
Efficient Data Migration in Self-managing Storage
Systems

Vijay Sundaram
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
vijay@cs.umass.edu

Timothy Wood
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
twood@cs.umass.edu

Prashant Shenoy
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
shenoy@cs.umass.edu

Abstract— Self-managing storage systems automate the tasks
of detecting hotspots and triggering data migration to alleviate
them. This paper argues that existing data migration techniques
do not minimize data copying overhead incurred during recon-
figuration, which in turn impacts application performance. We
propose a novel technique that automatically detects hotspots and
uses the bandwidth-to-space ratio metric to greedily reconfigure
the system while minimizing the resulting data copying overhead.
We validate our technique with simulations and a prototype im-
plemented into the Linux Kernel. Our prototype and simulations
show our algorithm successfully eliminates hotspots with a factor
of two reduction in data copying overhead compared to other
approaches.

I. I NTRODUCTION

As information is increasingly created, processed, and ma-
nipulated in digital form, the role of large-scale enterprise
storage systems becomes increasingly important. Enterprise
storage systems are complex entities that comprise a large
number of RAID arrays with one or more data partitions
mapped to each array. As storage needs and I/O workloads
evolve over time, managing, configuring, and continual tuning
of such systems becomes a complex task [2], [3]. Conse-
quently, design of self-managing storage systems is an ap-
pealing option; such a system performs automated mapping
of data partitions to RAID arrays, monitors the workload on
each array, and transparently triggers data migration if hotspots
or imbalances are detected in the system.

Until recently, these tasks were performed manually by
administrators using sophisticated tools to analyze the load
on the system [1]. Despite these tools’ capabilities to collect
performance data and predict the impact of moving data
partitions from one array to another, the decision process
remains manual and prone to human error. To address this
drawback, recent efforts have focused on automating the task
of detecting hotspots and triggering data migration to alleviate
them [5], [7], [8]. Such a remapping of data partitions to RAID
arrays involves a system reconfiguration that either results
in downtime or reduced performance during the migration.
Consequently, it is essential to minimize the reconfiguration
overhead byminimizing the volume of data moved, and thus,
the time needed to do so. Unfortunately, recently proposed
approaches do not focus on minimizing data copying, resulting
in potentially larger overhead than is necessary.

This paper focuses on the design of automated data migra-
tion algorithms that minimize the total data copying overhead
incurred during reconfiguration in self-managing storage sys-
tems. We also propose automated techniques to detect hotspots
and trigger our data migration algorithm.

II. PROBLEM FORMULATION

Consider an enterprise storage system as shown in Figure 1.
Such a system comprises multiple, heterogeneous disk arrays,
each consisting of one or more RAID devices. A RAID device
is constructed by combining a set of disks from the array using
RAID techniques [9]. Each RAID device can contain one or
more data partitions (also called logical volumes) and it is
possible for partitions to span multiple RAID devices, forming
a logical RAID.

In this system, there is a hard constraint that the storage
needs of all partitions mapped to an array cannot exceed the
array’s storage capacity. There is also a weak constraint that
the total bandwidth utilization of an array be smaller than
a thresholdτ in order for an array to be considered load
balanced. If the bandwidth utilization exceeds this threshold,
the array is overloaded and a hotspot is said to be in the
system.

Alleviating the hotspot requires some logical volumes to
be moved from overloaded arrays to underloaded ones. The
cost of such a system reconfiguration is defined to be the total
amount of data moved. If a new configuration does not change
the mapping of a particular volume, then that volume does not
contribute to the cost of the reconfiguration.

III. C OST-AWARE OBJECTREMAPPING

A. Background

A self-managing storage system must be able to determine
a new mapping of data partitions after detecting a hotspot.
Several techniques can be employed for this purpose:

Bin Packing: One approach is to consider the new storage
and bandwidth requirement of each logical volume and deter-
mine a new mapping of volumes to arrays from scratch using
bin packing heuristics [2]. Random permutations of volumes
are generated and objects are assigned randomly to arrays until
a valid assignment is obtained (a valid assignment satisfies



The figure shows two disk arrays with four RAID devices each. Each RAID device has
five disks. Logical volumes are striped across all RAID devices on the first array, while
each volume is striped across two RAID devices in the second array.

Fig. 1. An enterprise storage system.

both the hard storage constraint and the bandwidth constraint,
eliminating the hotspot).

BSR-based Approach:Bandwidth-to-space ratio (BSR)has
been used as a metric for video placement [4], [6]. Using
knapsack heuristics, volumes are ordered in decreasing order
of their bandwidth to storage ratio. Underloaded arrays are
ordered byspareBSR, which is the ratio of spare bandwidth
to spare storage space. Volumes are chosen in BSR order and
assigned to arrays with the highest spareBSR. This ensures
better utilization of the system bandwidth per unit storage
space and leads to a tighter packing.

Randomized reassignment:The previous two approaches
are cost-oblivious; they construct a new mapping of volumes
to arrays without considering the current mapping. We can
modify the bin packing approach to take the current mapping
into account by incrementally modifying the current configu-
ration until the hotspot is eliminated. The current configuration
is assumed to be the initial configuration; bin packing is then
used to assign objects from overloaded to underloaded arrays
until sufficient load “shifts” to remove the hotspot. Although
this algorithm iscost-aware, it does not explicitly attempt
to reduce data copying overhead, nor does it consider the
possibility of swaps, where two volumes are swapped. Thus,
an entire set of possible solutions is ignored by the approach.

B. Displace and Swap

Displace and Swap (Dswap)is a greedy data migration
technique that alleviates hotspots by (i) using the current
configuration to incrementally determine a new load-balanced
configuration, (ii) using bandwidth-to-space ratio as a guiding
metric to determine which volumes to move and where, and
(iii) considering both volume moves and swaps as possible so-
lutions for determining the new configuration. The key idea is
to move one or more volumes from overloaded to underloaded
arrays or swap heavily loaded volumes from overloaded arrays
with less loaded volumes on underloaded arrays. BSR is used
to guide the selection of volumes and maximize the reduction
in overload per unit data moved (which in turn reduces data
copying overhead).

1) Displace: Our approach first considers a displace step
which attempts to move volumes from overloaded arrays to
unused storage space on underloaded ones. All arrays that
see a hotspot (i.e., violation of the bandwidth constraint)
are considered. Any underloaded array with non-zero unused
storage space is a potential destination for overloaded volumes.
Overloaded arrays are considered, one at a time, in decreasing
order of overload. Within each overloaded array, volumes are
considered for possible relocation in decreasing order of their
BSR. This results in a set of logical volumes which when
displaced to an underloaded array will sufficiently reduce the
total load to the array to make the hotspot disappear. By
selecting volumes by decreasing BSR order, we ensure that
we are moving the minimum amount of data necessary to
eliminate the hotspot.

The set of possible destination arrays are considered in
decreasing order of spare BSR (spare bandwidth to spare
storage space ratio) and selected so that neither the bandwidth
nor storage constraints presented earlier will be violated. In the
event that sufficient storage space is unavailable for a displace
step, our techniques must resort to volume swaps to alleviate
the remaining hotspots.

2) Swap: As in displace,BSR is used as the metric to
guide the selection of volumes to be swapped between two
arrays. The key idea is to choose thehighest BSRvolumes
from the most overloadedarray and attempt to swap them
with the lowest BSRvolumes on themost underloadedarray.
Doing so yields the maximum reduction in load per unit data
moved and reduces data copying overheads. Choosing the most
underloaded array as a destination increases the probability of
finding valid swaps.

The swap step must determine a sets of overloaded and
underloaded volumes such that the following constraints are
satisified:
ConstraintC1: There is at least a certain minimum amount of
load reduction on the overloaded array.
ConstraintC2: The swap should not violate the storage and
bandwidth constraints on the underloaded array.
Constraint C3 : The swap should not violate the storage
constraint on the overloaded array.

If sets satisfying the above three constraints are successfully
found, then the corresponding volumes are marked for a
possible swap. The swap step repeats the above process until
the hotspot is completely removed from the overloaded array.
The swap step then moves onto the next overloaded array and
repeats the process.

Additonal optimizations and the full details of the algorithm
are described in [10].

3) Example: Figure 2 illustrates how displace and swap
works. Figure (a) shows two arrays with bandwidth utilizations
of 100% and 40%, respectively. Each box with a number indi-
cates a volume and an empty box indicates unallocated space.
The number in a box indicates the bandwidth requirement of
the volume. For simplicity, all volumes are assumed to be of
unit size; so the bandwidth requirement of a volume is also its
BSR. The bandwidth overload thresholdτ is assumed to be



Fig. 2. Illustration of Displace and Swap.

75% for both the arrays. As Array 1 is overloaded thedisplace
and swapalgorithm proceeds as follows.

The displace step is invoked first as the underloaded array
has one unit spare space.
Displace: Figures (b) and (c) illustrate a volume being moved
from Array 1 to Array 2. The volume selected is one with the
maximum BSR.

Since Array 1 is still overloaded after the displace step, the
swap step is invoked.
Swap: Figures (d) and (e) illustrate a volume with BSR 10
being swapped with a volume with BSR 0. Thus, a high BSR
volume gets swapped with a low BSR volume.

At this point, the hotspot is eliminated and the algorithm
terminates.

IV. A UTOMATED HOTSPOTDETECTION

We detect overload by continually monitoring the bandwidth
utilization on each array and flag a hotspot if the bandwidth
constraint is consistently violated on an array.

Load monitoring: Our technique uses bandwidth utilization
on an array as an indicator of its load. The bandwidth
utilization is computed as the average utilization of disks in
the array. Since multiple volumes are typically mapped onto an
array, each contributes a certain fraction of the total utilization,
and the workload seen by each individual volume must be
monitored to derive the total array utilization.

Our monitoring module is implemented with hooks in the
OS kernel which measure the mean request rate and request
size for each volume. Knowing these as well as the seek
latency, rotational latency, and transfer time per byte of the
underlying disk, gives an indication of disk utilization. It
maintains a history of utilizations observed on each array over
a long period (e.g., a day or a week).

Hotspot detection: Given a time series (history) of utiliza-
tions seen at each array, a hotspot is said to be present if
the bandwidth constraint is violated for a certain percentage
of the observations. The threshold used to flag a hotspot is
a configurable parameter; small values aggressively alleviate
hotspots, while larger values require an overload to persist
over a longer period before data migration is triggered. Upon
hotspot detection, our displace and swap technique is invoked

0

1

2

3

4

5

2 4 6 8 10

D
at

a 
D

is
pl

ac
ed

 (
N

or
m

al
iz

ed
)

Number of Arrays

Impact of System Size

Random Reassign
DSwap

0

20

40

60

80

100

2 4 6 8 10

D
at

a 
D

is
pl

ac
ed

 (
N

or
m

al
iz

ed
)

Number of Arrays

Impact of System Size

BSR
Random Packing

(a) Cost-aware (b) Cost-oblivious

Fig. 3. Impact of system size.

to determine a new mapping of volumes to arrays and data
migration is triggered to actually move or swap volumes.

V. EXPERIMENTAL EVALUATION

A. Impact of System Size

We use simulations to evaluate the reconfiguration cost of
our algorithm over a wide range of system configurations. The
simulator allows us to study the impact of system size on re-
configuration overhead. We vary the system size—the number
of arrays—from two to ten (each array holding 20 disks) and
determine the normalized cost of eliminating hotspots over
100 runs. Figures 3(a) depicts the data copying overheads for
the Random Reassignment and our Dswap approach, both of
which are cost-aware, while Figure 3(b) depicts the cost for
Randomized bin packing and BSR, both of which are cost-
oblivious and reconfigure the system from scratch.

Figure 3(a) shows thatDSwapoutperformsRandom Reas-
signmentby factors of two to three. Moreover, the normalized
reconfiguration costs for Dswap remains constant over a range
of system sizes, while it increases for the latter. Since Dswap
chooses volumes from overloaded arrays carefully based on
BSR values, the normalized cost is not sensitive to system
size (the data copying overheads increase in proportion to
system size, resulting in constant normalized cost). In Random
reassignment, however, increasing the system size increases
the number of volumes to choose from, which also increases
the likelihood of making sub-optimal decisions.

Figure 3(b) shows the cost of the reconfiguration for the
cost-oblivious approaches. Since both approaches reconfigure
the system from scratch, the cost of reconfiguration is higher
by more than an order of magnitude when compared to that of
the cost-aware approaches. Since the probability of a volume
being moved to a new array increases with system size, the
normalized data copying overheads increase with system size.

B. Heterogeneous Volume Sizes

We have also implemented our techniques in the Linux
kernel version 2.6.11. Our prototype consists of kernel hooks
to monitor request sizes and request rates seen by each logical
volume, and a reconfiguration daemon which uses statistics
collected in the kernel to estimate bandwidth requirements.
The daemon computes a new configuration if a hotspot is
detected, and triggers volume migration.



 0

 20

 40

 60

 80

 100

 50  100  150  200  250  300

P
er

ce
nt

ag
e 

B
an

dw
id

th
 U

til
iz

at
io

n

Time (secs)

Bandwidth Utilization

Array 0
Array 1
Array 2
Array 3

Overload Threshold

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50  100  150  200  250  300

C
um

ul
at

iv
e 

A
rr

ay
 IO

P
S

 (
IO

s 
pe

r 
se

co
nd

)

Time (secs)

IOPS

Array 0
Array 1
Array 2
Array 3

Fig. 4. Variable volume size; no spare storage space

We have used our prototype to evaluate systems with
heterogeneous volume sizes. We consider two scenarios, one
where unused storage space is present and another where
all arrays are full. For the scenario where no free space is
available, we configure the first two arrays with six volumes
each—two volumes each of size 4GB, 8GB and 16GB. The
other two arrays are configured with 14 volumes, all of size
4GB. Initially the concurrency factor is set to two for all
volume workloads. The request interarrival times are set to
300ms, 1s, 1s and 500ms, respectively, for the four arrays. As
shown in Figure 4, all arrays are initially underloaded. Further,
the utilization estimated by our measurement technique closely
tracks the imposed workload measured in IOPs.

At t = 100s, we impose an overload on array 0 by increas-
ing the concurrency factor to seven. The workload on array 1
is also increased slightly but not enough to cause a hotspot.
At t = 200s, our prototype correctly identifies a hotspot on
array 0 and invokes Dswap. The algorithm swaps two 4GB
volumes from array 0 with two similar sized volumes on
array 3, which is underloaded. As can be seem, the technique
swaps the smallest size volumes from array 0, minimizing the
copying overhead. Further, doing so successfully dissipates the
hotspot, as indicated by the array utilization att = 300s. The
load on array 3 increases due to the swap but the array still
remains underloaded.

C. Summary of Other Results

We have used our simulator and prototype to examine
how our Dswap algorithm works under a variety of overload
configurations besides those mentioned here. In addition to
system size, we have examined the impact of both bandwidth
and storage utilization on the cost of reconfiguration. In all
scenarios, we find that our algorithm performs reconfigurations
cheaper, and is able to successfuly eliminate hotspots even
in scenarios with very high storage utilization where the
other methods fail to find a configuration which eliminates
the hotspot. Our results shows that for a variety of overload
configurations, the Dswap approach outperforms other ap-
proaches by a factor of two in terms of data copying overhead.
Moreover, the larger the system size or the larger the overload,
the greater the performance gap. Results from our prototype
implementation show that our techniques correctly measure
array utilizations and are effective at detecting hotspots and
dissipating them, while imposing negligible overheads on the
system. Our full results are available in [10].

VI. CONCLUSION

In this paper, we argued that manual hotspot detection and
storage system reconfiguration are tedious and error-prone and
advocated the design of a self-managing system to automate
these tasks. We argued that existing data migration techniques
do not minimize data copying overhead incurred during a
reconfiguration, which impacts application performance. We
proposed a novel technique that automatically detects hotspots
and uses the bandwidth-to-space ratio metric to reconfigure the
system while minimizing the resulting data copying overhead.
Evaluating our techniques within the Linux Kernel and through
simulation showed a factor of two reduction in data copying
overhead compared to other approaches without causing no-
ticeable degradation in application performance.

VII. A CKNOWLEDGEMENTS

This research was supported, in part, by NSF grants EEC-
0313747, CNS-0323597, and EIA-0080119. Thanks to our
anonymous reviewers for their helpful comments on this paper.

REFERENCES

[1] Emc symmetrix optimizer. Available from http://www.emc.com/
products/storagemanagement/symmoptimizer.jsp.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch.
Hippodrome: Running circles around storage administration. InPro-
ceedings of the Usenix Conference on File and Storage Technology
(FAST’02), Monterey, CA, pages 175–188, January 2002.

[3] E. Borowsky, R. Golding, P. Jacobson, A. Merchant, L. Schreier,
M. Spasojevic, and J. Wilkes. Capacity planning with phased workloads.
In Proceedings of WOSP’98, Santa Fe, NM, October 1998.

[4] A. Dan and D. Sitaram. An online video placement policy based on
bandwidth and space ratio. InProceedings of SIGMOD, pages 376–
385, May 1995.

[5] E. A. et. al. An experimental study of data migration algorithms. InProc.
of WAE- International Workshop on Algorithms Engineering, LNCS,
2001.

[6] Y. Guo, Z. Ge, B. Urgaonkar, P. Shenoy, and D. Towsley. Dynamic
cache reconfiguration strategies for a cluster-based streaming proxy.
In Proceedings of the Eighth International Workshop on Web Content
Caching and Distribution (WCW 2003), , Hawthorne, NY, September
2003.

[7] J. Hall, J. Hartline, A. Karlin, J. Saia, and J. Wilkes. On algorithms for
efficient data migration. InProceedings of ACM Symposium on Discrete
Algorithms (SODA), 2001.

[8] S. Khuller, Y. Kim, and Y. Wan. Algorithms for data migration with
cloning. In Proceedings of ACM Symposium on Principles of database
systems, pages 27–36, New York, NY, USA, 2003. ACM Press.

[9] D. Patterson, G. Gibson, and R. Katz. A case for redundant array of
inexpensive disks (raid). InProceedings of ACM SIGMOD’88, pages
109–116, June 1988.

[10] V. Sundaram and P. Shenoy. Efficient data migration in self-managing
storage systems. Technical Report TR06-21, Dept. of Computer Science,
Univ. of Massachusetts, 2006.


