
Autonomic Reactive Systems via Online Learning
Sanjit A. Seshia

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
E-mail: sseshia@eecs.berkeley.edu

Abstract— Reactive systems are those that maintain an ongoing
interaction with their environment at a speed dictated by the
latter. Examples of such systems include web servers, network
routers, sensor nodes, and autonomous robots. While we increas-
ingly rely on the correct operation of these systems, it is becoming
ever harder to deploy them bug-free.

We propose a new formal framework for automatically re-
covering a class of reactive systems from run-time failures. This
class of systems comprises those whose executions can be divided
into rounds such that each round performs a new unit of work.
We show how the system recovery and repair problem can be
modeled as an instance of an online learning problem. On the
theoretical side, we give a strategy that is near-optimal, and state
and prove bounds on its performance. On the practical side,
we demonstrate the effectiveness of our approach through the
case study of a buggy network monitor. Our results indicate that
online learning provides a useful basis for constructing autonomic
reactive systems.

I. INTRODUCTION

Reactive systems are those that maintain an ongoing inter-
action with their environment at a speed dictated by the latter.
Examples of such systems include many kinds of networked
and embedded systems such as web servers, network routers,
sensor nodes, and autonomous robots.

Even as we increasingly rely on the correct operation of
such systems, it is becoming ever harder to make them entirely
bug-free before deployment. There are three major challenges.
First, traditional offline verification and testing tools are unable
to keep up with growing system complexity. Second, the
environments in which embedded and networked systems
operate is often unpredictable and it is hard to model them
precisely for verification and testing. Finally, with the advent
of software-as-a-service and increasing use of reconfigurable
hardware, both software and hardware systems change much
faster than before, so that a component that worked earlier
might no longer do so after an update.

There is therefore a need to construct autonomic reactive
systems that can (1) monitor themselves online and detect
failures arising from design and program faults (bugs), (2)
diagnose and recover from such failures, as well as (3) learn
from failures so as to repair themselves over a period of
time. This paper is mainly concerned with the third item.
Specifically, we propose and demonstrate a formal, algo-
rithmic approach to constructing autonomic reactive systems.
This work complements a growing body of work on the first
two items, surveyed below. While our approach is generally
applicable, it is particularly suited to a class of systems whose
executions can be divided into rounds such that each round

performs a new unit of work. We make the following novel
contributions:

• Online learning as a basis for self-repair: The area of
online learning studies problems of repeatedly making
choices so as to optimize the average cost of those choices
in the long run. We show how the problem of repairing
a system can be formulated as an instance of the multi-
armed bandit problem [1], [2], a classic online learning
problem. We give a learning strategy customized to our
problem context, and prove that this strategy is near-
optimal.

• Exploiting parallelism for pro-actively exploring repair
space: With the advent of multi-core processors, there is
likely to be far more parallelism available on-chip than
most current software applications can exploit. Some of
this parallelism can be used for self-repair. We give a
framework for leveraging available parallelism for pro-
actively exploring the space of options to repair a fault.
Currently, the search for a suitable repair is only per-
formed after the failure occurs, typically manually. This
process is far too slow for online self-repair. Instead,
we propose a duplicate version of the system be run
alongside the main copy. This duplicate version morphs
itself in each round so as to explore the consequences of
a particular “fix” to the code, even when no failure has
occurred. The data thus collected can be used to guide
the online learner in selecting a good repair action when
a failure is eventually encountered.

• Fault models as a basis for defining the repair space:
The space of possible variants of a system obtained by
self-morphing can be huge; in some cases, it can be
exponential in the size of the system description. We
restrict and define the space of system variants by using a
fault model. While such an approach reduces the space of
possible repairs, it also makes it more likely that the bug
cannot be fixed within this space. Diagnostic information
about the cause of a failure that might be used to guide
system repair can also be imprecise. We therefore use
a performance metric called regret that rates a repair
strategy in terms of how well it performs with respect
to the best repair in hindsight. This metric allows us to
give theoretical guarantees about our repair strategy even
when a perfect fix does not exist.

• Demonstration on case study of network monitor: We
demonstrate the practicality of our theoretical results by

applying it to a simplified network monitor described in a
recent book on Network Algorithmics [3]. Experimental
data indicates that the repair strategy we give based
on online learning converges to the correct repair while
suffering far fewer failures on average than picking a fix
at random.

While the presented approach is mainly focussed on system
self-repair “in the field,” we note that it could be applied offline
as well. For example, it could be used as a “repair assistant”
to suggest potential bug fixes to programmers for a system
under test.
Related Work. Several projects have recently addressed the
problem of surviving failures arising from software bugs.
Rinard et al. have introduced failure-oblivious computing [4],
which seeks to execute through buffer overflow problems by
returning artificial values for reads that are out of bound.
Although potentially unsafe, they demonstrate the utility of
being able to execute through an error rather than terminating
with an exceptional condition reporting the error. The reactive
immune system [5] similarly proposed to execute through
errors by returning a speculative error code on failure. Qin et
al. [6] present Rx, a system for recovering from common bugs
in commodity software, such as web servers, such as buffer
overruns, races, and memory corruption. The main idea is to
change the controllable part of the environment, namely the
operating system, by providing safe versions of system and
library calls for use during rollback and recovery. However,
these approaches do not generalize beyond the considered bug
classes and there is no use of online machine learning.

Researchers have successfully demonstrated the use of
practical machine learning and statistical monitoring to de-
tect and diagnose system failures (e.g., [7], [8]). Our work
complements these efforts by starting where they finish, viz.,
by performing online system repair.

Easwaran et al. [9] discuss steering, a technique for predict-
ing failures and taking evasive action in advance, in the context
of discrete event systems. The authors build upon previous
work on run-time verification [10], [11] and instead focus on
constructing a steerer whose lookahead is more than enough
to compensate for communication latency between the steerer
and the system. Unlike our work, there is no use of online
learning, and the results are restricted to finite-state systems.

Model-based methods involve the synthesis of fault diagno-
sis and recovery components from high-level descriptions [12],
[13]. An example of a model-based system is Livingstone
developed by Williams and Nayak [14]. Their work primarily
focuses on device faults (such as in sensors and actuators),
as opposed to the design/program errors that are the subject
of this paper. Demsky et al. [15], [16] present the concept of
data-structure repair, which uses a model-based approach to
maintaining invariant properties of data structures at run-time
in the face of errors introduced by buggy code. Joshi et al. [17]
give a model-based approach to recovering distributed systems
from failures based on partially observable Markov decision
processes.

Several projects have explored ways to design computers

to recover quickly from transient run-time failures, mainly
targeted towards Internet services; an example being the work
on reboot-only systems [18], Our work is more theoretical and
focussed on deterministic errors.

II. FRAMEWORK

This section defines the terminology and notation used in
this paper, and gives an overview of our approach.

A. Terminology
We use the taxonomy for dependable and secure computing

given by Avizienis et al [19].
A system is an entity that interacts with other entities

(systems), including hardware, software, human beings, and
the physical world. These other systems form its environment.

The focus of this paper is on making systems robust from
bugs that a designer/programmer might introduce into the
system description, especially those bugs that are deterministic
in nature whose effects cannot be eliminated just by rollback
and replay. In fact, the deterministic nature of such bugs makes
it likely that systems running identical code will fail in the
same (correlated) way, and those correlated failures could even
be triggered by a malicious party.

A failure occurs in a system when its behavior deviates from
the specification. The part of the system state that exhibits this
deviation is the error. The adjudged or hypothesized cause of
an error is called a fault.

The system M is formally modeled as a transition system,
represented as a tuple (S,A, δ, I), where

• S is the set of system states;
• A is the set of system actions;
• δ ⊆ S ×A → S is the transition function that describes

the next state of the system that results from performing
an action in the current state; and

• I is the set of initial states of the system.
The above system model is standard. Formally, an action
is a predicate over two states (current and next). Examples
of actions include system calls, message sends and receives,
incrementing a hardware counter, setting a bit, etc.

The only assumption we make about the system M is that
it obeys a state-renewal property. Specifically, after startup
and initialization, the system behavior (also termed as run or
execution) can be divided into rounds, each of which begins
in a “valid” start state and is of finite, but arbitrary, length.
A valid start state is defined by a state invariant Istart. This
is typical of many reactive systems, whose runs are infinite,
but are composed of terminating sub-computations performed
within a non-terminating sense-compute-respond loop. One
ways to view this assumption is that M always generates some
output, even if that is not the correct output.

Formally, each minimally correct behavior (trace) of the
system must be a sequence of states and actions taking the
form

s0 a1 s1 a2 . . . ai1 si1 ai1+1 si1+1 . . . ai2 si2 ai2+1 si2+1

where

• s0 ∈ I ;
• si = δ(si−1, ai);
• ∀j ∈ 1, 2, 3, . . ., sij

∈ Istart.
The finite sub-trace starting at sit

and ending before sit+1

is termed as round t. We make a distinction here between
the initial state of the system (s0) and the state in which the
system starts its state-renewal behavior (si1) to model system
“boot-up.”

The reason we require the state-renewal behavior is so that
errors do not accumulate to the extent that the system becomes
unrecoverable. By requiring the system to return to a valid
start state in each round, we place a minimal correctness
requirement on each execution. We note that each round can
be viewed as performing a “unit of work.” An example of a
system exhibiting this behavior is a network packet processing
system performing a task such as a packet forwarding, where a
new packet is processed in each round of execution. Similarly,
reactive sensor-actuator control programs operate in a sense-
compute-respond loop, the start of a new iteration corresponds
to the program returning to the head of the loop, so Istart is
simply a predicate on the program counter.

Note that even systems that do not exhibit the above
behavior could potentially be viewed in this way. Each round
could be a finite, but arbitrary-length prefix of a run of the
system that prematurely ends in failure, with system reboot
leading to the start of a new round. We can potentially model
micro-reboot based approaches [18] in this manner.

Note that we are making no assumptions about the environ-
ment, including about the distribution of inputs it provides or
as to its adversarial nature.

B. Overview of Approach
Figure 1 depicts the form of the self-repairing system in our

approach. There are three main components.

Environment input System output

output

failure /
 success

output

 success
failure /

recommended
repair action

Checker
Module

Self-Morphing
Variant of M

Implementation M

Fig. 1. Components of a self-repairing system based on online learning

The implementation module M is the original version of

the system that is to be deployed and/or tested. It receives
input from the environment and generates output.

The checker module verifies that the output generated by
M is correct. The checker module can be a simpler (unopti-
mized), but reliable version of the implementation that is either
formally verified to be correct or otherwise assumed to be the
specification; in this case, it may be unable to keep up with
M but can randomly pick the rounds in which it checks M’s
output. The checker can alternatively be a collection of run-
time monitors that check continuously that system invariants
and assertions are satisfied. The status of the check (either
“failure” or “success”) is returned to M so that it may take
corrective action. The vast body of literature on run-time
verification [10] can be leveraged in the design of the checker
module.

The third component is a variant of M that is instrumented
so as to modify its transition function δ in accordance with
a fault model. In each round t, this variant, denoted M,
also runs on the environment input. However, its output is
generated solely for verification by the checker module. Based
on the failure/success status returned by the checker module,
M decides whether and how to modify its transition function
for the next round t + 1. The algorithm that M uses to make
this decision is termed as a repair strategy.

The repair strategy must pick a repair action, i.e., a fix to
M, from a space of possible repair actions of size m. This
space is defined by a fault model. For example, one possible
fault model is that a single variable is initialized to the wrong
constant from amongst a set of m constants. With programmer
assistance in writing “patterns” of repairs, or by use of static
analysis tools, the space of actions could be narrowed down to
a tractable size. We will assume in this paper that the value of
m is small (polynomial in the system description); techniques
to ensure this are left to future work.

A correct or perfect repair is one which, when applied to
the system, ensures that the system will satisfy its specification
for all inputs. If the fault model is imprecise, it is likely that a
correct repair will not exist. Therefore, we define our measure
of performance as a relative measure that compares against
the number of failures suffered if the best possible fix under
the assumed fault model had been initially applied to M. This
relative measure is called regret. We elaborate on this point in
the next section.

If M suffers failure, it repairs its code by loading an update
recommended by M according to the repair strategy of the
latter. The advantage is that M can self-patch itself based on
the “experience” gained by M over many rounds of execution,
without having to wait a long time for a human supervisor to
intervene. However, this approach is only as effective as the
repair strategy employed by M.

As a sidenote, we observe that the approach can also be
generalized to a setting where M and the checker are running
at a server physically separate from M, and possibly in an
offline diagnosis and repair mode. All the results we discuss
in the subsequent sections also carry over to this setting.

III. ONLINE LEARNING: FORMULATION AND
THEORETICAL RESULTS

In this section, we consider how the online repair process
can be optimized by use of online learning. In particular, one
can view the repair problem as one of learning from mistakes.
We leverage existing results in computational learning theory
(e.g., [2], [20]). System rounds correspond to the “trials” in
which learning proceeds.

A. The Multi-Armed Bandit Problem
The problem we face is to pick a repair action based on

the history of how candidate repair actions have performed
on past inputs received from the environment. This problem
maps naturally to an online learning problem referred to in
the literature as the multi-armed bandit problem. In the bandit
problem, originally proposed by Robbins [1], a gambler plays
on a set of m slot machines over several rounds, choosing in
each round a specific slot machine to play on. At the start of
each round, he chooses a machine (a “one-armed bandit”) and
pulls its arm. He receives a reward at the end of the round.
The gambler’s aim is to maximize the sum of the rewards
he receives over a sequence of rounds. Rewards can be non-
positive, thus modeling costs.

The mapping to our situation is easily seen. The gambler
corresponds to the the module M, and the slot machines
correspond to repair actions. If the chosen action correctly
avoids the error in that round, it receives a reward of 1,
otherwise 0.

In our setting, the rewards depend largely on the inputs
selected by the environment. In the basic bandit problem, the
rewards for the arms are assumed to be drawn independently
from a fixed, but unknown, distribution. However, as Auer et
al. [2] argue, in many computer systems settings an alternative
formulation is desirable. They term this formulation as the
adversarial bandit problem, which is essentially the same as
the problem stated above except that no statistical assumptions
are made about the rewards. It is only assumed that each
slot machine is initially assigned an arbitrary and unknown
sequence of rewards, one at each time step. Thus, we use
the adversarial bandit problem formulation given by Auer et
al. [2] as the starting point for devising a learning-based repair
strategy.

Our measure of performance is relative to the best repair
action that could have been chosen from amongst the m
possibilities and applied to M initially. This measure is termed
as regret, and is formally defined as follows:

Definition 1 The regret of a repair strategy σ is the difference
between the expected number of failures of a system that uses σ
and the number of failures suffered when using, from the start,
the best repair action (receiving highest reward, in hindsight).

Note that the expectation in the above definition is taken over
the random choices made by the repair strategy, not by the
environment in choosing its inputs.

The bandit problem illustrates well the trade-off between
exploitation and exploration. On the one hand, the gambler
needs to try out all the arms enough (exploration) in order
to discover whether one of them can get a high cumulative
reward. On the other hand, too much exploration will not allow
the gambler to exploit the best arm often enough.

In our context, we leverage parallelism and use M to pro-
actively perform exploration of the repair space before M
actually encounters a failure. In other words, M gets to exploit
the results of exploration performed by M.

B. Repair Strategies
Suppose the system is run for T rounds of execution. In

the worst case, if there exists an input that causes the system
M to fail, an adversarial environment could always pick that
input to feed to M. In other words, M can end up suffering
T failures.

We now present two strategies that achieves o(T) regret
when m lnm = o(T). That is, if the number of actions m
is small enough that the quantity m ln m is asymptotically
strictly less than the number of rounds T , sub-linear regret
can be achieved. The first strategy, termed Exp3, was given by
Auer et al. [2]. The second, termed CE3, is a variant of Exp3
that uses a cost-based model rather than a reward-based one.
As we explain later in this section, CE3 is more suitable for
practical implementation, and is a contribution of this paper.

In the sequel, we refer to repair actions simply as “actions,”
and identify them by their indices, which range from 1 to m.

The Exp3 Strategy. Auer et al. [2] present the Exp3 strategy
(which stands for “exponential-weight algorithm for explo-
ration and exploitation”). A core idea is to use weights to
track the performance of actions over a sequence of rounds.
A larger relative weight for an action indicates a history of
better performance for that action.

A description of this strategy is given in Figure 2(a). At
the start of each round t, Exp3 draws an action it according
to a probability distribution p1(t), p2(t), . . . , pm(t) over the
actions. This distribution is a mixture of the uniform distri-
bution and one that assigns to each action a probability mass
based on the weight associated with that action. The mixture
is done based on a parameter γ ∈ (0, 1]. Intuitively, the use
of the weight-based probability mass is in order to facilitate
exploitation, while the uniform distribution is mixed in so as
to ensure exploration of the action space.

If the chosen action it causes the system to suffer a failure,
its weight (and those of all the other actions) remains the same
for the next round t+1. However, if the system works correctly
with action it, the weights are increased by an exponential
factor that reflects the estimated reward. Thus, in this case,
the weights can only increase, never decreasing below 1. Note
further that if, after a point, the chosen action does extremely
well (the algorithm settling into exploitation mode), its weight
will increase to +∞.

Auer et al. [2] prove that the Exp3 strategy can achieve
a o(T) regret if m ln m = o(T), as stated in the following

Strategy Exp3

Parameter: γ ∈ (0, 1]
Initialization: wi(1) = 1, for all i = 1, 2, . . . , m.

At each round: t = 1, 2, 3, . . .:
1) For each i = 1, 2, . . . , m, let

pi(t) = (1 − γ)
wi(t)

∑m

j=1 wj(t)
+

γ

m

2) Draw action it from the set {1, 2, . . . , m}
randomly according to the probabilities
p1(t), p2(t), . . . , pm(t).

3) Receive reward Rit
given by

Rit
=

{

0 if action it fails,
1 otherwise.

4) For j = 1, 2, . . . , m, set

R̂j(t) =

{

Rj(t)/pj(t) if j = it,

0 otherwise.

wj(t + 1) = wj(t) · exp

(

γ

m
R̂j(t)

)

(a) Exp3

Strategy CE3

Parameter: γ ∈ (0, 1)
Initialization: wi(1) = 1, for all i = 1, 2, . . . , m.

At each round: t = 1, 2, 3, . . .:
1) For each i = 1, 2, . . . , m, let

pi(t) = (1 − γ)
wi(t)

∑m

j=1 wj(t)
+

γ

m

2) Draw action it from the set {1, 2, . . . , m}
randomly according to the probabilities
p1(t), p2(t), . . . , pm(t).

3) Receive cost Cit
where

Cit
=

{

1 if action it fails,
0 otherwise.

4) For j = 1, 2, . . . , m, set

Ĉj(t) =

{

Cj(t)/pj(t) if j = it,

0 otherwise;

wj(t + 1) = wj(t) · exp

(

− γ

m
Ĉj(t)

)

.

(b) CE3

Fig. 2. Two Repair Strategies. The weight wi tracks how repair action i performs over multiple rounds. In the case of CE3, the weights can only decrease.

statement of their theorem.

Theorem 1 (Auer et al. [2]) For any T > 0, suppose Exp3
uses the input parameter γ = min{1,

√

m ln m
(e−1)T }. Then, Exp3

achieves a regret that is O(
√

Tm lnm).

Auer et al. [2] also prove a lower bound on the regret
achievable by any strategy, which we state in the following
theorem.

Theorem 2 (Auer et al. [2]) For any m ≥ 2 and T > 0, there
exists a distribution over the assignment of rewards such that
the expected regret of any strategy is Ω(

√
mT).

Notice the
√

ln m gap between the bounds. However, the
gap is small enough that it is not significant in practice. The
regret achieved by Exp3 is thus near-optimal.

There are however some problems with a practical imple-
mentation of the Exp3 strategy that we must consider:

1) Time/Space complexity: Exp3 requires O(m) space to
store weights. The time required to sample accord-
ing to the probabilities pi can however be reduced
to O(log∗ m), using a clever sampling and weight
maintenance algorithm given by Matias et al. [21]. For
large action sets, the space expense can be significant;
however, as noted earlier, we leave that to future work.

2) Unnecessary updates to weights: Note that the pi prob-
abilities will change while going from round t to round
t+1 only if the weight of action it changes. The weight
wit

, in turn, only changes if it succeeds. Thus, even after
Exp3 converges to a subset of correct actions, assuming
they exist, the weights will continue to increase to +∞,
thus incurring an unnecessary overhead.
A secondary point is that an implementation using
floating-point arithmetic would suffer overflow-related
inaccuracies, in spite of any re-normalization techniques
one might apply. These inaccuracies would have an
adverse impact on probability estimates, and thus on
the convergence of the algorithm. Actions that do well
continue to get selected in subsequent rounds, making
overflow highly likely. If instead the weights of actions
that repeatedly perform badly are decreased, underflow
to zero can occur, but that is less likely and more
easily handled through re-normalization because badly-
performing actions are unlikely to be chosen in the
future.

In order to eliminate the latter problem, we have designed
a variant of Exp3 that uses a cost-based model and
decreases weights rather than increasing them. Auer et al. [2]
recommend that costs in [0, 1] can be modeled as negative
rewards in [−1, 0] and handled by Exp3 after translation to

[0, 1]. That approach does not resolve the above problem.

Cost-Based Exp3 Strategy. We present a cost-based variant
of the Exp3 strategy, which we term CE3.

Figure 2(b) describes this strategy. As can be seen from the
figure, there are two main points of difference:

1) In CE3, the chosen action it incurs a cost of 1 when it
fails, otherwise no cost is incurred. Exactly the opposite
happens in Exp3.

2) The weight of the chosen action needs to be updated
only if it fails. In that case, the weight is decreased by
an exponential factor.

Thus, the cost-based strategy CE3 avoids the problems with
Exp3 except for the O(m) space cost per round.

Kleinberg [22] has also given a cost-based variant of Exp3
that differs from CE3 in the weight update rule, but which
also updates a weight of an action only when it fails.

In spite of the changes, CE3 also yields similar guarantees
on the regret as Exp3. We state this in the following theorem:

Theorem 3 For large enough T > 0, suppose that m ln m <

(e−1)T and that CE3 uses the input parameter γ =
√

m ln m
(e−1)T .

Then, CE3 achieves a regret that is O(
√

Tm lnm).

Observe that if m ln m = o(T), CE3 achieves a regret of o(T).
The proof of the above theorem, given below, uses a similar

technique as the proof given for Theorem 1 by Auer et al. [2],
but there are also some technical differences.
Proof: We use the following facts which can be easily derived
from the description of CE3 in Figure 2(b).

Ĉi(t) ≤ 1

pi(t)
≤ m

γ
(1)

m
∑

i=1

pi(t)Ĉi(t) = pit
(t)

Cit
(t)

pit
(t)

= Cit
(t) (2)

m
∑

i=1

pi(t)Ĉi(t)
2 ≤ Ĉit

(t) =
m

∑

i=1

Ĉi(t) (3)

Let Wt =
∑m

i=1 wi(t). Note that W1 = m, while Wt ≥ Wt+1

since the weights can only decrease.
For an (arbitrary) action j, since wj(T+1) ∈ [0, 1] and wj(T+
1) ≤ WT+1, we have

ln
W1

WT+1
≤ ln

W1

wj(T + 1)

= ln W1 − ln wj(T + 1)

= ln m − γ

m

T
∑

t=1

(−Ĉj(t))

Thus, we have the following upper bound inequality:

ln
W1

WT+1
≤ ln m +

γ

m

T
∑

t=1

Ĉj(t) (4)

We next derive a lower bound on ln W1

WT+1
.

Wt+1

Wt

=

m
∑

i=1

wi(t + 1)

Wt

=

m
∑

i=1

wi(t)

Wt

· exp

(

− γ

m
Ĉi(t)

)

=

m
∑

i=1

pi(t) − γ
m

1 − γ
· exp

(

− γ

m
Ĉi(t)

)

Using the inequality e−x ≤ 1−x+(e−2)x2 (for 0 ≤ x ≤ 1)
and Inequality 1 we get
Wt+1

Wt

≤
m

∑

i=1

pi(t) − γ

m

1 − γ
·
(

1 − γ

m
Ĉi(t) +

(e − 2)γ2

m2
Ĉi(t)

2

)

Expanding the above expression, and simplifying while using
Equation 2 and Inequality 3, we get
Wt+1

Wt

≤ 1 − γ

m(1 − γ)
Cit

(t) +
(e − 1)γ2

m2(1 − γ)

m
∑

i=1

Ĉi(t)

≤ exp

(

− γ

m(1 − γ)
Cit

(t) +
(e − 1)γ2

m2(1 − γ)

m
∑

i=1

Ĉi(t)

)

where the last inequality is obtained using the fact 1+x ≤ ex

for all x ∈ R.
Taking natural logarithms on both sides, we obtain

ln
Wt

Wt+1
≥ γ

m(1 − γ)
Cit

(t) − (e − 1)γ2

m2(1 − γ)

m
∑

i=1

Ĉi(t)

Adding the inequalities for t = 1, 2, 3, . . . , T , we get

ln
W1

WT+1
≥ γ

m(1 − γ)

T
∑

t=1

Cit
(t)− (e − 1)γ2

m2(1 − γ)

T
∑

t=1

m
∑

i=1

Ĉi(t)

Note that
∑T

t=1 Cit
(t) is the cumulative cost incurred by the

CE3 algorithm, which we will denote by CCE3. Thus, rewriting
the above, we get the desired lower bound inequality:

ln
W1

WT+1
≥ γ

m(1 − γ)
CCE3 −

(e − 1)γ2

m2(1 − γ)

T
∑

t=1

m
∑

i=1

Ĉi(t) (5)

Combining Inequalities (4) and (5), and taking expectation on
both sides while noting that E[Ĉi(t)] = Ci(t) (by Equation 2),
we get

ln m +
γ

m

T
∑

t=1

Cj(t)

≥ γ

m(1 − γ)
E[CCE3] −

(e − 1)γ2

m2(1 − γ)

T
∑

t=1

m
∑

i=1

Ci(t)

Since j is an arbitrary action, the above equality also holds
for j = b, where b is the best action in hindsight over the T
rounds of execution. The quantity

∑T

t=1 Cj(t) is thus the cost
incurred by the system using the best action, which we will
denote as Cbest. Further, switching the order of summation on
the RHS and since Ci(t) ≤ 1, we obtain

ln m +
γ

m
Cbest ≥ γ

m(1 − γ)
E[CCE3] −

(e − 1)γ2

m2(1 − γ)
mT

=
γ

m(1 − γ)
E[CCE3] −

(e − 1)γ2

m(1 − γ)
T

Multiplying throughout by m
γ

, and using 1
1−γ

≥ 1, we get

m ln m

γ
+ Cbest ≥ 1

1− γ
E[CCE3] −

(e − 1)γ

1 − γ
T

≥ E[CCE3] − (e − 1)γT

Rewriting, we obtain an upper bound on the regret of CE3:

E[CCE3] − Cbest ≤
m ln m

γ
+ (e − 1)γT (6)

It is easily seen that for γ =
√

m ln m
(e−1)T , CE3 achieves a regret

that is O(
√

Tm lnm).

Uniform Random Strategy. For comparison in our experi-
mental evaluation, we also define the following simple ran-
domized strategy:

UR: Pick a repair action from the set of m actions
uniformly at random.

It is easy to show that, in the worst case, if there is no correct
repair under the fault model, then the UR strategy can suffer
Θ(T) failures over T rounds. The key insight is that UR
does not track past performance of actions; it can pick an
imperfect action infinitely often and the environment can force
that action to fail each time.

Theorem 4 The expected regret of the UR strategy for a
worst-case environment over T rounds is Θ(T).

IV. CASE STUDY: A NETWORK MONITOR

We now consider how the CE3 strategy performs in practice.
Our case study is a simplified network monitor, a packet filter-
ing system to detect malicious traffic, taken from Varghese’s
book on Network Algorithmics [3].

The network monitor seeks to drop packets that match a
syntactic pattern of malicious behavior while forwarding all
other packets. The data payload of a packet is viewed as
a URL of length L that could potentially have malicious
code embedded in it. We view this payload as a sequence
of characters (bytes) of length L, with the last character being
a null character. For each possible character c, there is an
associated threshold τc that specifies that c must appear no
more than τcL times in the packet. A malicious packet is
defined as one that violates this threshold restriction for some
character.

Varghese steps the reader through several implementations
of this network monitor, from very simple and slow, to a
cleverly optimized version. For our case study, we chose the
most highly optimized version as the implementation under
online test, and refer to it as Impl. The second-most optimized
variant is considered to be the correct specification and is used
to check the output of Impl; we refer to it as Spec. We begin
by describing these versions in Section IV-A.

A. Two Versions
Both Spec and Impl are finite-state machines that make use

of lookup tables (arrays).
Figure 3(a) depicts the operation of Spec. Spec makes use

of two lookup tables. The first, thresh arr, stores thresholds
for each of the 256 possible characters in the form of shifts
rather than as floating-point fractions. The second table is an
array count arr of length 256 storing for each character c a
count of the number of times c was encountered in this packet.
In each round, Spec begins by initializing count arr with
zeroes, one entry per cycle. Thus, Spec takes 256 cycles just
to initialize its count arr. After initialization, it proceeds to
read and process the bytes in the packet, one byte per cycle.
For each character c that is read, the entry count arr[c] is
incremented. As the data payload is of length L, this process
takes L cycles. By calculating the ratio of the count over the
threshold on-the-fly while reading each character, a final pass
through the count array to check thresholds is avoided. Thus,
the decision on whether to drop or forward the packet is made
in 256 + L cycles.

Impl runs much faster than Spec, in 1 + L cycles. Its
operation is shown in Figure 3(b). The key insight used in
Impl is to delay initialization of count arr at the cost of using
slightly more storage. Briefly, Impl initializes only one entry
in count arr per round of execution (packet). However, it
also maintains a register to keep track of a “global generation
count,” which is the current round number (modulo maximum
storable value in the register), as well as an array of generation
counts for the last time each character’s entry in count arr

was updated. If the generation count of the currently read
character does not match the global generation count, that
character’s count arr entry is set to 1 (initialization of 0
plus the first occurrence), otherwise, it is incremented as usual.
By maintaining a large enough generation register, Impl can
process each packet in 1+L cycles while avoiding wraparound
issues with the global generation count.

For further details on the above case study, we refer the
reader to the book [3].

B. Fault Injection and Verification
For our experimental evaluation, we created three buggy

versions of Impl, each leading to packets being incorrectly
classified.

The first buggy version was obtained by injecting a fault into
a single assignment in the code for Impl. Instead of setting the
count arr entry to 1 when a generation count mismatch is
detected, we set it to 0. Thus, an off-by-one error is introduced
leading to a malicious packet being incorrectly forwarded.

The second buggy version was created similarly, this time
for when the generation count matches up. Instead of incre-
menting the count arr entry for character c by 1 when c is
encountered, we leave the count unchanged.

Finally, the third buggy version was created by injecting
both of the above faults.

We first attempted to formally verify the correctness of Impl,
checking that it generated equivalent results to Spec for a

(a) Checker Module Spec (b) Optimized Implementation Impl

Fig. 3. Two implementations of a simplified network monitor. Figures reproduced from [3].

packet. The state-of-the-art Cadence SMV model checker [23]
was used for this purpose. However, SMV ran out of 2 GB of
memory even for a greatly simplified version with L = 8, only
8 possible characters, and a 3-bit generation count register.

We then used simulation to test Impl against Spec on
randomly generated packets, where the characters in the packet
were selected uniformly at random and the two variants run
in tandem for several thousand rounds. This random testing
successfully found mismatches between the answers generated
by Impl and Spec, but diagnosis and repair remained to be
done.

C. Online Error Detection and Repair
Consider using Spec to check online the results generated

by Impl. Since Spec runs 255 cycles slower than Impl on
each packet, we cannot check the output of Impl on every
packet. However, this application is one in which a few failures
can be tolerated (amounting to a few dropped packets), but
it would be unacceptable to drop several thousand benign
packets. Thus, for example, we can use Spec to check every
other output generated by Impl.

While Spec can be used to detect errors, it cannot take
over from Impl on detecting a failure without a significant
performance loss – it would need to drop every other packet
until Impl is repaired. Our goal in this experiment was to
investigate using the CE3 strategy given in the preceding
section to evolve Impl towards a correct system over several
rounds of execution.

We created an overall network monitor comprising three
modules executing in parallel: Impl, Spec, and Impl, where
Impl is a self-morphing version of Impl. Using backward
slicing from the statements in the code that make the
“drop”/“forward” decision on a packet, we identified that the
updates to the count array were the only statements that
could affect the decision, since the threshold array entries
remain constant. These update statements to the count array
are exactly the two statements in which faults were injected,
as described in Section IV-B.

The fault model assumed in the design of Impl is that at
most one update statement is wrong. We deliberately made this

choice so that the fault model is imprecise if both faults are
injected, and we can measure the impact of that imprecision.
Thus, in each round, Impl changes one of the two update
statements in its code, choosing from a space of 2L candidate
repair statements (actions). This space comprises statements
that set the count array entry to an arbitrary integer constant
in [0, L− 1] as well as those that increment the entry by any
integer in [0, L− 1].

The above set of repair statements is small enough that the
space requirements for implementing CE3 in Impl are only
linear in the length of the packet. For the first two buggy
versions with a single injected fault, it includes the correct
repair. Thus, it forms a useful space of possible repairs for the
buggy versions under investigation in this case study.

Note that our approach requires a network monitor to use
two additional cores for Spec and Impl for every core used for
Impl. We believe that the parallelism available in the future can
well support this redundancy. In fact, the Cisco Silicon Packet
Processor already has an array of 188 programmable RISC
cores [24].

D. Experimental Results
We implemented a simulator for the system comprising

Impl, Spec, and Impl, as described above. To experiment with
this system at a few different scales, we parameterized the
number of characters allowed in the URL (denoted N), varying
it over the set {64, 128, 256}. To simplify the design of the
overall system, we set L to be equal to N . Thus, Impl needs
N +1 cycles to process a single packet, while Spec needs 2N
cycles.

Each simulation of an execution of the system was run
for one million rounds, where each round comprises 2N + 2
cycles. Thus, Impl processes two packets in each round, the
first of which is also processed by Spec in order to check the
result of Impl. Packets were generated uniformly at random as
described earlier. Spec uses the first 2N cycles to process the
packet received at the start of the round, and the remaining 2
cycles to check the results of Impl and Impl; in the latter case,
it updates the weight of the repair action if needed. The self-
morphing variant Impl also processes only the packet received

Repair N = 64 N = 128 N = 256
Strategy Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

None 423.30 10.55 1020.00 23.76 2163.63 42.54
CE3 29.73 20.53 85.42 57.01 348.35 224.21
UR 254.70 293.63 464.55 440.34 992.65 1081.26

(a) Fault 1

Repair N = 64 N = 128 N = 256
Strategy Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

None 471.50 11.02 1134.25 25.28 2423.18 47.58
CE3 36.61 27.93 75.62 52.46 330.33 199.41
UR 301.04 302.70 479.97 444.48 864.81 963.73

(b) Fault 2

Repair N = 64 N = 128 N = 256
Strategy Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

None 470.95 18.05 1123.42 32.39 2427.99 211.15
CE3 817.20 49.41 2239.26 94.55 6336.40 221.54
UR 6535.87 366.94 30917.90 1307.95 120458.61 3607.66

(c) Both Faults

Fig. 4. Experimental data obtained by simulations with randomly generated packets. The numbers shown in the tables are the measured average and
standard deviation of the number of failures suffered by Impl while using the indicated repair strategy. In the case of Tables (a) and (b), these also coincide
with the regret as there exists a valid repair under the fault model.

at the start of the round, using the remainder of the round to
run CE3 to select the repair action for use in the next round.

In all, we performed 27 experiments. In each experiment,
we picked a combination of a buggy version of Impl (out of
the 3 described in Section IV-B), one of the 3 possible values
of N , and one of 3 possible repair strategies (CE3, UR, or
no repair). For each experiment, we ran 100 simulations, each
with a different random seed. At the end, we measure the
mean and standard deviation of the number of failues of Impl

obtained with each repair strategy.
Our results are shown in Figure 4. We note that for a precise

fault model (i.e., when only a single fault is injected) the CE3
strategy helps to reduce the number of failures of Impl as
compared to doing no online repair at all; the improvement
ranges from 15 times fewer failures for N = 64 to about a
factor of 7 fewer failures for N = 256. However, when both
faults are injected, the CE3 strategy does a bit worse, but is
still within a factor of 3 of the number of failures suffered
by the unrepaired system. We believe that this factor can be
brought down significantly as the number of rounds increases.

We note that for a single fault injection (Figures 4(a)
and (b)) the CE3 repair strategy does much better than the
UR strategy for all combinations of buggy implementations
and N . Both the average and the standard deviation of the
number of failures suffered by Impl under the CE3 strategy
are significantly less than under the UR strategy, ranging from
a factor of 10 for N = 64 to a factor of about 3 for N = 256.

Significantly, notice from Figure 4(c) that when both faults
are injected, there is no single correct repair statement (both
updates to the count array must be repaired). In this case, the
CE3 strategy does much better than UR, suffering 20 times
fewer failures on average for N = 256.

Overall, we can conclude that if we search for a repair action
under an accurate fault model, the CE3 strategy can do much
better than either leaving the system unrepaired or picking an
action completely at random (UR).

V. CONCLUSION

In summary, this paper makes a first step towards the
construction of autonomic reactive systems based on online
learning. We have given a framework for leveraging paral-
lelism to pro-actively explore the space of repairs even before
a failure is encountered. A mapping to the well-studied multi-
armed bandit problem has been given, along with a novel cost-
based strategy for the same. An experimental evaluation with
a simplified network monitor shows that our repair strategy
can be effective.

Finally, we also mention that the applications of online
learning and the CE3 strategy presented herein go well beyond
repairing faults; for example, it can be used in auto-tuners to
improve the performance of a system as it runs.

ACKNOWLEDGMENTS

The author is grateful to Avrim Blum, Randal Bryant,
Edward Lee, Sharad Malik, and George Varghese for helpful
discussions. The author acknowledges the support of the
Gigascale Systems Research Focus Center, one of five research
centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program. This research
was also supported in part by the National Science Foundation
and a grant from Microsoft Research.

REFERENCES

[1] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 55, pp. 527–535,
1952.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48–77, 2002.

[3] G. Varghese, Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices. Morgan Kaufmann Publishers,
2005.

[4] M. C. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee, “Enhancing server availability and security through failure-
oblivious computing,” in 6th Symposium on Operating System Design
and Implementation (OSDI), 2004, pp. 303–316.

[5] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis, “Build-
ing a reactive immune system for software services,” in Proceedings of
the USENIX Annual Technical Conference, 2005, pp. 149–161.

[6] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: Treating bugs as
allergies - a safe method to survive software failures,” in Proceedings
of the 20th ACM Symposium on Operating Systems Principles (SOSP),
2005, pp. 235–248.

[7] B. R. Liblit, “Cooperative bug isolation,” Ph.D. dissertation, University
of California, Berkeley, Dec. 2004.

[8] E. Kiciman, “Using statistical monitoring to detect failures in internet
services,” Ph.D. dissertation, Stanford University, September 2005.

[9] A. Easwaran, S. Kannan, and O. Sokolsky, “Steering of discrete event
systems: Control theory approach,” in Proc. Workshop on Run-time
Verification (RV), 2005.

[10] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” IEEE Transactions on Software
Engineering, vol. 30, no. 12, pp. 859–872, December 2004.

[11] K. Havelund and G. Roşu, “An overview of the runtime verification tool
Java PathExplorer,” Formal Methods in System Design, vol. 24, no. 2,
pp. 189–215, 2004.

[12] B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott, “Model-
based programming of intelligent embedded systems and robotic space
explorers,” Proceedings of the IEEE, vol. 91, no. 1, pp. 212–237, 2003.

[13] J. de Kleer and J. Kurien, “Fundamentals of model-based diagnosis,” in
SafeProcess 2003, 2003.

[14] B. C. Williams and P. P. Nayak, “A model-based approach to reactive
self-configuring systems,” in AAAI/IAAI, Vol. 2, 1996, pp. 971–978.

[15] B. Demsky and M. C. Rinard, “Automatic detection and repair of
errors in data structures,” in Proceedings of the 2003 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), 2003, pp. 78–95.

[16] ——, “Data structure repair using goal-directed reasoning,” in 27th
International Conference on Software Engineering (ICSE), 2005, pp.
176–185.

[17] K. R. Joshi, W. H. Sanders, M. A. Hiltunen, and R. D. Schlichting,
“Automatic recovery using bounded partially observable markov deci-
sion processes,” in International Conference on Dependable Systems and
Networks (DSN), 2006, pp. 445–456.

[18] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microre-
boot - a technique for cheap recovery,” in 6th Symposium on Operating
System Design and Implementation (OSDI), 2004, pp. 31–44.

[19] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan.-
Mar. 2004.

[20] N. Littlestone, “Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm.” Machine Learning, vol. 2, no. 4, pp.
285–318, 1987.

[21] Y. Matias, J. Vitter, and W.-C. Ni, “Dynamic generation of discrete
random variates,” Theory of Computing Systems (TCS), vol. 36, no. 4,
pp. 329–358, 2003.

[22] R. D. Kleinberg, “Online decision problems with large strategy sets,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2005.

[23] “Cadence SMV model checker,” http://www.kenmcmil.com/smv.html.
[24] Cisco Systems White Paper, “Requirements for

next-generation core routing systems,” Available at
http://www.cisco.com/warp/public/cc/pd/rt/
12000/clc/prodlit/reqng wp.pdf, URL circa March 2007.

