
Efficient Utility-Driven Self-Healing Employing
Adaptation Rules for Large Dynamic Architectures

Sona Ghahremani, Holger Giese and Thomas Vogel
Hasso Plattner Institute, University of Potsdam

Email: {sona.ghahremani|holger.giese|thomas.vogel}@hpi.uni-potsdam.de

Abstract—Self-adaptation can be realized in various ways.
Rule-based approaches prescribe the adaptation to be executed if
the system or environment satisfy certain conditions and result in
scalable solutions, however, with often only satisfying adaptation
decisions. In contrast, utility-driven approaches determine opti-
mal adaptation decisions by using an often costly optimization
step, which typically does not scale well for larger problems. We
propose a rule-based and utility-driven approach that achieves
the beneficial properties of each of these directions such that
the adaptation decisions are optimal while the computation
remains scalable since an expensive optimization step can be
avoided. The approach can be used for the architecture-based
self-healing of large software systems. We define the utility for
large dynamic architectures of such systems based on patterns
capturing issues the self-healing must address and we use pattern-
based adaptation rules to resolve the issues. Defining the utility as
well as the adaptation rules pattern-based allows us to compute
the impact of each rule application on the overall utility and
to realize an incremental and efficient utility-driven self-healing.
We demonstrate the efficiency and optimality of our scheme in
comparative experiments with a static rule-based scheme as a
baseline and a utility-driven approach using a constraint solver.

Keywords: self-healing, adaptation rules, architecture-based
adaptation, utility.

I. INTRODUCTION

There are various ways how self-adaptation following the
MAPE-K feedback loop [17] and in particular the analyzing
and planning phases of the feedback loop can be realized.

On the one hand, rule-based approaches [8,18] combine
the analyzing and planning phases. Adaptation is executed for
specific events and under specific conditions by adaptation
rules. In such approaches, events trigger the rules that sub-
sequently check their additional conditions. If the conditions
are fulfilled, the actions of the rule can be applied and result
in the envisioned changes. The main strengths of rule-based
approaches are i) the readability and elegance of individual
rules, and ii) the efficiency with which the rules can be
processed. The limited expressiveness of the adaptation rules
is a drawback. At runtime, the applicable rules are identified
(matched) and executed to adapt the system configuration [9].

On the other hand, utility-driven approaches [6,19] often
determine optimal adaptation decisions by using optimiza-
tion techniques in the planning phase that are guided by a
utility function. A utility function determines how valuable
each possible system configuration is and the optimization
techniques then aim for finding the optimal one. However, the
optimization techniques usually prevent that the approaches

scale well for large configuration spaces at runtime. To achieve
runtime efficiency, linear utility functions are often used since
optimizing complex utility functions, as in constraint solver-
based approaches, results in non-scalable solutions [9].

Therefore, we propose in this paper a combined rule-based
and utility-driven approach that guarantees optimal adaptation
decisions and that is scalable. Thus, the combined approach
achieves the individual benefits of both approaches while
it avoids the corresponding drawbacks with respect to the
optimality of adaptation decisions and scalability. Particularly,
we target the architecture-based self-healing of large software
systems and exploit some restrictions usually present for this
class of problems to achieve the guarantees for optimality. We
use our former work to define the utility function in a pattern-
based way for large dynamic architectures [14] and further also
define the adaptation rules in a pattern-based way. This joint
use of patterns allows us to combine the utility and the rules
and therefore to predict the impact of each rule application on
the overall utility. Based on these predictions for the rules and
the knowledge about the costs of applying each adaptation
rule, we can determine and execute at runtime the optimal
sequence of rule applications.

We demonstrate these benefits of our approach by com-
paring it with two alternatives solutions in simulations of
mRUBiS [30]. We show that our approach is only slightly
slower but reaches a higher utility over time (reward) than
a static, rule-based solution. Then, we demonstrate that our
approach always makes optimal adaptation decisions similar
to an alternative solution using a constraint solver. However,
our approach requires considerably less time than the solver,
especially for large architectures. Being incremental makes our
approach more scalable since it faces less overhead. As argued
by Ghezzi [15], incremental solutions are highly desirable for
self-adaptive software. In our earlier work [31]–[33], we pre-
sented an incremental scheme for the monitoring and execution
phases of the feedback loop operating on architectural runtime
models. The results of this paper complement the earlier
results by enabling the incremental analysis and planning for
architectural runtime models based on adaptation rules and
utility functions. Therefore, we focus in this paper on the
analysis and planning phases of the feedback loop.

The rest of the paper is structured as follows: We introduce
architectural self-adaptation with runtime models and the
pattern-based definition of the utility in Section II. Then, we
discuss our approach considering its general scheme and its

c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/ICAC.2017.35
59

ar
X

iv
:1

80
5.

03
54

9v
1

 [
cs

.S
E

]
 9

 M
ay

 2
01

8

https://doi.org/10.1109/ICAC.2017.35

application in a feedback loop in Sections III and IV. We
analyze, discuss, and demonstrate the benefits of our approach
in Sections V and VI. Finally, we discuss related work in
Section VII and provide a conclusion with an outlook on future
work in Section VIII.

II. PREREQUISITES

A. Architectural Self-Adaptation and Runtime Models

To realize self-adaptation, a software system is equipped with
a MAPE-K feedback loop that monitors and analyzes the
system and if needed, plans and executes an adaptation to
the system, which is all based on knowledge [17]. In this
context, many approaches consider the software architecture
as an appropriate abstraction level (e.g., [13,23,32]) since self-
adaptation can be generally achieved by adding and removing
components as well as connectors among components [22].
For this purpose, the feedback loop maintains a runtime
model [2], as part of its knowledge, which represents the
architecture of the system under adaptation. The model and the
system are causally connected, that is, any relevant change of
the system is reflected in the model, and vice versa [2]. Thus,
the analysis and planning phases can operate on the model.
Technically, a runtime model allows us to employ model-
driven engineering (MDE) techniques [11]. In our earlier
work [31]–[33], we presented an incremental scheme for the
monitor and execute phases that employs MDE techniques and
architectural runtime models and that is the basis for this paper.

As the running example, we use mRUBiS [30], a modular
variant of RUBiS. mRUBiS is an online marketplace that hosts
an arbitrary number of shops. Each shop consists of 18 com-
ponents, can be configured differently, and runs isolated from
the other shops. We are particularly interested into self-healing
to automatically repair runtime failures by architectural self-
adaptation. This allows us to consider general repair rules that
adapt the architectural configuration of mRUBiS. Therefore,
we equip mRUBiS with a MAPE-K feedback loop that uses
an architectural runtime model of mRUBiS. Specifically, the
model represents the runtime architecture of mRUBiS accord-
ing to the deployment of mRUBiS in an EJB application
server. This model conforms to the metamodel shown in Fig. 1.

The metamodel captures the mRUBiS Architecture with a set
of ComponentTypes that require and provide InterfaceTypes.

Architecture
name : String

reliability : double

ComponentType

InterfaceType

required [0..*]

provided [1..*]

utility : double

Shop

[0..*]

state : ComponentLifeCycle

criticality : double

Component[0..*] RequiredInterface

ProvidedInterface

component

[1..*]

[0..*]
component

[1..1]

[0..*]
[0..*]

[1..1]

[0..*]

[1..1]

Connector

[0..1]

[1..1]

[0..*]

[1..1]

name : String

message : String

Failure[0..*]

DEPLOYED

STARTED

UNDEPLOYED

REMOVED

NOT_SUPPORTED

<<enum>>

ComponentLifeCycle

Annotations

utilityDrop : double

Issue

[0..1]

[0..*]

affectedComponent

[0..*]issues

[1..1]

costs : double

utilityIncrease : double

Rule

[0..*]

handles
handledBy

[0..*]

[1..1]

[0..*]

CF1

CF4

CF3

CF2

RestartComponent LwRedeployComponent HwRedeployComponent

RecreateConnectorReplaceComponent

Fig. 1: Simplified Metamodel of the Runtime Model.

For each Shop, the same component types are instantiated to
Components with their Provided- and RequiredInterfaces. A
Connector links a required and a provided interface if both are
of the same InterfaceType. These elements allow us to describe
the runtime architecture of mRUBiS. The other elements are
relevant for self-adaptation and outlined later.

Using (meta)models and MDE techniques, we realize the
analysis rules with model queries and the adaptation rules with
in-place model transformations. For self-healing, the analysis
rules query the runtime model to identify failures (issues) in
mRUBiS while the adaptation rules determine how to modify
the runtime model, that is, how to change the architecture
to repair these failures. To specify a model query, we use a
pattern P of a set of patterns P describing a structural fragment
of the architecture G. Since the architecture is represented by
the runtime model, we also use G to refer to the model. An
occurrence of a pattern P in the model G corresponds to a
match m of P in G (we write G |=m P). For instance, a match
identifies a failure in the architecture. An adaptation rule r in
the rule set < uses such patterns or already identified matches
in the model to localize where adaptation is needed and then
to change the model in-place to repair the failure.

B. Pattern-Based Architectural Utility

A utility function U is an objective policy that expresses how
well each configuration of the system in its domain satisfies
the functional and non-functional goals of the system. For this
purpose, U assigns a real-value scalar desirability belonging
to [−∞,+∞] to any possible system configuration G. Such
scalar values allow us to compare different configurations
and to select the one with the highest utility as the best
adaptation decision. Furthermore, the accumulated utility over
time described by the reward supports comparisons over time.

Defining a valid utility function is of high importance since
in an optimization problem to find the best configuration, it
is always the utility function that is maximized not the real
utility of the system. There has been extensive research on
utility-driven decision-making policies and elicitation of user
preferences (e.g., [25]). Considering architectural configura-
tions, a typical approach is to predict the impact of each variant
of an architectural property on the overall goals. A normalized
linear utility function uses these impact values to compute their
weighted sum over all properties given a concrete architecture
with concrete variants for each property. The weights represent
the preferences of the user/developer and the result is the utility
of the given architecture [10]. Such an approach can be used
for planning a self-adaptation, that is, to identify the target
architecture, to which the system should be adapted to.

Moreover, defining utility functions for architectural config-
urations is challenging, particularly when considering large,
dynamic architectures [5]. In the following, we outline our
proposal to define utility functions for large, dynamic architec-
tures based on patterns [14]. Due to the employed patterns, our
utility functions can cope with dynamic architectural changes
in contrast to statically defined utility functions.

60

We know that for a utility function for architectural runtime
models must hold that (i) the optimal architectural configura-
tion where all the system goals are optimally fulfilled must
gain the maximum utility and that (ii) if any constraint or
goal is violated, this must lead to a decrease of utility.

According to (i), we include the impact of present archi-
tectural fragments in the utility. We define such fragments by
positive architectural utility patterns P+ = {P+1 , . . .,P

+
k
} and

capture their impact on the utility by utility sub-functions
Ui . This impact may vary for each individual occurrence of
such a fragment depending on the specific context such as the
criticality of the concrete components that are present.

utility := utility + U1()

shop

:Shop

criticality

[self.state = STARTED]

component

:Component

Fig. 2: Positive Architectural Utility Pattern P+1 .

Fig. 2 shows the positive pattern P+1 and the related utility
sub-function U1. The pattern prescribes a started component
that is associated to a shop and therefore contributes to the
shop’s functionality. Matching this pattern for one component
in the runtime model, the utility of the associated shop is in-
creased by U1. We define U1 := criticality of the component ×
reliability of the corresponding component type × connectivity
of the component. Matching all components of a shop, the
utility of the shop is the sum of the corresponding sub-utilities
U1 for all of these components. Finally, the pattern is applied
to all shops of mRUBiS to obtain the utilities of each shop.

Concerning the parts of U1, each component has a criticality
(see corresponding attribute) denoting its importance for a
shop. For instance, the Authentication component is more
critical than the Reputation component since the former is
necessarily required by a shop to close a deal while the latter
is not. Additionally, each component type has a reliability.
For a certain functionality, alternative component types with
different reliabilities exist (e.g., local vs. various third-party
authentication services). Thus, selecting the most reliable al-
ternative for a functionality results in a higher utility increase.
Finally, the connectivity of a present component in terms of
the number of associated Connectors indicates the importance
and thus influences the utility increase of the component.

According to (ii), we further include the negative impact of
undesirable situations defined by negative architectural utility
patterns P− = {P−

k+1, . . .,P
−
n } in the utility. Such patterns nega-

tively affect the architecture such that they decrease the overall
utility according to their utility sub-functions Ui . Examples of
such negative patterns are occurrences of runtime failures. As
before, the impact may vary for each individual occurrence of
a negative pattern depending on the specific context such as
the criticality of the specific components that cause the failures.

[self.failures->size() >= 5]

providedInterface

:ProvidedInterface

criticality

[self.state = STARTED]

component

:Component

utility := utility + U2()

shop

:Shop

Fig. 3: Negative Architectural Utility Pattern P−2 .

Fig. 3 shows the negative architectural utility pattern P−2
for mRUBiS, which prescribes the case when more than four
failures (exceptions) occurred in a started component. Each
occurrence of such a negative pattern decreases the utility of
the associated shop by U2. Note that U2 is typically negative.

Consequently, the positive patterns capture the possible
utility gained by the current architectural configuration while
the negative patterns capture whether this potential is currently
realized. If it is not realized, negative patterns occur in the
architecture and correspondingly decrease the utility. In the
most extreme case, the whole utility gained by occurrences
of positive patterns can be subtracted again when evaluating
the negative patterns. In mRUBiS, adding a new shop always
leads to an increase in the utility and is considered a positive
pattern while occurrences of failures in components of a shop
correspond to a negative pattern and thus reduce the utility.

Zbay:

Architecture

utility := U1()+ U1() + ...

s2:Shop

state = STARTED

criticality = 7

authenticationS2

:Component

state = STARTED

criticality = 3

reputationS2

:Component

utility := U1() + U1() +...

s1:Shop

state = STARTED

criticality = 2

reputationS1

:Component

state = STARTED

criticality = 5

authenticationS1

:Component

Fig. 4: Excerpt of the Architectural Runtime Model.

Fig. 4 shows an excerpt of the runtime model with two
matches of the positive pattern P+1 (see Fig. 2) for each shop,
that is, with two started components in each shop. For instance,
the elements s1 and reputationS1 denote one match and s1 and
authenticationS1 the other match of P+1 in shop s1. Each match
increases the utility of the shop by U1 taking the characteristics
of the specific component into account (e.g., the different
criticality values of reputationS1 and authenticationS1). The
utility of a shop is the sum of the utility sub-functions U1
for all components of the shop while the utility of mRUBiS
is the sum of the utilities of all shops. Similarly, matches for
negative patterns would decrease the utility of the shops and
therefore of mRUBiS (not illustrated in Fig. 4).

Consequently, considering Mi(G) = {m|G |=m Pi} as the
set of matches for the pattern Pi in the current architectural
configuration G, the overall utility function U(G) accumulates
all effects due to matches of all patterns P = {P1, . . .,Pn}1:

U(G) :=
n∑
i=1

∑
m∈Mi(G)

Ui(G,m) (1)

Therefore, adaptation rules can refer to such patterns. On
the one hand, they should identify and repair occurrences of
negative patterns in the architecture. On the other hand, they
should not affect existing but rather enable new occurrences of
positive patterns by repairing occurrences of negative patterns.

The definition of the pattern-based utility takes the context
into account. Each pattern Pi exactly specifies a context that
influences the utility sub-function Ui and thus the increase
or decrease of the overall utility. For instance, the pattern

1If we do not have to distinguish between positive and negative patterns,
we omit the superscript + and − for the patterns P ∈ P.

61

P+1 in Fig. 2 specifies the criticality of the component and
the associated shop as the context. Similarly, the shop and
the component including criticality are the context of the
pattern P−2 in Fig. 3. Moreover, we could extend the context
of both patterns, for instance, by taking the component type
into account. When matching a pattern, the concrete context
is dynamically identified for each match in the runtime model.
Such a concrete context corresponds to a fraction of the run-
time model that is navigated to obtain the required information
such as the criticality of component to calculate Ui at runtime.

III. UTILITY-DRIVEN RULE-BASED ADAPTATION SCHEME

We propose a utility-driven scheme to evaluate dynamic
software architectures. As discussed in Section II-B, utility
functions are used to map each architectural configuration
of a software system to a scalar value indicating how well
the configuration satisfies the goals. The need for evaluat-
ing dynamic architectures is motivated by architectural self-
adaptation. If adaptation is required, the feedback loop has to
identify a suitable or even the optimal target configuration
and select accordingly the adaptation rules that move the
system to this configuration. Thus, a feedback loop can use the
evaluation scheme to determine the target configuration. With
the proposed scheme, we are particularly interested in self-
healing, that is, the automatic repairing of runtime failures by
general rules that perform architectural adaptation.

In this context, we express issues (i.e., runtime failures)
for an architecture as model patterns such that concrete
issues with different impacts on the overall utility U(G) relate
to occurrences of these patterns in the runtime model G.
Additionally, we can express an adaptation rule r = (P, . . .),
that is applied on the runtime model if the condition described
as a model pattern P is satisfied. We denote for an adaptation
rule r = (P, . . .) that an occurrence as a match m for P in the
runtime model Gi exists and that applying the rule results in
a modified runtime model G j by Gi→r,m G j .

Our scheme can be directly mapped to a MAPE-K feedback
loop. The monitoring phase observes change events emitted
by the system to trigger the adaptation. During the analyzing
and planning, our scheme requires two decisions: the target
configuration of the system, and the rules and their matches
that move the system to the target. Finally, the last step
executes these rules for their matches on the running system.

These two decisions are inspired by the idea of model-
predictive control [27] that first defines a target and then
predicts the optimal path to reach the target. This is illustrated
in Fig. 5 showing one target with three alternative paths to
reach the target. Considering the self-healing, selecting an
architecture where issues are repaired is equivalent to defining
the target configuration. During the repair, selecting the best
sequence of adaptation rules and their matches that resolve all
issues is equivalent to building the path toward target.

For the target configuration Gi must hold that the util-
ity U(Gi) must be higher or equal to the utility U(G j) of
all possible next configurations G j that are the outcomes
of resolving the issues in the faulty configuration G0. To

RTM Instance

U(Gi)

U(G0)

Fig. 5: Target Configuration and Different Adaptation Paths.

avoid enumerating the complete search space, our scheme
computes the impact of each possible rule application for
a match on the related utility sub-function and therefore on
the overall utility (U(Gi) −U(G0)). After defining the target
Gi , the second step is to select a set of adaptation rules
and their matches to actually reach Gi . Each rule application
changes the runtime model G. Starting from a runtime model
instance G0 at the beginning of each MAPE-K cycle, G0
evolves to Gi as a result of a sequence of rule applications:
G0→r1,m1 G1→ ...→ri,mi Gi .

Based on the impact of each rule application on the related
utility sub-function and thus on the overall utility, we then
determine the path. To resolve an issue, multiple rules are
applicable and an estimation of their impacts allows us to
select a conflict-free subset of them. We assume here that for
each set, we can compute U(Gi) regardless of the order in
which the rules are executed (see assumption (A4) later).

Our scheme guarantees (i) executing the selected set of rules
and related matches eventually leads to the target configuration
Gi with utility U(Gi) and (ii) executing them in the right order
results in the highest achievable reward (utility accumulated
over time). To fulfil (i), when there are two or more alternative
rules and related matches to resolve the same issue, the scheme
proceeds with selecting the rule that has the highest impact on
the corresponding utility sub-function. To achieve (ii), within
a selected conflict-free set of rules, rules are executed in a
decreasing order regarding their impact on the corresponding
utility sub-functions. We claim and show that the proposed
approach is optimal regarding the final utility U(Gi) and the
achieved reward in the meantime.

IV. LINKING UTILITY TO ADAPTATION RULES

The utility functions for architectural runtime models as we
defined them in Section II-B in principle allow us to follow
an optimization-based approach that searches the configuration
space and computes the utility for each possible configuration.
However, such a solution is rather wasteful if the utility would
have to be computed for each configuration completely anew.

In contrast, the proposed utility-driven, rule-based scheme
determines the impact of each rule application on the utility at
runtime. It derives in a greedy manner from these impacts an
optimal sequence of rule applications concerning the adapta-
tion decisions. This scheme is realized by a MAPE-K feedback
loop as shown in Fig. 6 and discussed in the following.

A. Monitor

During monitoring, change events emitted by the system are
observed and reflected in the runtime model, that is, the model
is updated to represent the current system configuration [32,

62

Monitor ExecutePlanAnalyze

Monitor the
RTM

Mark all the Pi
s in the RTM

Detected
new occurring
pattern Pi

No new
pattern is
detected

Mark all the rules
ri that resolve the
marked Pi s

Order the rules Execute the
rules in the
given order

Fig. 6: Steps for the Different Phases of the MAPE-K Loop.

33]. In our example, we observe the life cycle state of a
component (e.g., to monitor whether a component has stopped,
crashed, or been removed) and Failures such as exceptions that
occur when using a ProvidedInterface (cf. Fig. 1).

B. Analyze

In the analysis phase, the observed changes are analyzed to
detect negative patterns (issues) in the model. This updates the
known set of matches for issues. New matches are determined
through applying an event-property-change mechanism and all
old matches have to be checked whether they are still valid.

As a first step, we compute the utility incrementally rather
than for each configuration anew. Given a former runtime
model G and an updated version G′, the set of new occurrences
for utility patterns are Mnew

i = Mi(G′)\Mi(G). Similarly,
Mdel

i = Mi(G)\Mi(G′) captures the matches for patterns that
are no longer valid. We can therefore define the changes of a
utility function U(G) accordingly by a utility change function
U∆(G′,G) as U(G′)−U(G) as:

−
n∑
i=1

∑
m∈Mdel

i

Ui(G,m)+
n∑
i=1

∑
m∈Mnew

i

Ui(G′,m) (2)

Besides computing the decrease or increase in utility, we
keep track of the identified issues that need to be resolved.
Considering our focus on self-healing, all the architectural
utility patterns that need to be matched and resolved are the
negative patterns P− = {P−

k+1, . . .,P
−
n }.

For this purpose, the analyze phase adds Annotations to
the runtime model. It checks the model for occurrences of
negative patterns, which are then annotated as Issues pointing
to the affectedComponent (Fig. 1). As issues we consider
crashes (CF1) and unplanned removals (CF3) of components,
occurrences of Failures (CF2), and connector crashes (CF4).

Fig. 7 shows an analysis rule realized by a story pattern [7]
that detects the negative pattern shown in Fig. 3. The occur-
rence of the negative pattern results in a drop in the utility of
the shop by U2. The story pattern creates the CF2 annotation
including the utilityDrop pointing to the affected component to
be used later on in the feedback loop. Here, we omit the details
to avoid multiple annotations for the same match (issue).

C. Plan

Based on the annotations representing new or remaining issues
in the form of matches m for negative patterns, our approach

annotations

:Annotations

utilityDrop := U2()

cf2:CF2

<<create>>
issues

<<create>>

affectedComponent

<<create>>

Analyze for CF2

[self.failures->size() >= 5]

providedInterface

:ProvidedInterface

criticality

[self.state = STARTED]

component

:Component

utility := utility + U2()

shop

:Shop

Fig. 7: Annotating a Negative Architectural Utility Pattern.

incrementally proceeds during the planning phase by 1) com-
puting the set of all possible rule applications, 2) selecting for
each issue the best rule application based on computations of
the impact on utility and costs, and 3) finally ordering the best
rule application for all issues to minimize the lost reward.

1) Compute All Possible Adaptation Rule Matches: The
rule-based adaptation is based only on rule applications that
lead to an improved utility. For this case, we will show that
rules must always be linked to the negative patterns and
that knowing the matches for these patterns will allow us to
compute all relevant adaptation rule matches incrementally.

For any adaptation scheme that is based on the outlined
utility function defined by means of patterns where considering
our focus on self-healing, all the patterns that need to be
matched and resolved are the negative patterns, the following
observations must hold: (1) If there are no occurrences of the
negative patterns, then there is no need for adaptation and
no improvement of the utility is possible. (2) Any possible
improvement of the utility must necessarily resolve found
occurrences of the negative patterns as otherwise no improve-
ment of the utility would be possible.

Consequently, we can safely assume that (A1) for any in-
place model transformation rule rj = (Pj, . . .) in the adaptation
rule set< must hold that a negative pattern P−i exists such that
any match mj for Pj includes a match mi for P−i . Otherwise,
rj could be enabled even though no utility improvement can
be achieved which would contradict observation (1). It can be
the case that the initial match condition of the rule rj might
require more context and be more restricted compared to the
match condition for the negative pattern, but in the presented
example in Fig. 3 and 7, both conditions are exactly the same.

Furthermore, we can plausibly assume that (A2) for the
rule rj = (Pj, . . .) in the rule set < and any match mj for
Pj and the included match mi for the related negative pattern
P−i holds that applying rj for mj will make the match mi

for P−i invalid. Otherwise, rj would not handle the found
occurrence of the negative patterns P−i and thus would not lead
to the improvement of the utility we would expect according
to observation (2). To keep our considerations simple, we
consider the case where each rule covers exactly one negative
pattern. Based on these assumptions, we can compute all
matches for rules incrementally if for the related negative
pattern P−i the set of new matches Mnew

i is given.
Fig. 8 illustrates a simplified view of a planning rule for the

example to repair CF2. Following the analysis phase described
in Fig. 7, the rule set< is checked to find all the rules that can

63

costs := estRestartCost()

utilityIncrease := U1()

restartComponent

:RestartComponent

cf2:CF2

handledBy

<<create>>

<<create>>

Plan restart to handle CF2

annotations

:Annotations

rules
<<create>>

costs := estReplaceCost()

utilityIncrease := U1()

replaceComponent

:ReplaceComponent

cf2:CF2

handledBy
<<create>>

<<create>>

Plan replace to handle CF2

annotations

:Annotations

rules

<<create>>

Fig. 8: Rules for Planning an Adaptation.

extend the occurred negative pattern with adaptation rules such
as RestartComponent and ReplaceComponent that can handle
the corresponding issue such as CF2. The cost estimation
functions estRestartCost() and estReplaceCost() compute the
costs of executing each rule to the system under adaptation,
for instance, to restart or replace a component in the system.

In general and following the MAPE-K cycle, performing
an adaptation consists of a planning and an execution part.
The planning part decides which adaptation rule among all
possible ones should be applied, while the execution part
actually applies the selected rule to prescribe an adaptation in
the runtime model that is synchronized to the running system
under adaptation (cf. causal connection in Section II-A).

For our example, the planning phase addresses the identified
issues by selecting for each of them the adaptation rule to
be executed such that it enriches the model with Rules that
handle the identified Issues. These rules are finally enacted by
the execute phase. As adaptation rules, we consider restarting,
redeploying, and replacing components as well as recreating
connectors (see Fig. 1). For the redeployment, there exists two
variants. The light-weight variant keeps the latest configuration
of the component to be redeployed, while the heavy-weight
variant adapts the configuration of the redeployed component.

In general, a specific issue such as CF2 can be handled by
multiple rules such as restarting or redeploying the affected
component. Thus, the planning must decide which rule should
be applied. Likewise, if multiple issues occur at the same time,
the planning must decide which issue should be handled first.

2) Select Adaptation Rule Match for Each Negative Pattern
Match Based on the Impact on Utility and Estimates for
Costs: To determine the best adaptation rule for each found
occurrence of any negative pattern, our approach determines
the impact of adaptation rules on the utility for each match.

For a single rule rj = (Pj, . . .) where Pj extends the negative
pattern P−i , it holds that each time rj is applied to mj then
the match mi for a negative pattern P−i is removed (see A2
discussed previously). We further assume that (A3) rj does
not result in any new match or removed matches besides mi

for any negative pattern. Then, we conclude for any G, G′ that
results from applying rule rj to G for match mj (G→rj,m j G′):

Urj
∆
(G,mj) :=U∆(G′,G) =U−i (G,mi) (3)

Thus, for the discussed form of rules for which (A1) to (A3)
hold, we can locally compute their impact on the utility.

If further the assumption (A4) holds that rj does not affect
any utility sub-function for any match mk for another negative

pattern P−
k

, then applying a rule rj for a match mj does not
affect the impact on the utility for any other rule rk and match
mk . Thus, if (A1) to (A4) hold, we can independently and
locally compute the utility impact of each match of a rule.

There can be cases that the side effect of applying a rule rj
(i.e., G→rj,m j G′) results in new matches for one or more
positive patterns. In such cases, the impact on the utility by the
corresponding positive utility sub-function of these matches
is added to Urj

∆
(G,mj) in equation (3). For this purpose, it

must hold that all the potential positive patterns are completely
within the scope of the application condition and side effect of
rj and do not match only partially (A5). Otherwise, matches
for the positive patterns cannot be enabled by applying rj .
Thus, the impact can be simply considered in Urj

∆
(G,mj) since

the resulting formula for the corresponding increase of the
utility can be determined at development-time. An example
for such a case is replacing a local authentication component
with an alternative third-party service. Each of the possible
alternative services results in a different positive pattern with
different utility sub-functions regarding their offered reliability.

Similarly, the execution time for adaptation rules can be es-
timated by defining a cost function Costrj (G,mj) for each rule
application which may depend on the match and its context
in G. In our example, we have cost estimation functions for
each type of rule such as estRestartCost() (see Fig. 8).

The planning phase then proceeds by first ranking the ap-
plicable rules for each pattern match found according to their
utilityIncrease Urj

∆
(G,mj) and, if this is the same, according

to the costs Costrj (G,mj). The utilityIncrease of each rule
is the computed increase of the overall utility as the result
of applying the rule. This attribute value is computed based
on the runtime computation of criticality, connectivity, and
reliability of the affectedComponent. The costs for each rule
is the computed execution time computed at runtime.

3) Order the Execution for All Selected Adaptation Rule
Matches: The final planning step is determining the order in
which the issues should be resolved. For this purpose, all rules
annotated in the model are sorted regarding their impact on
the overall utility divided by the costs. This guarantees in the
execution phase that the maximal utility is reestablished as
fast as possible and that the lost reward is minimized.

D. Execute

Finally, we combine the beforehand outlined steps such that
the utility-driven, rule-based adaptation is achieved. Thus, each
detected negative pattern is handled with the most appropriate
rule and the rule applications are ordered such that those with
the highest impact on utility are executed first. The execute
phase takes over the ordered list of adaptation rule matches
from the planning phase and executes them in the given order.

Fig. 9 illustrates an adaptation rule that restarts a component
to address CF2. The control flow within the rule complies
with an UML activity diagram (cf. [7]). Based on the analysis
and planning phases (see Fig. 7 and 8), an adaptation rule, in
this case restartComponent, has been selected to handle CF2
affecting the specific component (see first node in Fig. 9). This

64

cf2:CF2

restartComponent

:RestartComponent handles
component

:Component

affectedComponent

Restart component affected by CF2

state := DEPLOYED

component

:Component

Stop component

state := STARTED

component

:Component

Start component

Remove failures

component

:Component

providedInterface

:ProvidedInterface

providedInterfaces

failures

:Failures

<<destroy>>failures

Remove annotations

cf2:CF2

<<destroy>> restartComponent

:RestartComponent

<<destroy>>

Fig. 9: Rule for Executing a Component Restart.

component is then restarted (see second and third node). After
that, the runtime model is cleaned up by removing (destroying)
the observed exceptions (failures) and the annotations for the
executed rule (restartComponent) and the handled issue (CF2).

V. ANALYSIS AND DISCUSSION OF THE APPROACH

We now analyze and discuss the computational effort and the
optimality of the resulting utility and reward of our approach.

a) Incremental Computational Effort: If the patterns to
be matched as well as the rules do only contain links for
associations with fixed small upper bounds smaller than a
constant, we can conclude the following: the outline adaptation
scheme requires only incremental computational effort for
finding new matches for each analysis rule to annotate negative
architectural utility pattern, to extend such matches for an
adaptation rule, or to check for old issues or rules whether
they are still matched. As we have only a small finite number
of rules for analysis and planning, the effort to compute all
new issues and determine all related new matches for rules
extending these issues for ∆ changes of the architectural
runtime model are both in O(∆). The effort to check all old
issues and related new matches for rules extending these issues
for ∆′ old unprocessed changes of the architectural runtime
model are both in O(∆′). Thus, the analysis and planning
activities only require an incremental computational effort as
long as the set of accumulated unprocessed changes do not
grow unbounded.

b) Optimality of the Adaptation: We know that as a
result of executing a selected adaptation rule, a maximal
increase of the utility is guaranteed. Due to assumption (A2),
the rules will remove the match m and, due to assumptions
(A3) and (A4), no other matches for issues are affected such
that the overall increase after applying all selected rules and
matches must be maximal. Furthermore, the ordering of the
rules and determined matches leads to the maximal reward.

Consequently, for our approach holds that the resulting utility
after the complete adaptation is maximal and so is the reward
for the chosen sequence of executing the adaptation rules.

c) Limitations: Rules that are not triggered by any issue
or that do not resolve any issue and thus have no impact on the
utility do not make any sense so that the assumptions (A1) and
(A2) are justified in general. Similarly, rules that cause new
issues are not helpful and therefore could also be excluded
(see first part of (A3)). However, it will not always be the
case that rules do not impact other issues than the ones they
should handle (see second part of (A3) and (A4)), for instance,
when due to resource limitations the planned sequence of rule
applications can not be fully executed such that not all of the
issues can be repaired. It can also be the case that rules do
not completely cover the positive patterns (see (A5)). In these
cases to avoid any interferences, the design of the rules could
be revised based on an analysis of the rules for conflicts. In
particular for (A5), this is always possible by splitting the rule
into multiple ones taking a larger context into account such
that the overlap with the positive patterns is always included.
If this is not possible or feasible, the receding horizon concept
from model predictive control [1] of k can be employed where
only the first k steps of the plan are realized before the further
steps are re-planned anew. By using a receding horizon of
k = 1, we can ensure that the repeated planning steps take the
effects of the executed rules into account.

VI. EXPERIMENTAL EVALUATION

To evaluate our approach, we use a simulator of mRUBiS [30],
a variant of the common RUBiS that is frequently used
for validating self-adaptation mechanisms [24]. Having fault
injection capabilities, the simulator emulates the failures in the
system by reflecting them in the runtime model as it would
be otherwise done by monitoring the faulty system. mRUBiS
hosts different numbers of shops (1 to 1000), each containing
18 components with a different criticality and connectivity.2 The
overall utility of a shop is the sum of the sub-utilities of all
the components in the shop. As described in Section II-A, we
equipped mRUBiS with a MAPE-K feedback loop. The three
issues CF1, CF2, and CF3 are the negative patterns that affect
the system. The rule set < includes the adaptation rules each
representing a repair plan. Each rule has two attributes, costs
and utilityIncrease (see Fig. 1). Costs refers to the execution
time of the rule and utilityIncrease is the impact on the utility
of the affectedComponent when applying the rule.

We validate the optimality of our scheme with analytical
experiments (Section VI-A). Moreover, we investigate the
scalability and performance of our approach in a comparative
study with two alternative approaches (Section VI-B). Thus,
the study compares three solutions:

1) Static Approach: This approach is purely rule-based and
uses static priorities without any utility function. Thus, the
costs and utilityIncrease of the rules are defined at design time

2The experiments and simulations have been conducted on a machine with
OS X 10.10, Intel processor 2.6GHz core i5, and 8GB of memory.

65

so that for each CF the repair rule is selected staticly. The
utilityDrop caused by each CF is also estimated at design time
which leads to a fixed order in which the issues are resolved.

2) Solver-based Approach: This approach is purely utility-
based and uses the IBM ILOG CPLEX constraint solver [16]
for planning. Specifically, it uses the utility function described
in equation (1) for the sequence of rule applications as its
objective function. The tasks of assigning proper adaptation
rules to each CF and ordering them are defined as optimization
problems. This approach maximizes the objective function as
the overall utility of the system after each decision.

3) Utility-driven Approach: Our approach computes the
impact of different adaptation rules at runtime using the utility
function shown in equation (1) and selects the one with largest
impact on the overall utility. The order in which CFs are
addressed and the proper adaptation rule to resolve the CFs
are decided based on the runtime observations regarding the
affectedComponent and the utility drop caused by the CFs.
This approach is referred to as u-driven in the following.

Thus, the three approaches have different planning phases
while they share the same incremental behavior—as suggested
for our approach—for the other phases of MAPE-K.

A. Analytical Experiments

The conducted experiments for analytical purposes are set to
separately evaluate the two main steps of our approach. In
these experiments, we consider mRUBiS with 100 shops (1800
components). The experiment starts with occurrences of three
failures of type CF1, CF2, and CF3 causing the utility of the
system to drop. Utility drops are followed by three MAPE
executions. During each MAPE cycle, we consider a receding
horizon of size one resolving one CF in one MAPE execution.
As the effort of the repeated planning step is negligible due
to its incremental nature, a receding horizon of 1 will take
the effects of the executed rules into account, even though
assumptions (A3) to (A5) do not hold.

Here, we investigate that the u-driven approach makes the
optimal decision during incremental rule matching for CFs by
selecting the rule that results in the maximum increase in the
overall utility. In contrast, the static approach fails to do so and
hence is non-optimal. We also show how the order in which
the adaptation rules are executed impacts the achieved reward.

When a match for an issue is detected, our approach
computes the utilityIncrease and costs of all possible matches
among the adaptation rules. The effect of the increase in the
utility achieved by applying each rule remains in the system
as long as the same component is not affected again by
another issue. However, the costs of applying a rule has only
a short time effect on the overall utility and defines when
the expected increase of the utility can be realized. Thus, in
our approach, rules with the highest utilityIncrease are prior
to those with lower increase but less costs. The type of the
occurred issue and the specific component that is affected by
the issue determine the utilityIncrease and costs of the rules.

Fig. 10 describes a case where the static approach fails to
reach the maximum utility due to non-optimal rule selection.

16920

16930

16940

16950

16960

16970

16980

16990

0 50 100 150 200 250

ut
ili
ty

time	 (ms)

U-‐driven

Static

HW
	 R
ed
ep
lo
ym

en
t

LW
	 R
ed
ep
lo
ym

en
t

Re
pl
ac
e

Re
st
ar
t

Re
st
ar
t

Re
st
ar
t

Fig. 10: Lost Reward Due to Non-optimal Decisions.

During the first MAPE cycle, both approaches select CF3 to
be resolved first. The static approach performs a Heavy Weight
(HW) Redeployment while the u-driven approach Replaces the
affected component and reaches a higher utility. Here, the
static approach selects a rule with less costs and manages to
have the utility increase faster than the u-driven approach but
obtaining a considerably smaller reward (the hachure region
after the first increase). The impact of this non-optimal rule
selection remains in the system during the whole experiment
and results in a lower reward for the static approach equal
to the area of gray colored regions. In the second MAPE
cycle, the static approach resolves CF1 by a Light Weight
(LW) Redeployment while the u-driven approach decides to
resolve CF2 by a Restart of the component which has higher
impact on the overall utility. In the third MAPE cycle, the
static approach resolves CF2 by a Restart and reaches the
same increase in utility as the u-driven approach in the second
MAPE cycle, but with a delay and thus with a lower reward as
the utility is lower during the whole time. The u-driven scheme
repairs CF1 by a Restart in the last MAPE cycle. The static
approach is slightly faster than the u-driven approach due to
avoiding all the runtime computations. The gray and hachure
regions represent respectively the lost and gained utility of
the static compared to the u-driven approach. The additional
utility gained by the static approach due to less overhead and
choosing the cheaper HW Redeployment over the Replace rule
does not compensate for the loss of reward due to making non-
optimal decisions.

To back our claim for optimality of the u-driven scheme,
our approach executes the adaptation rules in the optimal order
such that the maximum utility over time is achieved. We
investigate this issue in Fig. 11. The order in which our scheme
resolves the issues is such that those resulting in a higher
increase in utility are prior to those with lower impacts. The
static approach decides for the order at design time. This can
be done considering the type of the potential issues. A reason-
able order of the three issues in our example is: severe crashes
(i.e., unplanned removals) of components (CF3), crashes of
components that, however, might still be operating to a certain
extent (CF1), and occurrences of Failures such as exceptions
(CF2). This ordering fails to take into account the utility
of the affectedComponent which is a function of criticality,
connectivity, and reliability. Such properties can dynamically
change such that they are only known at runtime and cannot
be foreseen at design time. Fig. 11 illustrates a case where the

66

16935

16940

16945

16950

16955

16960

16965

16970

16975

16980

0 50 100 150 200 250

ut
ili

ty

time (ms)

static

U-‐driven

Solver

Re
st
ar
t

Re
st
ar
t

Re
st
ar
t

HW
	 R
ed
ep
lo
ym

en
t

HW
	 R
ed
ep
lo
ym

en
t

LW
	 R
ed
ep
lo
ym

en
t

Fig. 11: Lost Reward Due to Wrong Ordering and Overhead.

static approach fails to address the issues in the right order.
Despite the fact that both, the u-driven and static approaches
achieve the same final utility, which is not necessarily always
the case (cf. Fig. 10), the static approach loses reward equal
to the gray regions and gains only a slight improvement due
to the lower overhead in planning time (hachure region).

Considering Fig. 11, both, the u-driven and static ap-
proaches repair CF3 in the first MAPE cycle. The static
approach applies a HW Redeployment while the u-driven
approach Restarts the affected component reaching the same
utility but with considerably less cost. In this MAPE cycle,
the static approach selects a rule with a similar utilityIncrease
to the one selected by the u-driven approach but with higher
costs such that it loses utility equal to the area of the first
gray region. In the second MAPE cycle, the static approach
resolves CF1 by a LW Redeployment while the u-driven
approach decides to resolve CF2 by a HW Redeployment since
solving CF2 has a higher impact on the overall utility. In
the third MAPE cycle, the static approach resolves CF2 by
a Restart and reaches the same increase in utility as the u-
driven approach, but loses utility over time due to the wrong
execution order. The u-driven scheme saves the repair of CF1
by a Restart for the last MAPE cycle since in this case CF1
has less impact than CF2 and CF3 on the utility.

We conducted the same experiment to compare the solver-
based and u-driven approaches. As depicted in Fig. 11, both
approaches make similar decisions regarding both rule match-
ing and ordering of the adaptation rules and reach the optimal
configuration. However, the solver-based approach reaches it
after a considerable delay due to its computational overhead
for planning, which depends on the size of the architecture and
number of the issues. It is visible that despite the fact that both
approaches select the same rules each time with similar costs
and have the same ordering of the issues, the solver approach
finishes with a large delay compared to the u-driven approach.

TABLE I: Planning Time of the Approaches in (ms).

!

No.of
Components$

1!Failure!
!

10!Failures!
!

100!Failures!!
!

1000!Failures!!
Static$ U2

driven$ Solver$ Static$ U2
driven$ Solver$ Static$ U2

driven$ Solver$ Static$ U2
driven$ Solver$

18! 0.76! 0.89! 5.02! 10.37! 14.36! 56.68! 5! 5! 5! 5! 5! 5!
180! 0.68! 0.89! 5.01! 9.71! 13.58! 59.07! 14.22! 17.7! 219.54! 5! 5! 5!
1800! 0.61! 0.74! 4.83! 10.6! 13.47! 58.24! 13.82! 26.65! 211.09! 54.5! 60.09! 3216.6!
18000! 0.65! 0.71! 4.9! 10.14! 13.87! 71.93! 21.8! 26.38! 271.51! 127.8! 171.31! 3611.95!

B. Experiments for Performance

To compare the performance of the approaches, we tested them
on mRUBiS with 4 different sizes of the architecture and with
scenarios in which 1, 10, 100 and 1000 failures occur. In each
scenario, the equal number of failures of all CF types are
injected. The measurements are repeated at least 300 times and
until the standard deviation is 5% or lower. The measurements
were conducted following benchmarking guidelines [28]. All
three approaches are tested with the same scenarios. Since
the decision-making process takes place during the planning
phase and the potential overheads due to runtime computations
are reflected there, we only present the data for the planning
phases of the approaches in Table I.

For the measurements, we only consider meaningful com-
bination of architecture size and number of failures. Thus, we
do not inject a large number failures to small architectures.
Therefore, we do not present any data where more than 10
(100) failures occur in a system with 18 (180) components.

As the number of failures in the system increases, the
planning time of all approaches increases as well. However,
this growth is more drastic for the solver as the size of the
optimization problem is growing. Based on the presented data,
the solver-based approach requires between 295% to 5953%
more time for planning than the u-driven approach [42 to 3156
(ms)]. The solver approach always reaches the same optimal
configuration as our u-driven scheme, but it can have an
extreme overhead in the case of a large number of issues. The
additional planning time required by the u-driven approach
compared to the static approach varies between 9% to 92%,
[0.06 to 12.8 (ms)].

VII. RELATED WORK

As the related work of this work, we investigate how the trade-
off between long-term planning and aiming for an optimal
repair or settling for a quick and efficient adaptation has been
practiced in the field of self-adaptive software.

On one end of the spectrum, there are optimization-based
approaches employing runtime reasoning. An objective func-
tion is computed at runtime to investigate all the potential
decisions, thus encountering scalability and efficiency issues
[9,20]. Employing utility functions and utility-driven decision-
making schemes have been extensively investigated [12,21].
MUSIC [26] is a planning-based middleware for component-
based application that plans the adaptation by exploiting the
characteristics of component implementations for the soft-
ware architecture. [20] applies a reinforcement learning-based
approach for on-line planning. [6] solves an optimization
problem to find the optimal set of features that maximizes the
utility via a learning-based method. Solving an optimization
algorithm for each reconfiguration at runtime causes large
overheads. The outlined utility-driven approaches pursue a
search-based optimization in the solution space that often do
not scale well for complex systems. Such approaches manage
to find the optimal configuration but there is no guarantee to
reach the result within a reasonable time, for instance, when
quickly needing a repair plan. In [29], we suggested to reduce

67

the search space to speed up repair and avoid too long delays.
However, the approach proposed here computes the utility for
each potential adaptation strategy in an incremental scheme
taking into account the current issues that affect the achieved
utility. Therefore, the approach is scalable and does not have to
restrict the search space for the considered self-healing setting.

On the other end of the spectrum, there are pure rule-based
approaches [8]. They are recognized to be efficient and stable
in predictable domains and support the early validation [9].
These approaches provide a quick recovery from a goal
violation, however, they often result in sub-optimal solutions
since they ignore the scenarios that are unforeseen at design
time [3]. Rainbow applies utility theory in combination with
a stochastic model of the possible outcomes of the reasoning
process [4]. While in our approach the utility of the adaptation
rules is dynamically computed at runtime, Rainbow considers
the success rate of adaptation rules in the past to rank them.

The proposed approach is distinguished from the existing
work as it is fast and optimal since it employs adaptation
rules and does not struggle with scalability issues. Employing
a utility function guarantees optimal adaptation decisions on
top of the applied rule-based scheme. However, unlike the
optimization-based approaches, the incremental manner of
computing the utility function over the patterns makes the
approach scalable for large complex systems.

VIII. CONCLUSION AND FUTURE WORK

Achieving optimal adaptation decisions online within a reason-
able time is an important challenge addressed by this work. We
presented a novel approach to improve the self-healing reward
by combining utility-driven and rule-based adaptation at the
architectural level to achieve the benefits of each of them.
The approach addresses the requirements of scalability and
optimality regarding the utility computation. Our experiments
demonstrate that our approach results in significantly improved
reward compared to an alternative static approach while only
having a negligible overhead. The comparison of our approach
to a solver-based solution shows that both perform optimal
adaptation decisions while our approach drastically reduces
the computation efforts for planning self-adaptation.

However, the presented approach has some limitations that
we plan to address in future work. This includes weakening
the assumptions, supporting more complex utility functions,
and studying how to support other capabilities of self-adaptive
software such as self-configuration and self-optimization.

REFERENCES

[1] K. Angelopoulos, A. V. Papadopoulos, V. E. Silva Souza, and J. My-
lopoulos. Model predictive control for software systems with cobra. In
SEAMS, pages 35–46. ACM, 2016.

[2] G. Blair, N. Bencomo, and R. B. France. Models@run.time. Computer,
42(10):22–27, 2009.

[3] S.-W. Cheng. Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation. PhD thesis, Carnegie Mellon Univ., Pittsburgh, USA, 2008.

[4] S.-W. Cheng and D. Garlan. Stitch: A language for architecture-based
self-adaptation. J. Syst. Softw., 85(12), 2012.

[5] S.-W. Cheng, D. Garlan, and B. Schmerl. Architecture-based self-adap-
tation in the presence of multiple objectives. In SEAMS. ACM, 2006.

[6] N. Esfahani, A. Elkhodary, and S. Malek. A learning-based framework
for engineering feature-oriented self-adaptive software systems. IEEE
Transactions on Software Engineering, 39(11):1467–1493, 2013.

[7] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A
new graph rewrite language based on the unified modeling language. In
TAGT, volume 1764 of LNCS, pages 296–309. Springer, 1998.

[8] F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, and J.-M. Jézéquel.
Modeling and validating dynamic adaptation. In Models in Software
Engineering, volume 5421 of LNCS, pages 97–108. Springer, 2009.

[9] F. Fleurey and A. Solberg. A domain specific modeling language
supporting specification, simulation and execution of dynamic adaptive
systems. In MoDELS, LNCS 5795, pages 606–621. Springer, 2009.

[10] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven.
Using architecture models for runtime adaptability. IEEE Software,
23(2):62–70, 2006.

[11] R. France and B. Rumpe. Model-driven development of complex
software: A research roadmap. In FOSE, pages 37–54. IEEE, 2007.

[12] J. Franco, F. Correia, R. Barbosa, M. Zenha-Rela, B. Schmerl, and
D. Garlan. Improving self-adaptation planning through software
architecture-based stochastic modeling. J. Syst. Softw., 115:42–60, 2016.

[13] D. Garlan, B. Schmerl, and S.-W. Cheng. Software architecture-based
self-adaptation. In Autonomic Computing and Networking, pages 31–55.
Springer, 2009.

[14] S. Ghahremani, H. Giese, and T. Vogel. Towards linking adaptation
rules to the utility function for dynamic architectures. In SASO, pages
142–143. IEEE, 2016.

[15] C. Ghezzi. Evolution, adaptation, and the quest for incrementality. In
Large-Scale Complex IT Systems. Development, Operation and Manage-
ment, volume 7539 of LNCS, pages 369–379. Springer, 2012.

[16] IBM. IBM ILOG CPLEX Optimization Studio. http://www-
03.ibm.com/software/products/en/ibmilogcpleoptistud.

[17] J. O. Kephart and D. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[18] J. O. Kephart and R. Das. Achieving self-management via utility
functions. Internet Computing, IEEE, 11(1):40–48, 2007.

[19] J. O. Kephart and W. E. Walsh. An artificial intelligence perspective on
autonomic computing policies. In POLICY, pages 3–12. IEEE, 2004.

[20] D. Kim and S. Park. Reinforcement learning-based dynamic adaptation
planning method for architecture-based self-managed software. In
SEAMS, pages 76–85. IEEE, 2009.

[21] J. Kramer and J. Magee. Self-managed systems: an architectural
challenge. In FOSE, pages 259–268. IEEE, 2007.

[22] J. Magee and J. Kramer. Dynamic structure in software architectures.
In SIGSOFT FSE, pages 3–14. ACM, 1996.

[23] P. Oreizy, M. M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software. IEEE Intelligent
Systems, 14(3):54–62, 1999.

[24] T. Patikirikorala, A. Colman, J. Han, and L. Wang. A systematic survey
on the design of self-adaptive software systems using control engineering
approaches. In SEAMS, pages 33–42. IEEE, 2012.

[25] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw. Dynamic configuration
of resource-aware services. In ICSE, pages 604–613. IEEE, 2004.

[26] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo,
A. Mamelli, and U. Scholz. Music: Middleware support for self-
adaptation in ubiquitous and service-oriented environments. In SEfSAS,
volume 5525 of LNCS, pages 164–182. Springer, 2009.

[27] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, and F. J. Doyle. Process
Dynamics and Control. John Wiley & Sons, 3rd edition, 2011.

[28] P. Sestoft. Microbenchmarks in java and c#, 2013.
[29] M. Tichy and H. Giese. A self-optimizing run-time architecture for

configurable dependability of services. In Architecting Dependable
Systems II, volume 3069 of LNCS, pages 25–51. Springer, 2004.

[30] T. Vogel. Modular Rice University Bidding System (mRUBiS), 2013.
http://www.mdelab.de [Online; accessed 09-May-2016].

[31] T. Vogel and H. Giese. Adaptation and abstract runtime models. In
SEAMS, pages 39–48. ACM, 2010.

[32] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker. Model-
driven architectural monitoring and adaptation for autonomic systems.
In ICAC, pages 67–68. ACM, 2009.

[33] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker.
Incremental model synchronization for efficient run-time monitoring. In
Models in Software Engineering, volume 6002 of LNCS, pages 124–139.
Springer, 2010.

68

	I Introduction
	II Prerequisites
	II-A Architectural Self-Adaptation and Runtime Models
	II-B Pattern-Based Architectural Utility

	III Utility-Driven Rule-Based Adaptation Scheme
	IV Linking Utility to Adaptation Rules
	IV-A Monitor
	IV-B Analyze
	IV-C Plan
	IV-C1 Compute All Possible Adaptation Rule Matches
	IV-C2 Select Adaptation Rule Match for Each Negative Pattern Match Based on the Impact on Utility and Estimates for Costs
	IV-C3 Order the Execution for All Selected Adaptation Rule Matches

	IV-D Execute

	V Analysis and Discussion of the Approach
	VI Experimental Evaluation
	VI-1 Static Approach
	VI-2 Solver-based Approach
	VI-3 Utility-driven Approach

	VI-A Analytical Experiments
	VI-B Experiments for Performance

	VII Related Work
	VIII Conclusion and Future Work
	References

