An Autonomic Service
Discovery Mechanism to
Support Pervasive Device
Accessing Semantic Grid

Tao Guan*, Ed Zaluska, David De Roure

School of Electronics and Computer Science
University of Southampton

Southampton, UK

{tg04r, ejz, dder}@ecs.soton.ac.uk
*Corresponding author

Abstract: One of the essential challenges of integrating pervasive devices into Grid
environment to enhance pervasive device capabilities is that pervasive devices need to
locate, find, select and invoke the appropriate Grid services in an autonomic and flexi-
ble way. However, at this stage, both Grid service description and discovery standards
are still at an immature stage. This paper presents the research work of building a Grid
service discovery middleware with Semantic Web technologies. Semantic Web technolo-
gies benefit the demand of an efficient discovery of various Grid services for pervasive
devices by adding the machine-processable explicit knowledge into the interaction be-
tween pervasive devices and Grid services. The middleware has been implemented and
interact correctly with other service-oriented pervasive Grid middleware, providing an
enhanced Grid access for pervasive devices.

Keywords: Pervasive Devices; Grid Services; Semantic Service Matching.

1 INTRODUCTION

Grid computing enables versatile resources around the
world to be effectively shared, used and managed, instead
of limiting users to local equipments. As a service-oriented
approach is increasingly adopted, many systems which can
discover Grid resources on-the-fly and access them dynami-
cally come into existence. At the same time, two significant
trends are in the area of ubiquitous computing with rapid
improvements of the modern computing technology: more
pervasive devices are deployed; more integration and com-
putation power is required. Although new generation per-
vasive devices are gradually improving their absolute capa-
bilities (e.g. mobile phones, PDAs), it is still a challenging
objective to create complicated applications on them be-
cause pervasive devices are typically resource-constrained,
relative to their static counterparts (e.g. desktops, work-
station).

One feasible solution is that pervasive devices make use
of Grid services so that pervasive users are able to access
distributed resources automatically on demand with ap-
propriate quality of service delivery. Various Grid services
enhance capabilities of pervasive devices and complicated
tasks can be completed through user handheld devices.

However, the combination of Grid and pervasive comput-
ing models enables us to step into a new realm of high-
performance Grid access through resource-limited perva-
sive devices, and it is quite evident that a great number
of challenges are required to be solved before the vision of
building the bridge between Grid and pervasive computing
is realized. The detailed challenges are discussed in (Roure
et al. 2006). In the previous paper (Guan et al. 2006),
we discussed a system architecture which integrates per-
vasive devices into the service-oriented Grid environment
in an open and flexible way. Another important challenge
is that at present, Grid service description and discovery
mechanisms are still at an immature stage. Semantic web
technologies, providing a very considerable degree of auto-
matic processing, interoperation and integration, will help
us to implement an effective Grid service matching mech-
anism.

With the proliferation of Grid services, semantic speci-
fications of Grid services are gradually becoming a neces-
sary requirement of the automatic, flexible service provi-
sion and utilization necessary for Grid clients to perform
various tasks. Basically, it is not easy for a request to
locate required services in order to execute a task in a

Copyright (© 200x Inderscience Enterprises Ltd.

service-rich Grid environment. Semantics of Grid services
abstract top-level concepts and relationships between con-
cepts so that both service discovery and automatic conver-
sion of interaction formats between heterogeneous services
can be realized. Furthermore, a semantic definition mech-
anism provides a comprehensive representation of a variety
of Grid service aspects, building an essential foundation for
possible automatic behaviors throughout the whole Grid
service development lifecycle.

In this paper, we have presented a service matching
mechanisms by using Semantic Web technologies to sup-
port pervasive devices accessing Grid services. The rest of
this paper is organized as follows. Section 2 introduces
the related work and section 3 presents the system ar-
chitecture briefly. Section 4, 5, and 6 discuss the Grid
service matching methodology, the service description and
the service discovery algorithm detailedly, with its imple-
mentation and experimental results in section 7. Section 8
concludes our current research work and discusses further
directions.

2 Related Work

Generally speaking, there are two possible roles for per-
vasive devices in the Grid environment. The first role is
that pervasive devices are considered to be a physical in-
terface to the Grid. In this role, pervasive devices act as
the Grid service consumer, enabling users to initialize a
task on their portable devices, submit a job request, mon-
itor the job execution, and collect results from the Grid to
achieve their tasks. The second one is that pervasive de-
vices act as Grid nodes, which are Grid resource providers
rather than service consumers. No matter which role that
pervasive device is, the current mature Grid infrastruc-
ture and architecture do not take into account the design
of supporting pervasive systems because pervasive devices
had always been considered not to be well suitable as a
Grid computing interface and resource node. However, in
the past several years, many research projects and papers
have been investigating the possibility of integrating per-
vasive devices into the Grid environment (Millard et al.
2005) (Bhagyavati & Kurkovsky 2003) (Kurkovsky et al.
2004).

One of the challenges required to be overcome to imple-
ment the vision of extending pervasive devices into Grid
services is to provide a means for advertising resources
availability to enable pervasive devices to locate and find
the appropriate Grid services. Service discovery protocols
simplify the interaction between service consumers and ser-
vice providers. Various existing service discovery protocols
have been introduced during the past several years. In the
field of pervasive computing, the example description and
discovery solutions are Bluetooth Service Discovery Pro-
tocol (BluetoothSIG 2001), Jini (SunMicrosystems 2001),
and Universal Plug and Play (UPnP) (MicrosoftCorpora-
tion 2000). In the field of Web Services, Universal De-
scription Discovery and Integration (UDDI) (OASIS 2005)

is a platform-independent and XML-based registry which
enables businesses to publish service listings and discover
each other. However, all of these service discovery mech-
anisms do not support flexible matching between service
advertisements and requests, and users cannot locate ser-
vices automatically on the basis of the capabilities services
provide.

Semantic Web technologies give web services rich se-
mantic specification to enable flexible automation of ser-
vice provision and use. A number of semantic-based web
service matching mechanisms have been developed by us-
ing Semantic Web technologies, such as (Srinivasan et al.
2006) (Majithia et al. 2004) (Li & Horrock 2003) and so
on. They build a semantic layer between users and the web
service WSDL description, which makes it possible to com-
pose the web service request with high-level abstract con-
cepts rather than syntactic level terms, addressing several
limitations in traditional web service discovery techniques.
However, most of these work performs service matching
with service function attributes (e.g. service inputs and
outputs), and their purpose is the service discovery in the
enterprise environment. Our system architecture, on the
other hand, combines both Grid and pervasive comput-
ing. Hence, other service attributes except service inputs
and outputs are required to be considered when designing
a semantic service matching middleware for the service-
oriented pervasive Grid environment, for example, service
contexts and service types.

3 System Architecture

In our system architecture, pervasive devices access Grid
services through their “deputy” objects, which is created
by the middleware in the device initialization stage. As a
program that interacts with distributed resources on be-
half of pervasive devices, the deputy object is responsi-
ble for analyzing tasks from pervasive devices, preparing
detailed access and executing mechanism, collecting and
storing task results from Grid services.Figure 1 shows a
diagram of the overall system architecture. The system ar-
chitecture attempts to overcome both the slow processing
capability of pervasive devices and the data transmission
through unreliable wireless network with the limit band-
width.

The static distributed resources and pervasive devices
are interconnected by the Grid gateway. The Grid gate-
way is a small server available for nearby pervasive devices
within the covered range through the local wireless net-
work, providing a relatively resource-rich, stable execution
environment and network connectivity when compared to
handheld devices. Also note that three kinds of middleware
exist in the Grid gateway: the mobile deputy middleware
performs a reliable task management mechanism, including
task submission, execution, monitoring, result storing on
behalf of pervasive users, by accepting and packing tasks
as the deputy object; the service-based Grid middleware
provides access interfaces for Grid service invocation to

|m

Pervasive Device

=

Pervasive Device

:

Pervasive Device

z |

ey A

Local Network
A A

Y Y

Mobile Deputy
Middleware

Mobile Deputy
Middleware

Mobile Deputy
Middleware

Service
Matching

Service
Matching

Service
Matching

Service-based
Grid Middleware
(client)

Service-based
Grid Middleware
(client)

Service-based
Grid Middleware
(client)

Gateway 1] Gateway 2 Gateway 3 b

Y y
Service-based Grid Service-based Grid Service-based Grid
Middleware (Server) Middleware (Server) Middleware (Server)

2 2222

=i =)
E=E
i 0 o R o) L
Distributed Resources Distributed Resources Distributed Resources
Grid Service 1 Grid Service 2 Grid Service 3

Figure 1: System Architecture.

achieve users’ task; the service matching middleware is re-
sponsible for the implementation of Grid service registra-
tion, discovery, composition and management for pervasive
user locating and finding required Grid services to perform
their tasks.

4 Methodology for Grid Service Discovery

A semantic approach for service matching requires a ser-
vice description with the ontology definition, and a ser-
vice search engine with reasoning mechanisms. Ontology
is the specification of a conceptualization of a knowledge
domain. It is a group of controlled vocabularies that de-
scribe objects and their relationships to express something
meaningful within a specific interest field. An ontology ap-
proach is usually used to present services with abstract and
high-level concepts for the service description and a logi-
cal reasoning mechanism is usually used to build a service
search engine. As long as users describe their service re-
quirements with terms from the same ontology model used
to build the service descriptions, logical reasoning mecha-
nisms can find the semantic similarity between the service
description and the user requirements, and the matching
services will be discovered and returned to users.

The service provider represents all characteristics of
a service in the service description. Here, we define a
term, description collection, which indicates all possible
attributes to be described for a service. The attribute may
be either a concept or a restriction for existent concepts.
For each individual service attribute, an ontology is usually
designed to illustrate the definition of the attribute and its

relationship with other service attributes. The Grid service
description can be completely separated from the detailed
Grid service implementation. After Grid service providers
deploy their services on the Grid computing platform, they
need to publish the service description information in a ser-
vice registry. Different service descriptions can be made for
one service, which enables a service to be reused for several
purposes.

Similar to the service description, a service request of-
ten consists of many individual requirements, specifying
the service attribute to be expected in a service. These
requirements may include service outputs, effects, inputs,
function, location or any possible attributes in terms of the
different service request. For a specific service request, all
of the requirements can be divided into two categories, a
group of strict requirements and a set of general require-
ment. The strict requirement indicates that this kind of
requirement is essential for the service request and has to
be met precisely in the service matching, while the gen-
eral requirement means this kind of requirement is not as
important as the strict one and only a rough matching is
necessary between the requirement and the related service
attribute.

Although we assume that the service request attempts to
describe expected requirements with terms from the same
ontology model used to build the service description, it
is impractical that every service request will get the ex-
act same service even though the required services have
already been deployed and advertised because one service
could have a number of description formats. In fact, the
responsibility of the service search engine is to obtain all of
the related services including those that deviate from the
request in certain degrees. These deviation services should
not be discarded but be classified in an predefined rule (e.g.
matching degree). The service request determines which
service will be selected based on the information returned
from the service matching middleware. The service search
engine takes a service request and available service descrip-
tion collections as inputs, and returns matching services as
well as their matching degrees.

5 Grid Service Description

5.1 Service IOPEs

Inputs, outputs, preconditions and effects (IOPEs) are im-
portant functional attributes for a web/Grid service. In-
puts and preconditions define the constrains required for
a service invocation, and outputs and effects indicate the
results or the state transformation of a service execution.
As a standard web service description language, OWL-S
(Martin et al. 2004) provides an all-side ontology classes
definition for describing a service’s IOPEs. A number of
semantic approaches have adopted standard OWL-S on-
tology class structure to describe services and based the
service discovery on the state transformation the service
produces (Martin et al. 2005) (Sycara et al. 2003).

IOPEs are important characteristics for describing a ser-
vice. However, in order to realize a semantic service match-
ing for pervasive clients discovering Grid services, other
types of service attributes also have to be considered.

5.2 Service Resources

Service-oriented Grid computing architecture is an exten-
sion of current Web Service technologies. In the computing
architecture, applications are built on top of a set of com-
mon, standard and high-level services, which meet the def-
inition of Open Grid Services Architecture (OGSA). One
of the important requirements of OGSA is that underly-
ing middleware should store information about the service
state because Grid application users usually need this kind
of information to be maintained from one invocation to an-
other.

Web Service Resource Framework (WSRF) provide a
mechanism of building the stateful services required by
OGSA. Tt specifies a straightforward solution of record-
ing the service state: keep the web service and its state
information completely separate, and store all the state
information in an entity named “resource”. Each resource
entity in a web service is assigned a unique key. When
service clients want to invoke a service, they submit the
request including both the URI of the service provider and
the key of the required resource. A service may have sev-
eral resource instances, which enables the state information
to be kept for different purposes.

Service resources have different types and characteris-
tics. They may be a integer value, keeping the value of
mathematical operations; they may be a virtual shopping
chart, recording items buyers choose; they may represent
a physical device (e.g. printer), logging its working sta-
tus. WSRF specifications define several style of interaction
mechanisms, providing different ways of representing and
accessing multiple resource instances. Because the service
resource is a key parameter for the Grid service invoca-
tion, we regard it as an important functional attribute in
the Grid service description.

5.3 Service Type

In a service-oriented pervasive Grid environment, pervasive
devices form the intersection between the physical world
and the digital world. Users execute their tasks by using
a variety of Grid services through their handheld devices.
Two main styles of application scenario are identified from
the viewpoint of users: an information access scenario, and
a work assistant scenario. In the information access sce-
nario, the task is to collect required information or knowl-
edge. The users’ pervasive devices act as universal operat-
ing terminals to access various available Grid services. A
typical example is that a doctor is able to check the data
being collected from patients in real time with his/her PDA
by invoking the medical Grid services deployed by the hos-
pital.

In the work assistant scenario, users usually need to

execute relatively complicated applications such as data-
deluge programs to achieve specific tasks through their per-
vasive devices. However, due to resource limitations, most
complex programs cannot be executed on a handheld de-
vice. Users have to offload resource-demanding programs
of the task to the Grid, and the Grid provides the executing
environment for users to achieve their tasks. A possible ex-
ample is that a fire fighter may submit streams of temper-
ature data about a multi-story building to the Grid. The
Grid assists fire fighters to solve three-dimensional partial
differential equations in order to obtain the detailed infor-
mation such as the temperature of different floors of the
building, or the temperature of a particular room. The
work assistant scenario describes the scene in which per-
vasive users achieve complicated tasks with the assistant
of Grid services.

An ontology is defined on the basis of the analysis of
two application scenarios. The ontology represents a hi-
erarchy of possible application scenarios and contains a
taxonomy of service types which are usable for pervasive
clients. Figure 2 shows a class diagram of the service type
ontology. The top-level concept of the ontology is Ser-
vice, which represents the most generic type. There are
two direct subclasses of Service: the InfoRetrieval class
represents the general service for the information access
scenario; the WorkAssistant class represents the general
service for the work assistant scenario.

Service
| |
1 1
InfoAccess WorkAssist
F 7 ¥ ¥ 5 ¥
| 1 | 1 | |
[l [} [l [} 1 [l
| |
Retrieval 1 Monitor 1 Computing Storage
| |
| |
I I b
| | | |
1 1 1 1
) Basic Scientific
Explanation Query Computing Computing

Figure 2: Service Type Ontology Diagram

5.4 Service Context

The vision of pervasive computing is to embed a variety of
computing systems into our everyday life seamlessly, pro-
viding information and services anytime and anywhere.
In a dynamic pervasive Grid environment, Grid services
should be provided for pervasive users in the right way
at the right time in the right place. To achieve this goal,
both service consumers and service providers in the service-
based Grid environment need to share their knowledge
with each other. An ontology is designed to model the
context of the service-oriented Grid environment (Figure

3). The top-level of the context ontology is expressed as
six classes, which covers the most basic elements of the
service, and together with their subclasses form a basic
framework of the environment context information. The
detailed design of the context ontology is discussed in our
previous paper (Guan et al. 2006).

Extended Ontology Class

Is a property of class

Other
Extended
Ontology...

B
Job
Offloading

4 Time
/ /
Task \ /

-

Is a subclass of class

Lab Room

Info Retrieval ==

User

_» Status
-

Task \)

Executing ‘\ Device ¥~o
"\ ~<J Small-display

Device

N, Meeting
Room

N
N\

Result Ready

Other
Extended
Ontology...

Large-display
Device

Other
Extended
Ontology...

Figure 3: Context Ontology Diagram.

Service context attributes are required when describing
a Grid service. At present, we consider two context at-
tributes in the Grid service description: the first is the
service location, which corresponds to the “Place” class of
the environment context ontology; the other is the service
access range, based on which a service discovery restricting
mechanism is implemented.

pervasive users access Grid services with their portable
devices, which may expose their personal information. For
example, if our service directory is so “open” that every
pervasive users can discover and obtain all deployed Grid
services, a user location information may be exposed to
other users as long as they can locate and try to invoke
corresponding location-monitoring services. Hence, pro-
tecting personal privacy is an essential issue of designing a
service discovery mechanism. The user personal informa-
tion decides their accessing level during the authorization
process, which is shown in their “User” class. The service
provider defines the service range for every service in the
service description. When a new pervasive user sends a
request to search Grid services, the service searching en-
gine will reason and decide whether Grid services can be
exposed by comparing the service access range of Grid ser-
vices and the access level of this pervasive user.

5.5 Service Detail

Every service has particular parameters which are impor-
tant when considering the service matching. For example,
for a “Printer” service, the “PaperSize” attribute specifies
the supporting paper size. When a user intends to print

a large-size image (e.g. Al size), the “PaperSize” has to
be considered to be a high priority matching requirement.
Otherwise, the user may locate a number of useless services
which do not support large-size printing. The definition of
service detail attributes depends on the detailed implemen-
tation of the individual service, and because of this there
is not an abstract ontology class designed for it.

5.6 Service Description with Extended OWL-S

OWL-S (Martin et al. 2004) is a language for describing
services, which provides a standard vocabulary that can
be used together with other aspects of the OWL (Smith
et al. 2003) description language to create service descrip-
tions. The structure of the OWL-S upper-level ontology
is based on the types of knowledge of service description:
the “Service Profile” provides the high-level descriptive in-
formation of a service, such as the name, input/output of
the service, and additional text description; the “Service
Model” and “Service Grounding”, provide sufficient infor-
mation of how the service is used and how to interact with
the service.

We use the OWL-S language to describe Grid services.
However, the “Service Profile” does not specify the Grid
service attributes required in our pervasive Grid computing
environment. Hence, it has to be extended by adding the
service parameters discussed above. Figure 4 illustrates
the extended service profile class and its properties.

Functional Description

Service Profile

serviceCategory
&QN;#Parameter

serviceCafegory
&xsd#URL

&QN;#Input serviceClaspifcagld

l 5 l S ‘

&xsd;#URL
&QN;#Output

&QN;#Condition

TI I

ag
serviceNare,

description
&QN;#Effect

hasResult serviceDescription)

Non-Functional Description

hasContext
&QN;#Resource

hasType &QN;#Location

subClassOf | —1
pd

Ve
&QN;#Context

Figure 4: Extended Service Profile.

&QN;#AccRange

&QN;:#ServiceType

Grid services are described based on the extended ser-
vice profile. For a Grid service, its description collection
includes the functional attributes (e.g. inputs, outputs,
preconditions, effects), the service type (an instance of In-
foRetrieval class or WorkAssistant class), the service re-
source, the service detail, and the service context informa-
tion (the location of the service provider and the service
access range).

6 Service Discovery Algorithm

As discussed in the previous section, a service request is
composed of a number of individual requirements, speci-
fying various attributes to be expected in services. The
service search engine takes a service request and a group
of service description collection as inputs, and is respon-
sible for deciding whether a Grid service is a matching
service for this service request. The service search engine
compares a Grid service description collection with the ser-
vice request. Initially, the service search engine will check
to judge whether each strict requirement can be matched
precisely in the service description. If a service descrip-
tion does not contain the expected attributes, it will be
dismissed and the service search engine will compare the
next service description with the request. If a Grid service
satisfies all of the strict requirements, the search engine
will then turn to estimate the general requirements.

Subsumption reasoning based on the taxonomic relation
between concepts is used to determine the matching de-
gree between general requirements and related service at-
tributes. We define three expected matching levels for ev-
ery general requirement.

e “Substitute” indicates that the requirement expects
to find a concept in the service description which is
equal to or is the direct superclass of it.

e “Cover” indicates that a concept which subsumes the
concept in the service description is expected to find
to satisfy this requirement.

e “Fuzzy” means this requirement is little important for
the service matching. As long as a concept in the
service description which has the subsumption rela-
tionship (either superclass or subclass) with it, this
requirement is satisfied.

These expected matching levels can be set when the ser-
vice request is submitted to the service search engine. The
service search engine will check the similarity between each
general requirement in the service request and the related
service attribute in the service description. The detailed
similarity is determined by the semantic relationship be-
tween predefined concepts or their relationships. If all of
the expected matching levels are satisfied, this service will
be a reasonable candidate matching service for the service
request.

The service search engine can find a number of candi-
date services for a specific service request. Although the
service matching mechanism is not responsible for the ser-
vice selection, the information about each candidate ser-
vice matching degree is required to be provided as a result
for the service request. We use the term “MatchingScore”
to show the matching degree of the candidate service. For
a candidate service, its MatchingScore is calculated using
the following equation (Bandara et al. 2007):

MatchingScore = Z Score;/n

i=1

The “Score;” indicates the matching degree of every in-
dividual requirement in the service request against the re-
lated service attribute in the service description. The score
is obtained by calculating the semantic distance ||C)., Cy
of the ontology structure between the individual require-
ment (C,) and the related service attributes (C,). We
refer to the equation presented in (Caceres et al. 2006) to
calculate the individual score.

Score; =
1 if Cy = C,

1 1 ; ;
5t gmee.r uf Cais a superclass of C

1 Cr,Ca i i
5 * ell I if C, is a superclass of C,

The MatchingScore of each candidate service is calcu-
lated based on Score;, and it will determine the ranking
of candidate services. The higher the score is, the higher
ranking the candidate service has.

7 Implementation and Experimental Results

The ontology classes for the Grid service description are
defined with the OWL language using the Protege toolkit.
Protege is an open-source ontology editor and knowledge-
based framework. It can also be used to create OWL-S
services by integrating an OWL-S editor plug-in.

The Grid service matching middleware has been im-
plemented with the jUDDI toolkit, the Racer system
(Haarslev & Moller 2003), the MySQL database and other
related techniques. Figure 5 shows its internal compo-
nents. The middleware is written as both a Java Web
Service for use by other middleware in the system archi-
tecture and a web application using the AJAX design mode
which can accessed through a standard web interface.

When a Grid service is published through service pub-
lishing port, the service will be forwarded to the publishing
manager. The service description contains the semantic
information. The publishing manager classifies the seman-
tic information, including the service context, the service
functionality, the service type by using the Racer reasoning
system, and store the service advertisement in the reposi-
tory.

The service matching middleware also provides a ser-
vice query port, which can be used to search a service
based on its capabilities. The service query is transmit-
ted to query manager. Once the semantic matching based
on the extended OWL-S profile information is completed,
a list of matching services will be returned to service dis-
covery manager. In additional to the candidate services,
the matching score for each candidate service will also be
attached to the response. The request will determine to
select the appropriate Grid services for the task execution.

Query Publishing
Interface Interface
Y]

' A
Query - _ RACER - _| Publishing
Manager System Manager
Y]
y
Ontology juDDI
Class Toolkit
[
' A

MySQL database (Grid Service Repository)

Figure 5: Internal Components of Service Matching Mid-
dleware.

To evaluate our service matching middleware, we mea-
sured the performance of our service matching middleware
against a number of service requests.

The following experiment was designed in order to ob-
tain the time of querying a Grid service. Both the descrip-
tion information of real Grid services and a large number
of pseudo services are published in the service repository.
Altogether, more than fifty services can be accessed by the
semantic service matching middleware. A UDDI web ser-
vice registry was built and a number of web services is pub-
lished onto it. Table 1 shows the average time of querying
a service on two different service discovery platform. The
time of querying a Grid service with semantic concepts
is longer, because the additional computation effort is re-
quired to determine the concept subsumption relationships
in the logic reasoning system.

UDDI
37.4

Semantic Matching Middleware
52.1

Time (ms)

Table 1: Time of Querying a Service

Although UDDI has a faster system querying perfor-
mance than our semantic service matching middleware, it
has several shortcomings when used in practice for the ser-
vice discovery. UDDI does not provide sufficient techni-
cal details of the service, does not support any inference
based on the concepts, can only support the search based
on the string comparison, and cannot identify a match be-
tween functionally equivalent services that are described
by different key words. Our service matching middleware
overcomes these shortcomings by using the semantic ser-
vice description and discovery mechanism. We believe it
is worth obtaining a relatively-significant improvement in
system function at the price of a small increase in the ser-
vice discovery time.

In the above experiment, the time of returning one ser-
vice only is measured. To test the system scalability, we

used five kinds of service repository sizes (10, 20, 50, 100,
and 200) and varied the number of matching services to
be one, two, four,or eight. Figure 6 shows the experimen-
tal results. As we expected, the system response time is
within an acceptable limit and loosely proportional to the
size of the service repository and the number of the match-
ing results.

| —&—1 match —&—2 match 4 match —»—8 match

200

180

=z

140

120

100

80

Average Response Time (ms)

20

0 50 100 150 200 250

Service Size in Repository

Figure 6: Average Query Time of Service Matching Mid-
dleware.

8 Conclusion

In a service-oriented Grid environment, pervasive clients
are concerned about three aspects when considering the
problem of using Grid services to perform their tasks. The
first is a method that describes what capabilities Grid ser-
vices support is required to be developed so that services
can be advertised to provide contributions for the task
achievement. The second is building a Grid service dis-
covery mechanism so that services can be located by per-
vasive users. The third is the mechanism of Grid service
invocation so that required information or resources can
be provided during the process of the task execution. Es-
sentially, Grid service description, discovery and execution
are interdependent: Grid service description is the prereq-
uisite of Grid service discovery; the mechanism of Grid
service discovery determines how a Grid service should be
described; the service execution process depends on the
discovery of Grid services.

In this paper, we have presented a semantic service
matching middleware for the service-oriented pervasive
Grid environment. A number of service attributes have
been defined to represent service characteristics in the
service description. Because of the centralized range of
Grid service registry in the system infrastructure, a service
search engine is built with the extended OWL-S seman-
tic language and the RACER ontology reasoning system,
providing query interfaces for users or other middlewares
to locate required services. The service request is com-
pared with a service description collection in two steps:

strict requirements have to be matched precisely; gen-
eral requirements are checked based on the user-expected
matching level. The matching services as well as their
matching degree are returned as the result for a service
request. The semantic service matching middleware has
been integrated into our system architecture and it inter-
acts properly with other middlewares. We also measure its
performance against a number of service request, and the
results show that only a small increase in the service dis-
covery time compared to the traditional service discovery
mechanism while a significant improvement of the system
function has been obtained.

In the future, we plan to continue current research work
to allow such a Grid service matching mechanism to be
extended so that it can be more suitable for the service-
oriented pervasive Grid environment. OWL-S is a language
for describing services, providing a standard vocabulary
that can be combined with the other aspects of the OWL
description language to create service descriptions. It sup-
ports not only automatic service discovery, but also auto-
matic service invocation, composition and interoperation.
At present, we only use the “Profile model” to describe
Grid services. In the future, we will extend to use both
the “Process model” and the “Grounding model” to build
Grid service descriptions, enabling the vision of the auto-
matic service discovery, composition, and invocation to be
realized.

REFERENCES

Bandara, A., Payne, T., Roure, D. D. & Lewis, T. (2007),
A semantic approach for service matching in pervasive
environments, in ‘2nd International Workshop on Per-
vasive Systems’, p. Portugal.

Bhagyavati & Kurkovsky, S. (2003), Wireless grid enables
ubiquitous computing, in ‘the International Conference
on Parallel and Distributed Computing Systems’.

BluetoothSIG (2001), ‘Specification of the bluetooth sys-
tem — core’.
URL: http://www.bluetooth.org/

Caceres, C., Fernandez, A., Ossowski, S. & Vasirani,
M. (2006), ‘Agent-based semantic service discovery for
healthcare: An organizational approach’, IEEE Intelli-
gent Systems pp. 11-19.

Guan, T., Zaluska, E. & Roure, D. D. (2006), Extend-
ing pervasive devices with the semantic grid: A service
infrastructure approach, in ‘Sixth IEEE Conference on
Computer and Information Technology’.

Haarslev, V. & Moller, R. (2003), Racer: a core inference
engine for the semantic web, in ‘Proceedings of 2nd In-
ternational Workshop on Evaluation of Ontology-based
Tools’, pp. 27-36.

Kurkovsky, S., Bhagyvatim & Yang, M. (2004), Medeling a
grid-based problem solving environment for mobile de-
vices, in ‘the International Conference on Information
Technology: Coding and Computing’, pp. 05-07.

Li, L. & Horrock, I. (2003), A software framework for
matchmaking based on semantic web technology, in ‘In.
Proc. 12th Int World Wide Web Conference Workshop
on E-Service and the Semantic Web’.

Majithia, S., Shaikh, A., Rana, O. & Walker, D. (2004),
Reputation-based semantic service discovery, in ‘Pro-
ceedings of the 13th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises’.

Martin, D., Burstein, M. & etc., J. H. (2004), ‘Owl-s: Se-
mantic markup for web services’.

URL: http://www.w3.org/Submission/OWL-S

Martin, D.; Paolucci, M., Mcilraith, S. & Burstein, M.
(2005), Bringing semantics to web services: The owl-s
approach, in ‘SWSWPC’.

MicrosoftCorporation (2000), ‘Universal plug and play de-
vice architrcture’.
URL: http://www.upnp.org/

Millard, D. E., Woukeu, A., Tao, F. & Davis, H. C. (2005),
Experience with writing grid clents for mobile devices,
in ‘1st International ELeGI Conference’.

OASIS (2005), ‘Uddi sepcifications’.
URL: http://www.uddi.org/specification.html

Roure, D. D., Hey, T. & Trefethen., A. E. (2006), ‘A global
e-infrastructure for e-science - a step on the road to
ambient intelligence’, Chapter in “True Visions: Tales
on the Realization of Ambient Inteligence”, Edited by
E.H.L. Arts and J.L.Encarnacao, Springer pp. 209-229.

Smith, M., Welty, C. & McGuinness, D. (2003), ‘Web on-
tology language guide version 1°.
URL: http://www.w3.org/ TR /owl-guide

Srinivasan, N., Paolucci, M., & Sycara, K. (2006), Seman-
tic web service discovery in the owl-s ide, in ‘Proceedings
of the 39th Hawaii International Conference on System
Sciences’.

SunMicrosystems (2001), ‘Jini: Architecture specification’.
URL: http://www.sun.com/software/jini/specs/

Sycara, K., Paolucci, M., Ankolekar, A. & Srinivasan, N.
(2003), ‘Automated discovery, interaction and composi-
tion of semantic web services’, Journal of Web Semantics
pp- 27-46.

