2019 IEEE International Conference on Autonomic Computing (ICAC)

Quality-Elasticity: Improved resource utilization,
throughput, and response times via adjusting output
quality to current operating conditions

Lars Larsson®, William TérnebergT, Cristian Klein*, and Erik Elmroth*
* Department of Computing Science, Umed University, Sweden
Email: {larsson,cklein,elmroth} @cs.umu.e
f Department of Electrical and Information Technology, Lund University, Sweden
Email: william.tarneberg @eit.1th.se

Abstract—This work addresses two related problems for on-
line services, namely poor resource utilization during regular
operating conditions, and low throughput, long response times,
or poor performance under periods of high system load. To
address these problems, we introduce our notion of quality-
elasticity as a manner of dynamically adapting response qualities
from software services along a fine-grained spectrum. When
resources are abundant, response quality can be increased, and
when resources are scarce, responses are delivered at a lower
quality to prioritize throughput and response times. We present
an example of how a complex online shopping site can be made
quality-elastic. Experiments show that, compared to state of the
art, improvements in throughput (57% more served queries),
lowered response times (8 time reduction for 95™ percentile
responses), and an estimated 40% profitability increase can be
made using our quality-elastic approach. When resources are
abundant, our approach may achieve upwards of twice as high
resource utilization as prior work in this field.

Index Terms—cloud computing, service delivery, adaptive soft-
ware, brownout

I. INTRODUCTION

We address the problem of poor service throughput and
resource utilization by varying response output quality based
on current operating conditions to provide better end-user
utility. Unlike prior work [1], our approach encompasses not
only quality reductions but also increases along a fine-grained
spectrum without an explicit set-point. That work focused only
on quality reductions as a binary decision, to either respond
with regular quality responses or to degrade them in order to
expedite processing.

We expand on the problem formulation in Section II and
present our case of how the current state of affairs is wasteful
for both service and cloud infrastructure providers. Related
work in Section III shows that the main contemporary way of
addressing the problem is to either degrade response output
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quality to make processing simpler or to scale up the underlying
cloud infrastructure. We argue that neither is a satisfying
solution to the problem, and compromises poorly on output
quality (failing to use available resources) while also failing
to address the utilization and throughput problem properly
(by e.g. letting requests time out). Instead, we propose a
quality-elastic solution in Section IV, including a running
example in the “online shopping site” domain targeted by
prior work [1]. We show how output quality can be modified
along a fine-grained spectrum rather than as a binary decision
whether to show (optional) product recommendations or not.
We vary output quality by choosing different algorithms for
generating recommendations, described in Section IV-A. Which
algorithm to choose is determined by taking current conditions
into account, using thresholds on current resource utilization.
Our experiments in Section V show that: (a) in a fair apples-to-
apples comparison, making a binary choice whether to serve
optional content based on utilization thresholds, we achieve
50% higher throughput, 8 times lower 95" percentile
response time, and an estimated profitability increase by 20%;
(b) when using different output quality levels, performance
in terms of throughput and response time is similar, but
improved ability to serve product recommendations increases
profitability by 40%; and (c) an upward of 100% higher
resource utilization in times of resource abundance, compared
to prior work [1].

We conclude that these results motivate further research,
of which some directions are given in Section VI. Our
contributions in this paper are as follows:

« we define and explore the concept of quality-elasticity
and argue that it is required to optimize service delivery
with regard to objectives of both infrastructure and service
providers; and

« we conduct experiments comparing our operational
condition-aware quality-elastic approach with state of the
art, demonstrating vast improvements in terms of lowered
response times, higher throughput, higher profitability, and
improved resource utilization.
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II. PROBLEM FORMULATION

Online software services are predominantly designed to
produce responses of a fixed quality level to incoming requests.
They are (intentionally?) oblivious to (a) the properties of
their execution environment (i.e. CPU core count, speed, and
amount of RAM), and (b) current operating conditions, such as
current resource contention. We regard this as the core problem:
that services consistently produce results of the same quality,
without regard to either current operating conditions or to
whether the output quality matches consumer expectations of
what the service should do, i.e. the service utility.

Ability to serve requests is heavily impeded when resources
are scarce. Cases of immediate resource scarcity are signified
by high resource contention in already overloaded execution
environments. Because applications are increasingly deployed
as distributed systems, performance fluctuations in one compo-
nent can cause large ripple effects [2]. There is also no practical
way of instantly scaling up the underlying infrastructure, even
when using e.g. a platform such as AWS Lambda [3]. Requests
are served either slowly, or, due to client timeouts, perhaps not
even at all. Thus, service utility, resilience, and even throughput
suffer.

In cases of resource abundance, the problems are two-fold.
Firstly, execution environment resources that have been paid for
(e.g. virtual machines or containers of fixed sizes) are poorly
utilized, leading to higher operational cost for both service and
cloud infrastructure providers. Secondly, not using resources
also implies a missed opportunity to potentially provide higher
quality results at no additional expense.

For service providers, the impact is palpable. Online software
services are an important part of the global economy, and
consumer satisfaction depends primarily on how useful services
are perceived to be. For example, availability, resilience, and
throughput contribute to the experienced performance. Amazon
reportedly determined that a 100ms latency increase costs them
1% in lost sales.

Poor compute resource utilization is costly for both service
and cloud infrastructure providers, with average utilization
reaching only around 15% [4]. Hence, resources are wasted to
essentially keep the lights on [5], [6], to the tune of ability to
host 40% more servers with the same power budget if properly
optimized [7]. Cloud providers are also under market pressure
to provide seemingly infinite resources to service providers,
which requires large buffers of available resources to deal with
request peaks. This is costly, and constitutes a barrier to entry
for smaller providers. Thus, both service providers and cloud
infrastructure providers have clear incentives to make better
use of available resources.

Eventual consistency, explored at length in [8], may itself
be regarded as a form of quality-elasticity for databases!. This
mode of operation and the constantly evolving models used
by modern services such as Google and Amazon have taught

'A scheme wherein quick and hopefully mostly-correct responses are
delivered in response to queries, instead of using additional time and resources
to ensure that the freshest possible data is used.
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users to not expect consistent results to imprecise queries:
what products are recommended changes based on factors
and proprietary algorithms that users cannot inspect. Thus,
they cannot judge whether these results are actually accurately
modelled to their particular preference, instead just trusting
that they have been generated “somehow”. This non-strictness
is opens possibilities for optimization. For service delivery, we
can use this to our advantage, as intuitively, some result (of
some quality) is better than none.

I1I. RELATED WORK

The main source of inspiration for our work is the pioneering
work of Klein et al. [1]. It reformulated the concept of brownout
for cloud applications. The term brownout originates from
electrical power distribution, where in case of low power output,
overall output voltages are lowered to give subscribers at least
some power, rather than none, as would be the case of a full
blackout. In the cloud computing case, it was instead used
to not serve some aspects of a response (content marked as
optional) in case of resource scarcity. The running example
in their work, and the work that has followed, was that of
an online store, where recommendations for related products
are optional when a user views a product detail page. The
intuition is that the most important pieces of information, such
as product image, description, price, and whether the product is
is stock or not, are more crucial than determining which other
products might be related to the current one. In contrast to our
example of a wide variety of different response output qualities
in Section I'V-A, their approach is thus to either include (default)
or drop product recommendations entirely.

Various algorithms and controllers have been employed to
extend the brownout-concept as originally envisioned, including
how it can be used to optimize both service delivery [9],
[10], [11], [12], [13] and cloud infrastructure power consump-
tion [14], [15], [16]. These results validate the claim that great
utility and efficiency increases can be made using a quality-
reduction approach.

Application brownout has hitherto been formulated to employ
binary output quality reductions: either include an optional
part or not. The goal of application brownout has been to
smoothly handle capacity shortages instantly. Our position is
that output quality should be truly elastic: possible to reduce
or increase as current conditions dictate. We also propose that
output quality be adjusted on a fine-grained spectrum without
an explicit setpoint, rather than as a binary decision.

Brownout has not gained widespread adoption outside the
research domain since its inception in 2014. A much more
common alternative is scaling the underlying virtual cloud
infrastructure in response to fluctuations in demand. Scaling
can be either in the size of software execution environments
handling ongoing requests (vertical scaling) or their number
(horizontal scaling). Vertical scaling may cause service disrup-
tion. In the case of VMs, resizing them may cause delays [17].
More severe delays can be incurred if migration is required. In
the case of containers orchestrated by e.g. Kubernetes, other
Pods of containers may be adversely affected as they are
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evacuated to make space for the one that shall increase in
capacity. Horizontal scaling, on the other hand, is typically
rather slow. New VMs can take several minutes to become fully
operational®. Starting additional containers in a cluster with
abundant resources is faster [18], but such fast speed depends
on surplus resources during normal operating conditions. If the
cluster is near or beyond capacity, and needs to be resized by
adding more virtual machines to it, scaling time is obviously
on parity with virtual machine scaling. Also, as evident from
both experience and via literature studies, both types of scaling
embody a highly simplified approach to dealing with load
peaks. Cloud resources are subject to significant variations
in delivered performance [19]. It is, therefore, non-trivial to
assess what the effects of scaling will be, ahead of time.

It is of particular value to mention that both types of scaling
may also disrupt stateful applications [20], as they may require
state to be replicated and clustering algorithms to handle new
members. Because of these disruptions, capacity scarcity is
actually worsened as a result of cluster size increases during
state replication periods and until the new cluster size starts to
contribute positively to overall service performance. Because of
these issues, the most common approach is to tolerate temporary
resource starvation to establish that a resource increase was
not a spike, but rather, a sustained increase.

Our proposed quality-elastic approach offers an attractive
complementary path and alternative. Since it adapts to current
operating conditions immediately, services need not suffer
starvation. Instead, they adjust to emit lower-quality responses
during load spike conditions. If these turn out to be the
beginning of a new higher usage trend, scaling can be used to
more confidently scale to match demand. It therefore operates
on not only a completely different time scale, as quality
adjustments can be done even mid-processing of requests,
but on the correct level to address the core problem of poor
matching to utilization (of resources) and utility (to customers).

Suresh et al. targeted the problem of collaboratively meeting
deadlines in a service-oriented architecture [21]. Their approach
hinges on rate limiting and scheduling on a per-service basis
to optimize overall ability to meet deadlines. Similarly, Wang
et al. determine three heuristics for dealing with large response
time fluctuations in n-tier systems, the first two of which
are precisely related to scheduling to maximize throughput
and rate limiting (the third is to increase buffers to avoid
repeated requests) [2]. Neither approach does, however, modify
the output quality of the services. If a service is at risk of
not meeting a deadline, scheduling the most at-risk requests
(Suresh et al.) or lightest transactions (Wang et al.) for priority
processing helps meet overall system performance targets,
rather than employing output quality adjustments. Such a
scheduling-assisted approach should be possible to use together
with ours and help achieve further improved results. Quality-
elastic variations can then help impact the choice of which
request to schedule and thus service first, not just its arrival

2The largest public cloud provider, AWS, still in 2018 on their FAQ state
that an on-demand VM may take up to 10 minutes to become operational.
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time into the system.

Leveraging approximations carefully can help trade output
quality for higher throughput. By reducing the input set via
intelligently sampling massive input material and thus working
only on statistically determined representative samples, large
bodies of recent work has shown great performance increases,
and thereby increased ability to handle significantly larger
input sets [22], [23], [24]. By also allowing users to provide
approximating versions of their tasks, and/or dropping entire
tasks, Goiri et al. showed great improvement in MapReduce
efficiency. Their results show up to 32 times run time re-
duction when users can tolerate an error of 1% with 95%
confidence [25]. The authors claim that such an approach is
useful for a large variety of use cases involving statistical
data processing, e.g. data analytics, machine learning, and
media processing. They did not study online/interactive work,
focusing instead on offline data processing.

Bridging the gap between approximations for offline and
online processing, Kelley et al. presented Ubora, a system that
learns which components respond slowly and transparently cir-
cumvents them from slowing down the system as a whole [26].
This is done by duplicating some incoming requests: the first
elides data from slow responses, the second is allowed to
take a long time, and is in return expected to provide a high-
quality response. This response is memoized, and can be used
later to provide overall higher quality responses while still
keeping throughput high, processing 37% more queries than a
competing controller guided by the rate of timeouts [26]. The
approach of Kelley et al. works on queries that yield “mature
answers”, i.e. ones that result from a full execution without
time constraints. Such answers are memoized at the cost of
increased bandwidth and memory in order to reduce repeated
computation and yield faster results in the future. The utility
of such an approach is therefore highly dependent on how
often identical queries are repeated. The notion of quality is
in the work of Kelley et al. a measure of what percentage of
requests get mature answers as response. Requests that cannot
get mature answers are timed out instead. Our view is that a
system is more robust, as a whole, if all requests get some
response instead of none.

Our quality-elastic concept operates on a level of abstraction
akin to that of a scheduler, although currently, without the
algorithmic sophistication expected by one. It can choose
whether to drop work (as Goiri et al.), to use an applicable
cached response (as Kelley et al.), or even to do more work
than usual, based on current resource and time availability. As
such, it makes assumptions neither about online or offline data
processing, nor does it primarily provide benefit when identical
queries are repeated. Crucially, the quality-elastic approach
aims at giving a system a way to instantaneously adapt to
current operating conditions on a per-request basis. Thus, it
makes no claims about how future requests are handled, as
operating conditions will be different.
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IV. QUALITY ELASTICITY

We define quality-elasticity as letting software services adapt
their mode of operation to current operating conditions by
providing results of varying output quality. Adaptions are based
both on basic properties of their execution environments®, such
as opting for a more memory-intensive algorithm when memory
is more readily available than CPU time, and on current
conditions such as system load and instantaneous contention
effects by other execution environments. Crucially, they may
provide lower-quality results in cases of resource scarcity,
and higher-quality ones when resources are abundant.

For service providers, the implication is that service instances
can more predictably handle load spikes and avoid client
timeouts by reducing output quality of responses. This instantly
lessens load and thus helps achieve higher throughput. As stated
in Section II, scaling the underlying infrastructure is both slow
and may adversely affect performance, due to adjusting clusters
of (stateful) components. Note that while scaling up the most
trivial of stateless services has gotten substantially faster as
we have progressed beyond VMs and containers to functions
in FaaS platforms, these neither offer instant performance
issue remediation, nor do they constitute a large fraction of
deployed services, due to the large amount of still-deployed
legacy services and that the Function-as-a-Service paradigm is
still in its relative infancy (AWS Lambda was introduced late
2014).

For infrastructure providers, higher utilization and an im-
proved ability to adapt deployed services to resource contention
means that aforementioned additional readily available spare
capacity can be reduced. Output quality reductions, a subset
of quality-elasticity, have been shown to optimize cloud
infrastructure in this way [15]. Thus, from both perspectives,
cost reductions can be made in addition to more robustly dealing
with software execution in non-deterministic environments.

Current trends in service delivery point to a higher level
of responsibility being shifted to the cloud infrastructure
provider. Container- and Function-as-a-Service both alleviate
service providers from operational responsibilities, and enable
infrastructure providers to optimize according to whatever
criteria they see fit. This includes making decisions that greatly
impact delivered service performance [27]. We therefore see it
as at least feasible that quality-elasticity could become a way
to deliver service in the future. The current alternative, which
is to just let service performance and throughput suffer, makes
deployment of e.g. mission-critical software impossible [28].

We assume that services are request/response based, as
common in contemporary web-based services. When a request
arrives it is either queued at the server or, if the queue is empty,
the server serves it directly. Next, the server needs to decide
how to serve it, based on some metadata (as is done today) or
by inspecting the current operating conditions (as suggested
in this paper). Once the server starting working on a request,
it can no longer change how it is served, as part of the work

3Such as a VM, container, or language runtime.
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required to serving the request may depend on other services,
as well.

A. Running Example

Assume that we wish to employ quality-elasticity to an
online shopping site. The most crucial part of a product page
is listing the details about the product itself. Recommendations
for similar products are common, and help increase sales [29],
[30]. Producing these recommendations can be done in many
ways, with large disparity in how computationally intensive
they are and what output quality they offer. Some of these
quality-elastic approaches are:

1) drop: drop the recommendations altogether (as in prior
related work [1]).

cached-prior: use a previously cached recommenda-
tion set, calculated at a time of higher resource availability,
regardless of what it may be.

equal-tags: query a database for products with the
same tags as the current product of focus. This is assumed
to be fast, if tags are indexed in the database.
similar—-general: query a database for similar prod-
ucts often bought together by customers in general.
similar-specific: query a database for products
often bought together by customers similar to the one vis-
iting the page, as based on particular previous purchases.
individual-model: running a machine learning
model to establish what products the current customer
may be interested in, based on all data available at the
time.

2)

3)

4)

5)

0)

The further down the list we go, output quality demonstrably
increases, as the recommendations are more finely tuned
to the particular product and user. We claim that such a
more fine-grained output quality spectrum approach can be
used to achieve the optimal per-user utility, balanced against
resource usage. It is well-known that product recommendations
increase sales, and the quality of such recommendations matter
greatly [29], [30].

During normal operating conditions, it is feasible that either
equal-tags (Approach 3) (as in the Sock Shop demo
application*) or similar—-general (Approach 4) may be
chosen, as they may provide good enough output quality.
However, if resources are available in abundance, the online
shopping site may opt to use one of the latter ones to A/B test
whether providing higher quality results cause customers (of a
particular set) to buy more products.

B. Implementation

To implement and experiment with our proposed approach,
we have modified the simulator used to obtain results in [1].
Thus, we are able to highlight differences between our work
and theirs, while still keeping the results comparable. As
previously stated, Brownout decides whether to serve “optional
content”, i.e. product recommendations in the running example,
using a control theoretical approach to regulate response times.

“https://github.com/microservices-demo/microservices-demo
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We modified the simulator in two ways. Firstly, we added
algorithms that consider current resource utilization instead
of response times. These otherwise behave as Brownout and
choose in a binary fashion whether to add or drop optional
content altogether. These operate using a threshold, and serve
content only if current resource utilization is below a configured
level. Serving optional content takes the same amount of
simulated work, regardless of which approach is chosen. In
control theoretic terms, the controller and sensor are different,
but the actuator is the same.

Secondly, we added the concept of multiple algorithms for
creating optional content. The algorithms are the ones listed in
Section IV-A above. By introducing these to the simulator, we
can let a simple utilization threshold-based algorithm determine
whether which output quality level to use for the response to
a given request.

The simulator lets a configurable number of simulated clients
(e.g. 200) make requests for a given length of time (100
seconds). In a closed-loop manner [31], the simulated clients
“think” for a Poisson-distributed number of seconds with a
configurable average (1.0) before making a new request. All
these requests are timed and logged. A simulated server decides
whether to respond with optional content or not. The difference
in processing time is around an order of magnitude (cf. Table II,
drop and similar—general algorithms). This difference
in processing (that is, not counting network delay) is realistic,
as we assume that responses without optional content can be
cached heavily and that those that require optional content are
dynamically generated for each request. The simulator also
logs whether the response included optional content or not and
at what output quality level.

Because simulated closed-loop clients need to “think” before
making a new request (similar to how a person would need
to wait for a page to load before choosing where to navigate
next), lower response time immediately relates to throughput,
as that makes it possible for a client to sooner make a new
request.

V. COMPARISON TO BROWNOUT

In this section, we evaluate whether a spectrum of different
output qualities, chosen based on current operating condi-
tions, can simultaneously minimize response times, maximize
throughput, and increase profitability in times of resource
scarcity and whether it can increase utilization to produce
higher quality responses in case of resource abundance.

To do so, we have devised three experiments that build
upon each other. First, we verify whether basing output
quality decisions on current operating conditions via simple
thresholds yields reasonable results in terms of throughput,
response times, and service profitability, compared to prior
work. In the first experiment, the output quality choice is
binary: with or without optional quality-enhancing content
(product recommendations). Second, we introduce a broader
spectrum of output quality levels to see if throughput, response
times, and service profitability can be improved further by
making not a binary choice, but one from a set of choices.
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This uses the quality-elastic approach, as was described in the
previous section. Third, we see how the different approaches
handle resource abundance, as increased utilization in such
cases is desirable when computational resources have already
been paid for.

A. Utilization Thresholds

The first experiment is concerned with the effects on response
times, throughput, and profitability of responses by leveraging
a resource utilization threshold approach, rather than one
that aims to adaptively regulate response times as in prior
work [1]. Profitability is in this experiment calculated as in [1]
by employing the results in [29], i.e. that responses that include
product recommendations (optional content) generate 50%
more profit than those that do not. This comparison is therefore
intended to be as fair as possible to original Brownout [1] in
an apples-to-apples way.

Table I shows the results with regard to served requests, the
fraction of requests for which optional content was served, as
well as the profitability of various approaches. The reader is
asked to regard only the top part of the table in this section, as
the Brownout-tuned and g-e approaches are discussed further
in Section V-Al and Section V-B, respectively. The figures in
this section should be treated similarly.

Table I includes resource utilization thresholds of 10% up
to 90% in steps of 10, as well as 95% (marked ur=x, where
x is the threshold level). In addition to these, we have also
included the never and always approaches, which are essentially
resource utilization thresholds of 0% and 100%, respectively.
That is, they will only choose to serve optional content if
current utilization is less than or equal to the configured
level. Similar to Brownout, their choice is binary: to serve
or not to serve optional content, in the form of product
recommendations for an online shopping site. In the terms
defined in the previous section, the recommendation algorithm
used is similar-general, as in the original Brownout
paper [1].

To make comparisons easier, and to choose a realistic
baseline, Table I shows the profitability factor compared to
the always approach of each of the other approaches. This is
a reasonable baseline, since contemporary services typically
operate in this fashion (i.e. always serving recommendations,
regardless of current operating conditions).

A perhaps unexpected result is that resource utilization
thresholds of 50-80% all behave in the same way. However,
given that their choice of product recommendation algorithm is
limited to just drop or similar—general, this behavior
is perfectly understandable. If processing using similar-general
would push resource usage to e.g. 85% for a short while,
then the approaches using these resource utilization thresholds
should behave similarly. For compactness and graph readability,
we choose the ut=0.50 and ut=0.95 resource utilization
threshold approaches as examples for further study.

Table I shows that the stock Brownout approach serves
optional content for almost every request (99% of all served
requests). Thus, more time is spent per request, as shown
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Table I: Request breakdown and profitability. Most utilization threshold-based approaches outperform stock Brownout by about
50% in terms of total served requests, but fail to serve optional content often, impeding potential profitability. Never serving
optional content results in the highest throughput, but the highest profitability is achieved by the g-e approach, which serves
both a large number of requests in total and with optional content. How Brownout was tuned is explained in Section V-Al. See
Section V-B for discussion about the profitability model used for the g-e approach, as it differs from the others (to be more

conservative).
Served requests ~ With optional content (fraction) Profitability (factor)
never (ut=0.00) 20053 0 0.0 20053 1.14
ut=0.10 20038 69 0.03 20072.5 1.14
ut=0.20 19193 4238 0.22 21312.0 1.21
ut=0.30 19074 5016 0.26 21582.0 1.23
ut=0.40 18891 6250 0.33 22016.0 1.25
ut=0.50 18757 6567 0.35 22040.5 1.26
ut=0.60 18757 6567 0.35 22040.5 1.26
ut=0.70 18757 6567 0.35 22040.5 1.26
ut=0.80 18757 6567 0.35 22040.5 1.26
ut=0.90 18867 6636 0.35 22185.0 1.26
ut=0.95 18529 6908 0.37 21983.0 1.25
always (ut=1.00) 11699 11699 1.0 17548.5 1.00
Brownout-stock 11904 11836 0.99 17822.0 1.02
Brownout-tuned 19277 9186 0.48 23870.0 1.36
q-e 18732 14 548 0.77 25092.1 1.43
2 T T 1.2 T T T
never Brownout-stock qg-e el never Brownout-stock q-e e
ut=0.50 ——  Brownout-tuned ut=0.50 ——  Brownout-tuned
ut=0.95 always 1+ ut=0.95 —— always 4

Response time (s)

Simulation time (s)

(a) 95th percentile response times.

0.8

0.6

Probability

0.4

0.2

I
0.01 0.1 1
Response time (s), logarithmic scale

0
0.0001 0.001

(b) Empirical CDF plot of response times.

Figure 1: Response times for the various approaches. Both the utilization threshold-based approaches (ut=0.50 and 0.95) achieve
about 8 times lower 95" percentile response times compared to stock Brownout. The eCDF confirms that response times are
significantly lower on average, as well. The theoretical minimum (never) and maximum (always) are also shown for reference.

140 T

T T
Brownout-stock
Brownout-tuned
always N

T

never

ut=0.50 ——
ut=0.95

Requests

Time (s)

Figure 2: Active ongoing requests. If a request cannot be fully
served during a time slot, it is put in a queue. Shown here is
queue length at given points in time during the simulation.
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in Figure 1. In turn, this also means that more requests are
queued up (Figure 2), as the server becomes overloaded. This
makes the server unable to keep up with demand, which further
exaggerates the problem as more requests come in.

In contrast, both the ur=0.50 and ut=0.95 approaches achieve
significantly higher throughput (Table I), lower response times
(Figure 1), keep their queues less full (Figure 2), and can
therefore serve more than 55% additional requests during the
simulation period (Table I).

The two extremes, never and always show the theoretical
lower and upper bounds of policies related to never or always
serving optional content.

Profitability comparisons show that the resource utilization
threshold approaches do better than original Brownout, by more
than 20% for both cases (Table I). In spite of serving fewer
total requests than the never approach, both ut=50 and ut=0.95
are more profitable by the chosen profitability model, due to the
50% increase in profitability for requests served with optional
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content. They are conservative in doing so (doing so only in
about 35% of cases), as each such response is more resource-
intensive to generate. Note that this profitability increase is
actually a side-effect, as utilization thresholds are not explicitly
designed to maximize profitability.

Interestingly, always serving optional content is the least
profitable, and yet this is the approach that contemporary
services take.

The results of these simple experiments show that we by
merely considering utilization may be able to get improved
results compared to the stock Brownout approach as presented
in [1]. The comparison has been made as fair as possible,
pitting the approaches against each other on Brownout’s own
terms.

1) Tuning Brownout for this use case : From Table I, it is
clear that the stock configuration of Brownout does not perform
well for this particular use case, where there is a large number
of simultaneous clients. Indeed, it instead behaves similarly to
the always approach, the worst choice.

The stated goal of Brownout is to keep response times
acceptably low, and it uses control theory to do so. The
setpoint for the controller is the acceptable time to wait for
a response, expressed in seconds, and the goal is to keep
the response times below that number. The signal that the
controller uses as input is the 95" percentile response time,
which by definition is a very noisy signal. The point, however,
is that if objectively difficult cases like controlling the 95%
percentile response times can be controlled within reasonable
bounds, the simpler cases are also covered. The pole represents
a value trading off responsiveness (fast reaction to—possibly
incorrectly measured—disturbances) and safety (conviction
that actions taken will not negatively impact the system). To
compensate for the noise, stock Brownout is configured with
a setpoint of 1 second, and a pole value of 0.9. For web
browsing, 1 second is indeed a reasonable upper bound site
visitor patience [32].

However, a simple sensitivity analysis with setpoints in
[0.05,1.0] and poles in [0.1,0.9] on profitability yields the
results shown in Figure 3 as well as a local maxima
at setpoint=0.05 and pole=0.7. These values are used for
Brownout-tuned in the tables and figures of this chapter.

With these parameters, Brownout-tuned performs much better
on this particular use case, and is therefore a better adversary
for comparison with the g-e approach.

B. Quality-Elasticity

The previous section shows that using utilization thresholds
is a promising alternative to stock Brownout. However, the
comparison was made on Brownout’s terms with a binary choice
dictating whether to serve optional content or not. We now
turn our attention to the main contribution of the paper, namely
offering a broader spectrum of quality adjustments in a true
quality-elastic fashion. Thus, there are multiple output quality
levels, and we use utilization thresholds to determine which
one to target (quality levels are described in Section IV-A).
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Figure 3: Profitability as a function of Brownout parameters
setpoint and pole [1]. Setpoint dictates acceptable time to wait
for a response, and pole values closer to 1 means faster (but
less safe) controller reactions. Local maxima at setpoint=0.05
and pole=0.7.

This experiment is conducted using the same simulator and
scenario as the one in the previous section. However, the quality-
elastic approach must be parameterized. The parameters are
shown in Table II. Values for the service time and variance
parameters were determined via experimentation using a single-
server deployment of an online shopping system. We scaled
the service times and variances such that they would be
comparable to those of the drop and similar-general
algorithms, which were already present in the Brownout
simulator. Although there is a risk that such numbers are highly
implementation-specific, readers familiar with database systems
will recognize the relative relationship that e.g. equal-tags
can be answered very quickly using indices, whereas more
complicated queries such as in similar-specific will
require more processing time.

Determining profitability levels for requests is com-
plex [29], [30]. For simplicity, we scaled the prof-
itability for the different algorithms as shown in Ta-
ble II. For easy comparison with Brownout, drop is
the baseline at profitability 1 and similar-general
is at profitability 1.5. Getting significantly more individ-
ualized product recommendations is regarded to be twice
(similar-specific) or thrice (individual-model)
as profitable as similar—general. Recommendations of
lesser quality are also scaled accordingly.

It is obvious that how the profitability factors are calculated
will greatly impact the overall results. The numbers we have
chosen here are likely to be as wrong as assuming that all
product suggestions, regardless of their output quality and
individualization, would contribute to 50% higher profits.
If, however, we do assume that profitability is uniformly
50% higher for easy comparison to the other approaches
that cannot choose other recommendation algorithms, the g-e
approach gets an even higher profitability of 26006 (1.48
times that of always). We did, however, regard that as an unfair
advantage, because if cached-prior would be as profitable

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on May 30,2020 at 11:37:24 UTC from IEEE Xplore. Restrictions apply.



Table II: Parameters for the quality-elastic approach. Service times and variance have been determined experimentally. Profitability
factors are estimated based on, and in relation to, prior work [1], [29].

Algorithm Service time (ms)  Variance (ms) Profitability factor
drop 0.67 1 1.0
cached-prior 0.85 1.5 1.2
equal-tags 2.5 8 1.4
similar-general 7 10 1.5
similar-specific 14 15 3.0
individual-model 30 100 4.5

Table III: Configuration of utilization thresholds for the
quality-elastic approach (g-e¢). The values were determined
experimentally.

Algorithm Utilization threshold
drop e3¢}
cached-prior 0.99
equal-tags 0.75
similar—general 0.35
similar-specific 0.25
individual-model 0.05

25000
never I
ut=0.50 D
r ut=0.95 ===

Brownout-stock 0
Brownout-tuned C—1

20000 always

15000

Requests

10000 -

5000

L
>
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Figure 4: Frequency of chosen output quality levels during
resource scarcity (Section V-B). Note that all but g-e are limited
to making a binary choice between similar—general and
drop by design.

as individual-model, not only would there never be a
point to individualizing product recommendations, but also,
the other approaches (including Brownout) should then just
use cached-prior instead.

Determining actual profitability levels experimentally rather
than estimation, thereby getting a measure of actual customer
utility, is regarded as future work (Section VI).

The quality-elastic approach uses utilization thresholds to
determine which algorithm to choose. The utilization thresholds
were determined experimentally, not via optimization by a
solver. Doing so in a practical way that does not merely trivially
choose the cached-prior algorithm all the time is good
future work, but outside the scope for this paper. The algorithms
and utilization thresholds are shown in Table III.

Figure 4 shows that the quality-elastic service, represented
by the g-e bars, serves more requests with optional content
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of at least some kind, compared to the others. In particular,
it only decides to drop optional content for 23% of requests
(Table 1) and instead makes use of all quality levels available.

Table IV shows that the g-e service serves a large amount of
total requests compared to stock Brownout, and a comparable
amount (3% less) to the tuned version. Also, more than
75% of requests get optional content of some output quality
level (14548/18732 ~ 0.77). With our previously discussed
estimated profitability model, this leads to an overall profit
level which is 40% higher than that of stock Brownout. A more
naive model where “any served recommendation, regardless
of quality, increases profitability by 50%” puts profit at 26006,
or 46% higher than Brownout-stock and 10% higher than
Brownout-tuned. We prefer the more conservatively estimated
due to fairness. Although Brownout-tuned served more requests,
total profitability was higher for the g-e approach.

While the purpose of this experiment is a direct comparison
of g-e to Brownout, we note that the g-e approach also fares
reasonably compared to the other approaches in terms of
response time (Figure 1) and queued up requests (Figure 2).
That it achieves a significantly higher increase in profitability
compared to the binary utilization threshold-based approaches
over Brownout (40% increase rather than about 20%, compared
to the stock configuration) makes it the most interesting
approach overall when resources are scarce.

C. Resource Utilization

There are two goals concerning utilization for our quality-
elastic approach: (a) in cases of resource abundance, increase
utilization by using more of the allocated resources; and (b) in
cases of resource scarcity, prioritize throughput by emitting
results of lower quality. Previous sections have explored effects
of utilization thresholds and of quality-elasticity when resources
are scarce. This section is concerned with resource abundance,
and whether using quality-elasticity can make use of additional
resources, thereby keeping utilization high.

Figure 5 shows average utilization as a function of the num-
ber of simultaneous clients. The always and never approaches
behave as expected and are the theoretical bounds. The main
differences between the other approaches are:

o The quality-elastic g-e approach takes advantage of
idle resources much better than other approaches when
resources are abundant (i.e. client count is low), at about
a factor 2. Thus, it improves utilization as intended. It
cannot spend too much time or resources on each request,
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Table IV: Request breakdown and profitability comparing our quality-elastic approach (g-¢) to Brownout. By being able to
choose computationally cheaper algorithms to create optional content, it can do so more often while still serving significantly
more total requests than stock Brownout, and thus achieves a higher profitability level.

Served requests (factor)  With optional content (factor) Profitability (factor)
Brownout-stock 11904 1.00 11836 1.00 17822.0 1.00
Brownout-tuned 19277 1.61 9186 0.77  23870.0 1.33
q-e 18732 1.57 14548 1.23  25092.1 1.40
‘ ‘ ‘ ‘ due to variance (Table II), results come back so slowly and
14 b never —+— Brownout-stock q-e @ . . .
ut=0.50 —%—  Brownout-tuned resources are in use for such a long time, that output quality
ut=0.95 always —5— . .
12+ 1 must be lowered to maintain good throughput and response

Average utilization

100

150
Clients

200 250 300

Figure 5: Average utilization as a function of number of clients.
The number of clients increases in powers of 2 up to 256 (200
also included for reference). Resource abundance (low number
of clients) shows significantly higher utilization for the g-e
approach than others, and resource scarcity (high number of
clients) shows that all approaches using utilization thresholds
defensively avoid high utilization, opting instead to provide
higher throughput than always and Brownout.

however, as that would adversely impact response times
for each served request.

o All utilization threshold-based approaches (ur=0.50,
ut=0.95, and g-e) keep average utilization quite far below
the maximum, even during resource scarcity (i.e. higher
numbers of clients). This is directly related to their ability
to provide lower response times and better throughput
than always and Brownout, as shown in Section V-A.

Figure 6b shows utilization only for the case when resources
are abundant to make the data easier to see. Resource abundance
in this case means that only 16 concurrent clients need service.
The figure shows that the goals regarding making use of
additional resources in times of abundance is best met by
the g-e approach. However, we must investigate the output
quality levels further to understand what is going on. Figure 6a
shows the quality levels chosen by the different approaches
during resource abundance. As in Section V-B, only the g-e
approach can choose between all algorithms. The others may
choose only to drop or to serve optional content using
the similar—general algorithm. As expected, the g-e
approach chooses the more computationally expensive ones
(similar-specific and individual-model) most of
the time, as there abundant resources to be used. Sometimes,
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times in general. Relying on utilization thresholds makes this
choice quick and easy to reason about.

To summarize, our results show both that taking current op-
erating conditions into consideration and that quality-elasticity
improves response times, throughput, and service profitability.
Quality-elasticity gives a service the ability to make decisions
that can maximize profitability and end-user utility even further.
In addition, it also helps ensure that resources are not wasted
when request rates are low enough to permit more resources
to be used per request.

VI. FUTURE WORK

The contributions and positions stated in this paper are part
of a larger body of related work (see Section III). We aim to
contribute to the research area in the following ways based on
the quality-elastic approaches described in this paper, motivated
by the positive experimental results in Section V:

« Practical implementation of a quality-elastic demonstra-
tion application. This will help carry out experimental
validation of the results presented in this paper, as
they were obtained via simulation. Of particular interest
is to investigate how quality-elasticity impacts service
availability, resilience, and throughput in practice. We
would also then like to implement and compare with
more recent work on Brownout, e.g. [9], [10], [11], [12],
[13].

o Study the relationship between utilization and utility, as

a measure of how useful customers find a service. The

profitability measures used both in [1] and in this paper

are intentionally simple.

Related to the previous point: customers experience utility

differently, implying that per-user target quality levels may

yield better results than treating all customers the same.

A statistical method such as machine learning may help

in determining these levels.

o Study the effects of collaborative quality-elasticity be-
tween service and infrastructure provider on scheduling,
throughput, and resource utilization. Our hypothesis is
that quality-elasticity enables collaboration to circumvent
resource exhaustion due to load peaks. If so, cost savings
should be possible, permitting more dense co-location of
software execution environments. We have intentionally
left out whether quality-elasticity is initiated by service or
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(a) Frequency of chosen quality levels during resource
abundance. Like in Figure 4, only the g-e¢ approach can
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(b) Resource utilization for 16 concurrent clients.

Figure 6: Resource abundance use case, where 16 concurrent clients are used, rather than 200.

infrastructure providers in this work as it is an interesting
and complex problem in itself.

« We also envision an API for collaborative quality-elasticity
to carry out the previous item. This should be coupled
with exploration of the question of how a micro-service,
or the underlying cloud infrastructure, determines how
much processing time to devote to each of the other micro-
services it depends on to return a result to the user.

VII. CONCLUSIONS

Computational cloud resources are currently poorly utilized
during normal operation and yet, in cases of high system load,
service throughput suffers and response times increase. Both
of these issues are rooted in the same core problem, namely
that services currently do not adjust their mode of operation
to current operating conditions. Our main contribution in this
paper is that we have proposed quality-elasticity as a solution
to this problem. A quality-elastic service adjusts the quality of
its output on a fine-grained (or continuous) spectrum, thereby
varying the amount of work that is needed to get results. When
resources are abundant, more time can be spent on producing
high-quality responses. When they are scarce, quicker and
lower-quality responses must be given to keep throughput and
response times at satisfying levels.

The quality-elastic concept builds and extends upon previous
work on application Brownout [1], which was focused on a
binary choice of whether to reduce quality or not. It neither
captured increasing output quality when resource availability
allows, nor did it consider more than two output quality levels.

Through experiments using the same simulator developed
for Brownout, we have shown that by adding these aspects
in a quality-elastic way, throughput can be increased by 50%,
95™ percentile response times can be lowered by a factor 8,
profitability increased by 40%, and utilization can be doubled
in times of resource abundance, thus reducing idle resource
waste. Based on these findings, we conclude that this quality-
elastic approach and basing output quality decisions on current
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usage shows some promise, and motivates further research
within this field.

OPEN SOURCE AND OPEN DATA NOTICE

The modified code and experiment data used in the final
version of the paper is available publicly on Github. The address
is https://github.com/llarsson/brownout-simulator/tree/icac2019,
which signifies that the icac2019 branch is where the
modifications reside.

REFERENCES

[1] C. Klein, M. Maggio, K.-E. Arzén, and F. Hernandez-Rodriguez,
“Brownout: Building more robust cloud applications,” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014.

Q. Wang, Y. Kanemasa, M. Kawaba, and C. Pu, “When average is
not average: Large response time fluctuations in n-tier systems,” in
Proceedings of the 9th International Conference on Autonomic Computing
(ICAC ’12). ACM, 2012.

E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: Distributed computing for the 99%,” in Proceedings of the 2017
Symposium on Cloud Computing. ACM, 2017.

A. Shehabi, S. Smith, N. Horner, I. Azevedo, R. Brown, J. Koomey,
E. Masanet, D. Sartor, M. Herrlin, and W. Lintner, “United states data
center energy usage report,” Lawrence Berkeley National Laboratory,
Berkeley, California, Tech. Rep. LBNL-1005775, 2016.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Towards understanding heterogeneous clouds at scale: Google trace
analysis,” Intel Science and Technology Center for Cloud Computing,
Tech. Rep., 2012.

L. A. Barroso and U. Holzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, 2007.

X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in SIGARCH computer architecture news,
no. 2. ACM, 2007.

H.-E. Chihoub, S. Ibrahim, Y. Li, G. Antoniu, M. Pérez, and L. Bougé,
“Exploring energy-consistency trade-offs in Cassandra cloud storage
system,” in SBAC-PAD’15 — The 27th International Symposium on
Computer Architecture and High Performance Computing. DBLP, 2015.
T. Nylander, M. T. Andrén, K.-E. Arzén, and M. Maggio, “Cloud
application predictability through integrated load-balancing and service
time control,” in International Conference on Autonomic Computing
(ICAC). 1IEEE, 2018.

A. V. Papadopoulos, C. Klein, M. Maggio, J. Diirango, M. Dellkrantz,
F. Hernandez-Rodriguez, E. Elmroth, and K.-E. Arzén, “Control-based
load-balancing techniques: Analysis and performance evaluation via a
randomized optimization approach,” Control Engineering Practice, 2016.

[2

3

=

[4]

[5

[6]

[7

[8]

9

—

[10]

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on May 30,2020 at 11:37:24 UTC from IEEE Xplore. Restrictions apply.



[11]

=
N

(13

[14]

21

M. Maggio, C. Klein, and K.-E. Arzén, “Control strategies for predictable
brownouts in cloud computing,” IFAC proceedings volumes, vol. 47, no. 3,
2014.

C. Klein, A. V. Papadopoulos, M. Dellkrantz, J. Diirango, M. Maggio,
K.-E. Arzén, F. Hernandez-Rodriguez, and E. Elmroth, “Improving
cloud service resilience using brownout-aware load-balancing,” in 33rd
International Symposium on Reliable Distributed Systems (SRDS). 1EEE,
2014.

J. Diirango, M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopou-
los, F. Hernandez-Rodriguez, E. Elmroth, and K.-E. Arzén, “Control-
theoretical load-balancing for cloud applications with brownout,” in 53rd
Annual Conference on Decision and Control (CDC). 1EEE, 2014.

A. V. Papadopoulos, J. Krzywda, E. Elmroth, and M. Maggio, “Power-
aware cloud brownout: Response time and power consumption control,”
in 56th Annual Conference on Decision and Control (CDC). IEEE,
2017.

M. Xu, A. V. Dastjerdi, and R. Buyya, “Energy efficient scheduling
of cloud application components with brownout,” Transactions on
Sustainable Computing, vol. 1, no. 2, 2016.

M. Xu and R. Buyya, “Brownout approach for adaptive management
of resources and applications in cloud computing systems: A taxonomy
and future directions,” Computing Surveys, 2018.

M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “A virtual
machine re-packing approach to the horizontal vs. vertical elasticity
trade-off for cloud autoscaling,” in Proceedings of the 2013 ACM Cloud
and Autonomic Computing Conference, ser. CAC *13.  ACM, 2013.
A. M. Joy, “Performance comparison between Linux containers and
virtual machines,” in International Conference on Advances in Computer
Engineering and Applications. 1EEE, March 2015.

P. Leitner and J. Cito, “Patterns in the chaos — a study of performance
variation and predictability in public IaaS clouds,” Transactions on
Internet Technology (TOIT), vol. 16, no. 3, 2016.

H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE: Elastic
distributed resource scaling for infrastructure-as-a-service,” in Proceed-
ings of the 10th International Conference on Autonomic Computing
(ICAC 13). USENIX, 2013.

L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu, “Distributed
resource management across process boundaries,” in Proceedings of the
2017 Symposium on Cloud Computing. ACM, 2017.

62

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

M. T. A. Amin, S. Li, M. R. Rahman, P. T. Seetharamu, S. Wang,
T. Abdelzaher, 1. Gupta, M. Srivatsa, R. Ganti, R. Ahmed, and H. Le,
“SocialTrove: A self-summarizing storage service for social sensing,”
in Proceedings of the 12th International Conference on Autonomic
Computing (ICAC ’15). IEEE, 2015.

Z. Wen, D. L. Quoc, P. Bhatotia, R. Chen, and M. Lee, “ApproxIoT:
Approximate analytics for edge computing,” in 38th International
Conference on Distributed Computing Systems (ICDCS). 1EEE, 2018.
D. L. Quoc, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, and
T. Strufe, “ApproxJoin: Approximate distributed joins,” in Proceedings
of the ACM Symposium on Cloud Computing (SoCC ’18). ACM, 2018.
1. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approxhadoop:
Bringing approximations to mapreduce frameworks,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
ACM, 2015.

J. Kelley, C. Stewart, N. Morris, D. Tiwari, Y. He, and S. Elnikety,
“Measuring and managing answer quality for online data-intensive
services,” in International Conference on Autonomic Computing. IEEE,
2015.

W. Tidrneberg, A. Mehta, J. Tordsson, M. Kihl, and E. Elmroth, “Resource
management challenges for the infinite cloud,” in /0th International
Workshop on Feedback Computing at CPSWeek, 2015.

P. Skarin, W. Térneberg, K.-E. Arzen, and M. Kihl, “Towards mission-
critical control at the edge and over 5G,” in International Conference on
Edge Computing (EDGE). IEEE, 2018.

D. M. Fleder and K. Hosanagar, “Recommender systems and their impact
on sales diversity,” in Proceedings of the 8th Conference on Electronic
commerce. ACM, 2007.

D. Fleder and K. Hosanagar, “Blockbuster culture’s next rise or fall:
The impact of recommender systems on sales diversity,” Management
science, vol. 55, no. 5, 2009.

B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
A cautionary tale,” in Proceedings of the 3rd Conference on Networked
Systems Design & Implementation, ser. NSDI’06, vol. 3.  USENIX
Association, 2006.

F. Nah, “A study on tolerable waiting time: How long are web users
willing to wait?” Behaviour and Information Technology, vol. 23, 01
2003.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on May 30,2020 at 11:37:24 UTC from IEEE Xplore. Restrictions apply.



