we lack richer information on abstract data
One approach to execution monitoring in an unmanaggthes and their relationships, functions and their sigrestu-
execution environment is to build binaries in such a way that,mber of expected parameters, parameter types and fanctio
they emit profiler data. Special flags, €.9. -pg, are passeddrn types — i.e. limited support for sophisticated reitec
the gcc compiler used to generate the binary. The executablgy metadata APIs. Further, since unmanaged applications
when run, will also write out a file containing_ the _times SPeun on the underlying processor, there is no intermediary
in each function executed. Since a compile-time/link-tiftag exposing an execution tracing and control API, instead we

is used to create an executable that has logic built in faye 1o rely on platform-specific operating system support
write out profiling information, it is not possible to augn’uene'g_ ptrace and strace on Unix.

the data collected without rebuilding the application.tRar,
selectively profiling portions of the binary is not suppdrte B. Kheiron/C Operation

To gain control of a running unmanaged application on Our current implementation of Kheiron/C relies on the
the Linux operating system, tools use built-in facilitiescB Dyninst API [22] (v4.2.1) to interact with target applicatis
as ptrace and the/proc file system. ptrace is a system callvhile they execute. Dyninst presents an API for inserting ne
that allows one process to attach to a running program ¢ode into a running program. The program being modified is
monitor or control its execution and examine and modify itable to continue execution and does not need to be recompiled
address space. Several monitored events can be assocititedov relinked. Uses for Dyninst include, but are not limited to
a traced program including; the end of execution of a singtantime code-patching and performance steering in lavgg#
assembly language instruction, entering/exiting a systefh running applications.
and receiving a signal. ptrace is primarily used to implemen Dyninst employs a number of abstractions to shield clients
breakpoint debuggers. Traced processes behave normélly tfrom the details of the runtime assembly language insertion
a signal is caught — at which point the traced process tlsat takes place behind the scenes. The main abstractions
suspended and the tracing process notified [21]. The /prax& points and snippets A point is a location in a program
filesystem is a virtual filesystem created by the kernel iwhere instrumentation can be inserted, whereas a snippet is
memory that contains information about the system and thepresentation of the executable code to be inserted. Bramp
current processes in their various stages of execution. of snippets includeBPatch funcCallExpr, which represents

With respect to metadata, ELF binaries support varioasfunction call, andBPatch.variableExpr, which represents
processors with 8-bit bytes and 32-bit architectures. derp a variable or area of memory in a thread’s address space.
structures, etc. are represented as compositions of 32&it  To use the Dyninst terminology, Kheiron/C is implemented
bit and 8-bit “types”. The binary format also uses specials amutator(Figure 5), which uses the Dyninst API to attach
sections to hold descriptive information about the prograno, and modify a running program. On the Linux platform,
Two important sections are thdebugand .symtabsections, where we conducted our experiments, Dyninst relies on gtrac
where information used for symbolic debugging and the symand the /proc filesystem facilities of the operating system t

bol table, respectively, are kept. interact with running programs.
The symbol table contains the information needed to locate
and relocate symbolic references and definitions. The f#lds Mutator Application

void foo(int x, inty)

. (
Kheiron/C Points<' intz=0;

a}

interest in a symbol table entry (Figure 4) ataname which
holds an index into the object file’s symbol string table veher

the symbol name is storedisize which contains the data Dyninst API Snippets

object’s size in bytes _anstmfo, which specifies the symbol’s Dyninst Code CIC++

type and binding attributes. Runtime
Type information for symbols can be one of: ptrace/procfs Library

STT.NOTYPE, when the symbol's type is not defined,

STT.OBJECT, when the symbol's type is associated with Fig. 5. Kheiron/C

a data object such as variable or array, SHUNC, for Kheiron/C uses the Dyninst API to search for global or



local variables/data structures (in the scope of the iimert inserted. The AdaptMe function is passed an integer initigat
point) in the target program’s address space, read and wthe instrumented function that was called. Our experimexs w
values to existing variables, create new variables, load neun on a single Pentium 4 Processor, 2.4 GHz with 1 GB
shared libraries into the address space of the target progr&®AM. The platform was SUSE Linux 9.2 running a 2.6.8-
and inject function calls to routines in loaded shared fiesa 24.18 kernel and using Dyninst v4.2.1. All source files used
as prologues/epilogues (at the points shown in Figure 5) fior the experiment (including the Dyninst v4.2.1 source )tree
existing function calls in the target application. As anrapée, were compiled using gcc v3.3.4 and glibc v2.3.3.

Kheiron/C could search for globally visible data structure
e.g. the head of a linked list of abstract data types, and
insert periodic checks of the list's consistency by injegti
new function calls passing the linked-list head variableaas
parameter.

To initiate an adaptation Kheiron/C attaches to a running
application (or spawns a new application given the command
line to use). The process of attaching causes the threacof th
target application to be suspended. It then uses the Dyninst
API to find the existing functions to instrument (each fuonti
abstraction has an associated call-before instrumentptont
and a call-after instrumentation point). The target agian Run
needs to be built with symbol information for locating func-
tions and variables to work — with stripped binaries Dyninst
reports ~95% accuracy locating functions and an87%
success rate instrumenting functions. The disparity betwe As shown in Figure 6 the overhead of the inserted function
the percentage of functions located and the percentagecafl is negligible,~1%. This is expected since the x86 assem-
functions instrumented is attributed to difficulties in tms bly generated behind the scenes effects a simple jump into
menting code rather than failures in the analysis of stdpp#he adaptation library followed by a return before exeaytin
binaries [23]. Kheiron/C uses the Dyninst API to locate anijie bodies of SORxecute and SORumflops. We expect
“interesting” global structures or local variables in thege that the overhead on overall program execution would depend
of the intended instrumentation points. It then loads adgrgely on the operations performed while inside the adap-
external library/libraries that contain the desired adtiph tation library. Further, the time the SciMark process spend
logic and uses the Dyninst API to find the functions in theuspended while Kheiron/C performs the instrumentation is
adaptation libraries, for which calls will be injected intioe Sub-second;-684 msecst 7.0686.
target application. Next, Kheiron/C constructs functicall c
expressions (including passing any variables) and intieets E.
at the instrumentation points. Finally, Kheiron/C allowet To enable applications to detect low-level faults and recov

Performance comparison SciMark - normalized to
w/o Dyninst - simple jump into adaptation library

® Normalized w/o Dyninst

O Normalized w/Dyninst

Performance normalized

Fig. 6. Overheads Simple Instrumentation

Injecting Selective Emulation

target application to continue its execution. at the function level or, to enable portions of an applicato
) _ ) be run in a computational sandbox, we describe an approach
C. High-level Kheiron/C interfaces that allows portions of an executable to be run under the

To interact with Kheiron/C the most important interfaceSTEM x86 emulator. We use Kheiron/C to dynamically load
are: LaunchProcessand AttachToProcess which creates a the emulator into the target process’ address space andtmul
new process to interact with or interacts with an existing- prindividual functions. STEM (Selective Transactional Elstul
cess, respectively.oadLibrary , introduces a shared librarytion) is an instruction-level emulator — developed by Ldoast
into the address space of the target procésidPrologue al. [24] —that can be selectively invoked for arbitrary segis
allows a user to specify a call to a named function tof code. The emulator can be used to monitor applications for
be inserted before a call to an existing function. Similarlgpecific types of failure prior to executing an instructisom,
AddEpilogue inserts a call to a named function before thendo any memory changes made by the function inside which

invocation of an existing function returns. the fault occurred (by having the emulator track memory
o modifications) and, simulate an error return from the fuocti
D. Preliminary Results (error virtualization)[24].

We carry out a simple experiment to measure the perfor-The original implementation of STEM works at the source-
mance impact of Kheiron/C on a target system. Using tloede level i.e. a programmer must insert the necessary STEM
C version of the SciMark v2.0 benchmark we compare tlfetatements” around the portions of the application’s seur
time taken to execute the un-instrumented program, to the ticode expected to run under the emulator (Figure 7). In addi-
taken to execute the instrumented program — we instrumentixh, the STEM library is statically linked to the executbl
the SORexecute and SORumflops functions such that a To inject STEM into a running, compiled C application, we
call to a function (AdaptMe) in a custom shared library iseed to be able to: load STEM dynamically into a process’



}loid foo() the first five bytes after the base addfessthe function to

inti=o0: be instrumented are replaced with a jun@xE9 [ 32- bi t
Vi sa\l/e cpu_rggisters macro addr ess] ) to the beginning of the trampoline. The assembly
emulate_init(); H H H H H
/1 begin emulation function call instructions in the trampollne_ save the C_PU registers on the
emulate_begin(); stack, execute the prologue instrumentation code, restere
i=i+10; i i i i
/ end emulation function call CPQ reg|§ters and b_ranches to the !nstructlons d|spla9ed by
emulate_end(); the jump instruction into the trampoline. Then another jump
/I commit/restore cpu registers macro is made to the remainder of the function body before control
emulate_term(); . . . .

} is finally transferred to the instruction after the instrumezi

function call [22].

Fig. 7. Inserting STEM via source code We modify this trampoline such that the contents of the

CPU general purpose registers and segment registers ame sav
address-space, manage the CPU-to-STEM transition as ViRlIR memory anresa;eglster stor age a.rg)aac.;cessmle by the
process being instrumented. This modification ensuredtieat

as the STEM-to-CPU transition. saved register data can be passed into STEM and used in lieu
To dynamically load STEM we change the way STEM iS 9 P

built. The original version of STEM is deployed as a GNL?f the emulateinit macro. In addition, we modify Dyninst

AR archive of the necessary object files; however, the ﬁnSl]lCh that the instructions affected by the insertion of the-fi

binary does not contain an ELF header — this header is reiquirgélte jump into the trampoline are saved at another memory
. . - address dode storage ar€aaccessible by the process being

for executables and shared object (dynamically loadabés) fi . . i

instrumented. Since the x86 processor uses variableHengt

A cosmetic change to STEM's makefile suffices — using gcc . . ) .
: . ' . structions, there is no direct correlation between numbe
with the -shared switch at the final link step. Once the STEN, . . . :
of instructions displaced and the number of bytes required

emulator is built as a true shared object, it can then be . X .
) . 0 store them. However, Dyninst has an internal function
dynamically loaded into the address space of a target pmogra . L
) . getRelocatedInstructionSz which it uses to perform such
using the Dyninst API.

o ) calculations. We use this internal function to determine th
Next, we focus on initializing STEM once it has been Ioadega

. >, ze of the code storage area where the affected instrigction
into the target process’ address space. The original verdio

. : UL ) are copied.
STEM requires two things for correct initialization. Firshe The entire CPU-to-STEM transition using our dynamically-

state of the machine before emulation begins must be Saveﬁl_)a_dable version of STEM is as follows: Kheiron/C loads
at the end of emulation STEM either commits its current st e STEM emulator shared library and' a custom library

to the real CPU registers and applies the memory change cﬂynamically linked to the STEM shared library) that has
STEM performs a rollback of the state of the CPU, restori nctions (RegisterSave and EmulatorPrime). Next, KigiZo

the_saved regl_ster state, and undoyes_ the memory ch_anges mu%%% the Dyninst API to find the functions to be run under the
during emulation. Second, STEM'’s instruction pipeline dsee

) . _ emulator. Kheiron/C uses Dyninst functions which suppisrt i

to be cprre_ctly Semp’ including the calculation of the addr BPatchthread::malloc API to allocate the areas of memory
of the first instruction to be emulated. in the target process’ address-space where register ddta an

To correctly initialize our dynamically-loadable versiof (g|ocated instructions are saved. The addresses of thesgst
STEM we need to be able to effect the same register saving a}das are set as fields added to the BPatwht class — the
instruction pipeline initialization as in the source-saga. In - ¢oncrete implementation of Dyninst's point abstractioegR
the original version of STEM register saving is effectedti@  jsiersave is passed the address of the storage area and copie
emulateinit macro, shown in Figure 7. This macro expandgata over from the storage area into STEM registers — so that
into inline assembly, which moves the CPU (x86) registetssypsequent call to emuladbegin will work. EmulatorPrime
(eax, ebx, ecx, edx, esi, edi, ebp, esp, eflags) and segmgrgassed the address of the code storage area, its sizeeand th
registers (cs, ds, es, fs, gs, ss) into STEM data structures. ,ymper of instructions it contains. Kheiron/C injects sath

Whereas Kheiron/C can use Dyninst to dynamically load thge RegisterSave, EmulatorPrime and emulmgin functions
shared-object version of STEM into a target process’ addregin this order) as prologues for the functions to be emulated
space and inject a call to the emuldtegin function, the and allows the target program to continue. A modification
same cannot be done for the emulati# macro, which must to STEM’s emulatebegin function causes STEM to begin its
precede a call to emulateegin. Macros cannot be injectedinstruction fetch from the address of the code storage area.
by Dyninst since they are intended to be expanded inline byat the end of this process, the instrumented function, when
the C/C++ preprocessor before compilation begins. Thiseissinyoked, will cause the STEM emulator to be loaded and
is resolved by modifying the trampoline — a small piece ghjtialized with CPU and segment register values as well
code constructed on-the-fly on the stack — Dyninst sets HB enough information to cause our dynamically-loadable
for inserting prologues, code (usually function calls)@xed yersion of STEM to alter its instruction pointer after exgeg
before a function is invoked.

Dyninst instrumentation via prologues works as follows: 6The location in memory of the first assembly instruction af fanction.



the relocated instructions and continue the emulation ef tsome of its load-time transformations at runtime e.g. renmpv
remaining instructions of the function. After the initizdition, instrumentation and modifying instrumentation and method
the injected call to emulatkegin will cause STEM to begin implementations via bytecode rewriting. Finally, KheifdviM
its instruction fetch-decode-execute loop thus running tltan also perform certain runtime modifications to metadata,
function under the emulator. e.g. adding new references to external classes such that the
The final modification to STEM addresses the STEM-tanethods can be used in injected instrumentation.
CPU transition, which occurs when the emulator needs toFIST [29] is a framework for the instrumentation of Java
unload and allow the real CPU to continue from the addrepsograms. The main difference between FIST and Khe-
after the function call run under the emulator. Rather tharon/JVM is that FIST works with a modified version of the
inject calls to emulateend, we modify STEM’s emulatbegin Jikes Research Virtual Machine (RVM) [30] whereas Khe-
function such that it keeps track of its owstack-depth iron/JVM works with unmodified Sun JVMs. FIST modifies
Initially, this value is set to O, if the function being emidd the Jikes RVM Just-in-Time compiler to insert a breakpoint
contains acall (OXE8) instruction, the stack-depth is increinto the prologue of method to generate an event when a
mented, when it returns the stack-depth is decrementedSTEethod is entered to allow a response on the method entry
marks the end of emulation by the detection déave(0xC9) event. Control transfer to instrumentation code can thexioc
or return/ret (OxC2/0xC3) at stack-depth 0. At this point, thevhen the compiled version of the method is executed. The
emulator either commits or restores the CPU registers adikes RVM can be configured to always JIT-compile methods,
using the address stored in the saved stack pointer registewever the unmodified Sun JVMs, v1.4x and v1.5x, do not
(esp), causes the real CPU to continue its execution from thgpport this configuration. As a result, Kheiron/JVM reles
instruction immediately after the emulated function call.  bytecode rewriting to transfer control to instrumentatome
As a comparison, performing STEM injection using Pims a response to method entry and/or method exit — transfer
2.0 [25] would call for less machinations with respect tof control will occur with both the interpreted and compiled
initializing STEM (i.e. the CPU-to-STEM transition). Pinversions of methods.
maintains two copies of the program text in memory, the A popular approach to performing fine-grained adaptations
original program text and the instrumented version of thie managed applications is to use Aspect Oriented Program-
program text (generated just-in-time by Pin) hence, there ming (AOP). AOP is an approach to designing software that al-
no need for trampolines, nor any need to save instructiolasvs developers to modularize cross-cutting concerns tfgii]
dislocated by jumps into the trampoline as in the Dyninghanifest themselves as non-functional system requiresnent
case. Once STEM is loaded, its instruction pointer can simghe context of self-managing systems AOP is an approach to
be set to the base address of the function which will madesigning the system such that the non-functional requargm
the beginning of the original un-instrumented version ad thof having adaptation mechanisms available is cleanly separ
function. Further, Pin 2.0 guarantees that analysis codmde c from the logic that meets the system’s functional requineifie
executed at instrumentation points — will be inlined inte thAn AOP engine is still necessary to realize the final system.
instrumented version of the function, as long as the amalysinlike Kheiron, which can facilitate adaptations in existi
code contains no branches [26]. This inlining guaranteelsho systems at the execution environment-level, the AOP aghproa
allow the CPU state-capture assembly instructions neededa design-time approach, mainly relevant for new systems.
to initialize STEM's registers to be emitted inline in the AOP enginesweave together the code that meets the
instrumented version of the function, as occurs at the soufftinctional requirements of the system with the aspects that
level with the original version of STEM. However, we need tencapsulate the non-functional system requirements eTdmer
verify that inlining actually occurs and devise an apprafi three kinds of AOP engines: those that perform weaving at
strategy for the STEM-to-CPU transition. compile time (static weaving) e.g. AspectJ [32], Aspect C#
[33], those that perform weaving after compile time but befo
load time, e.g. Weave .NET [34], which pre-processes man-
Our Kheiron prototypes are concerned with facilitatingyveraged executables, operating directly on bytecode and rewatad
fine-grained adaptations in existing/legacy systems, @deer and those that perform weaving at runtime (dynamic weaving)
systems such as KX [5] and Rainbow [6] are concerned wittsing facilities of the execution environment, e.g. A dyimam
coarser-grained adaptations. However, the Kheiron prpgst  AOP-Engine for .NET [35] and CLAW [36]. Kheiron/JVM is
could be used as low-level mechanisms orchestrated/ddecsimilar to the dynamic weaving AOP engines only in its use
by these larger frameworks. of the facilities of execution environment to effect addiptas
JOIE [27] is a toolkit for performing load-time transfor-in managed applications while they run.
mations on Java classfiles. Unlike Kheiron/JVM, JOIE uses aAdaptation concepts such as Micro-Reboots [11] and adap-
modified classloader to apply transformations to each class systems such as the K42 operating system [4] require
brought into the local environment [28]. Further, since thepfront design-time effort to build in adaptation mecha-
goal of JOIE is to facilitate load-time modifications, anyisms. Our Kheiron implementations do not require special
applied transformations remain fixed throughout the exenut designed-in hooks, but they can take advantage of them if
lifetime of the class whereas Kheiron/JVM can undo/modifthey exist. In the absence of designed-in hooks, our Khe-
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iron implementations could refresh components/datatires is exhausted), self-optimization (switching free blockucb

or restart components and sub-systems, provided that theoccur when the free block bitmap is updated rather than
structure/architecture of the system is amenable to it, i.eead), and self-protection (dynamically adding accesgrobn
reasonably well-defined APIs exist. semantics associated with new authentication devices).

Georgia Tech’s ‘service morphing’ [37] involves compiler-
based techniques and operating system kernel modifications ) - . .
for generating and deploying special code modules, both to!n this paper we describe the retro-fitting of fine-grained
perform adaptation and to be selected amongst during dgna@flaptation mechanisms onto existing/legacy systems Iey-lev
reconfigurations. A service that supports service morphid§ing the facilities and characteristics of unmodified exe-
is actually comprised of multiple code modules, potentiallCution environments. We describe two classes of execution
spread across multiple machines. The assumption heretis ff2ironments — managed and unmanaged — and compare the
the information flows and the services applied to them akerformance over_head.s of adaptations and the techniqeds us
well specified and known at runtime. Changes/adaptatides t40 €ffect adaptations in both contexts. We demonstrate the
advantage of meta-information about typed information §iowfeasibility of performing adaptations using Kheiron/C and
information items, services and code modules. In contra¥f¢ describe a sophisticated adaptation, injecting thectete
Kheiron operates entirely at runtime rather than compifmulation of functions into compiled C applications. Given
time. Further, Kheiron does not require a modified executidhat few legacy systems are written in managed languages (e.
environment, it uses existing facilities and charactessof Java, C# etc.) whereas a substantial number of systems are
the execution environment whereas service morphing makidtten in C/C++, our techniques and approaches for effigcti
changes to a component of the unmanaged execution envirbif @daptation of native systems may prove useful for retro-
ment — the operating system. fitting new functionality onto these systems.

Trap/J [38], Trap.NET [39] produce adapt-ready programs Fo_r f_uture work, we are interested in conducting more
(statically) via a two-step process. An existing prograomge sophl_st|cated case studies where we can exp_lorq the reintim
piled bytecode) is augmented with generic interceptoriedal Patching of managed and unmanaged applications and the
“hooks” in its execution path, wrapper classes and metdlanagement and coordination of various fine-grained adapta
level classes. These are then used by a weaver to producdi@fs- Finally, we are also interested in measuring thecesfef
adapt-ready set of bytecode modules. Kheiron/JVM, operat@nd system response to) injecting faults into managed and u
entirely at runtime and could use function call replacemeRtanaged applications, which have/have not been dynamicall
(or delegation) to forward invocations to specially proeaic Medified with appropriate self-healing (detection, diagjiso
adapt-ready implementations via runtime bytecode reivit and remediation) mechanisms. This last set of experiments i

For performing fine-grained adaptations on unmanaged &'t of an gffort to fufther the development of a met_hodology
plications, a number of toolkits are available, howeverynain for evaluating the efficacy of these added self-healing mech
them, including EEL [40] and ATOM [41], operate post-linkaniSms and ben_chmarkmg the self-healing capabilitieg, [45
time but before the application begins to run. As a resudty th [46] of the resulting system.
cannot interact with systems in executi(.)n.and the changa@/s th ACKNOWLEDGMENT
make cannot be modified without rebuilding/re-processii®y t  the programming Systems Laboratory is funded in part by aNati
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Our Kheiron implementations specifically focus on faciliused STEM.
tating fine-grained adaptations in applications rathen tim
the operating system itself. Kerninst [42] enables a user tﬁ] 1.0, Kephart and D. M. Chess, * The Vision of Autonomic Gartin
dynami_cally instrum(e_nt an already-running unmodified 8sla cbmpﬁter magazinglanuary 2003. g
kernel in a fine-grained manner. Kerninst can be seen &g C. Shelton and P. Koopman, “Using Architectural Projesrtto Model
implementing some autonomic functionality, i.e., kernet-p aA”dh_Mef?‘S“rg Sysge“gl'Wige Gr:gg‘;“ Degradation,” WWerkshop on

. Lo rchitecting Dependable Syste .
formance .mee}suremen_t and consequent runtime Optlm_lz"’ltI B] P. Koopman, “Elements of the Self-Healing Problem Spaire ICSE
while applications continue to run. DTrace [43] dynamigall Workshop on Architecting Dependable SysteR@3.

inserts instrumentation code into a running Solaris kehyel [4] C. Soules et. al, *System Support for Online Reconfigargt in
USENIX Annual Technical Conferenc2003.

!mplementlng a simple virtual machine 'n_ kernel space th ] Gail Kaiser et. al, “Kinesthetics eXtreme: An Externafriastructure for
interprets bytecode generated by a compiler for the ‘D’ lan-  Monitoring Distributed Legacy Systems,” ifhe Autonomic Computing
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