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Abstract—Distributed training frameworks, like TensorFlow,
have been proposed as a means to reduce the training time of
deep learning models by using a cluster of GPU servers. While
such speedups are often desirable—e.g., for rapidly evaluating
new model designs—they often come with significantly higher
monetary costs due to sublinear scalability. In this paper, we
investigate the feasibility of using training clusters composed of
cheaper transient GPU servers to get the benefits of distributed
training without the high costs.

We conduct the first large-scale empirical analysis, launching
more than a thousand GPU servers of various capacities, aimed
at understanding the characteristics of transient GPU servers
and their impact on distributed training performance. Our study
demonstrates the potential of transient servers with a speedup of
7.7X with more than 62.9% monetary savings for some cluster
configurations. We also identify a number of important challenges
and opportunities for redesigning distributed training frame-
works to be transient-aware. For example, the dynamic cost and
availability characteristics of transient servers suggest the need
for frameworks to dynamically change cluster configurations to
best take advantage of current conditions.

Index Terms—Distributed deep learning; performance mea-
surement; cloud transient servers

I. INTRODUCTION

Distributed training is an attractive solution to the problem
of scaling deep learning to training larger, more complex, and
more accurate models. In short, distributed training allows
models to be trained across a cluster of machines in a
fraction of the time it would take to train on a single server.
For example, researchers at Facebook achieved near linear
scalability when training a ResNet-50 model on the ImageNet-
1k dataset using 32 GPU-equipped servers [1].

Distributed training is especially attractive for compa-
nies that want to leverage cloud-based servers. All ma-
jor cloud providers—Google, Microsoft, and Amazon—offer
GPU server options to support deep learning. However, ex-
isting distributed training frameworks make traditional as-
sumptions about the lifetime of cloud servers in its cluster.
Namely, that once a server is acquired by the customer it will
remain available until explicitly released back to the cloud
provider by that customer. In this paper, we refer to such
servers as on-demand. While this assumption is reasonable for
many deployments, we argue that it also represents a missed
opportunity.

In this work, we ask the question: what if we use tran-
sient rather than on-demand servers for distributed training.
Transient servers offer significantly lower costs than their
on-demand equivalents with the added complication that the

cloud provider may revoke them at any time—violating the
availability assumption discussed in the preceding paragraph.
Google, Microsoft, and Amazon all offer transient servers,
so the idea of distributed training with transient servers is
applicable to all three major cloud platforms.

Consider the following motivating experiment. Using a
single on-demand GPU server on Google Compute Engine, we
were able to train a ResNet-32 model in 3.91 hours with a total
cost of $2.83 on average (Table I). When we use distributed
training with four on-demand servers—with each machine
identical to the single server used the in previous runs—
we improved the average training time to 0.99 hours with
similar overall cost of $2.92. Finally, when we use distributed
training with four transient servers we retain the improvement
in training time, 1.05 hours on average, while significantly
reducing the total cost to $1.05 on average (Figure 1). We
saw these performance increases even though we made no
significant modifications to the distributed training framework
and 13 of the 128 transient servers (affecting 11 out of the 32
clusters) were revoked at some point prior to the completion
of training. We provide a more detailed analysis of this
experiment and the impact of server revocation in Section III.

Our goal is to identify the important design considerations
needed for rearchitecting distributed training frameworks to
support transient servers. While the simple experiment above
demonstrates the potential of distributed training with transient
servers (e.g., reduced training time and cost) as well as the
challenges (e.g., server revocation and availability), we believe
that transient servers also offer additional opportunities. For
example, price dynamics make it more attractive to use clusters
with machines drawn from multiple, geographically-diverse,
data centers. Such an approach raises interesting questions
about the impact of communication costs and latency on
training performance. Similarly, rather than use a cluster
composed of servers of the same type, we might employ
heterogeneous clusters composed of machines with different
computational resources and capabilities. Finally, the clusters
themselves need not be static; instead, we might dynamically
add or remove servers to make distributed training more robust
to server revocation or to take advantage of volatile server
pricing.

We conduct the first large-scale empirical measurement
study that quantifies the training performance of deep learning
models using cloud transient servers. Through our study, we
make the following additional contributions:

• We compare the training time and cost of distributed
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Training time
(hours)

Cost
($)

Accuracy
(%)

4 K80 transient (1.05, 0.17) (1.05, 0.02) (91.23, 1.30)
1 K80 on-demand (3.91, 0.03) (2.83, 0.02) (93.07, 0.002)Training

Setup 4 K80 on-demand (0.99, 0.02) (2.92, 0.05) (91.20, 1.01)

r = 0 (21 out of 32) (0.98, 0.01) (1.04, 0.01) (91.06, 1.43)
r = 1 (8 out of 32) (1.13, 0.12) (1.07, 0.01) (91.83, 0.90)

Transient
revocation
scenarios r = 2 (2 out of 32) (1.45, 0.50) (1.10, 0.02) (90.68, 0.30)

TABLE I: Benefits of transient distributed training. On average,
training with 4-K80 transient GPU servers results in a 3.72X speedup
with 62.9% monetary savings, compared to running on one K80
on-demand GPU server. In addition, we observe a 1.2% drop in
accuracy compared to single GPU server training. However, the
slightly lower accuracy is due to training on stale model parameters
in distributed asynchronous training. That is, training with 4-K80
servers, regardless of transient or on-demand, produces models with
almost identical accuracies. Here r = x (y out of 32) denotes that
the revocation of x workers happens in y clusters. Performance
metrics are represented in a tuple of average and standard deviation
throughout the paper, unless otherwise specified.

training using transient servers to on-demand servers. We
observe up to 7.7X training speedup and up to 62.9%
monetary savings in our experiments when compared to
the single GPU baseline.

• We quantify the revocation impacts of transient servers
on training performance and identify the importance of
larger cluster sizes and the need to redesign distributed
training frameworks. In addition, our observations about
model accuracy reveal additional opportunities for mit-
igating revocation impacts, such as the need for cloud
providers to support selective revocation.

• We also demonstrate the benefits and limitations of using
heterogeneous servers in distributed training. In particu-
lar, our findings suggest a number of plausible transient-
aware designs for deep learning frameworks, including
the ability to train with dynamic cluster sizes, to better
exploit these cheap transient servers.

II. BACKGROUND AND MOTIVATIONS

In this section, we first provide the necessary background
on distributed training and motivate our selection of parameter
server-based asynchronous training (Section II-A). We then
explain the opportunities and challenges presented by training
with transient servers (Section II-B). An overview of transient-
based distributed training is illustrated in Figure 2.

A. Distributed Deep Learning

In this paper, we focus on evaluating distributed training
with parameter server-based asynchronous training due to its
popularity and potential resilience to training server failures.
The concept of distributed deep learning on multiple GPU
servers is relatively new [2], and a number of frameworks such
as TensorFlow [3] and FireCaffe [4] have started to support
training DNN models using clusters of GPU servers. Note that
this approach is different from training on a single server with
multiple GPUs.

Conceptually, the training of a convolutional neural network
can be divided into four phases. First, the model parameters
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Fig. 1: Quantifying distributed training performance using transient
servers. We launched 32 transient GPU clusters for training the
ResNet-32 model on the Cifar-10 dataset. Each cluster Ci was
configured with four K80 transient GPU servers (W1 to W4) and
one parameter server. We observed that 21 out of 32 transient clusters
completed training with 0 revocations, and that 13 out of 128 K80
transient servers were revoked during various training stages—the
lighter the shade, the earlier the revocation. On average, training with
4 K80 transient GPU servers resulted in a 3.72X speedup and 62.9%
monetary savings, compared to running on one K80 on-demand GPU
server.

are initialized, often randomly or with a popular function such
as Xavier [5]. Second, one batch of input data is selected and
the feed-forward computation is performed at each layer l by
applying the function on the weights, inputs, and the bias
term from the previous layer l − 1. The computation stops
when the output layer is reached and the results are recorded.
This second phase is identical to the process of generating
predictions using a trained model. Third, model errors are
calculated by comparing the probability distribution (i.e., the
model output) generated for each input to the known true
value and multiplying by the derivative of the output layer.
The errors are then propagated from layer l to its previous
layer l − 1 until reaching the first layer. Fourth, the model
parameters between layer l − 1 and layer l are updated by
multiplying the learning rate and the gradient of layer l and
weights at layer l − 1.

As the model gets bigger—i.e., more parameters and
computation-intensive layers—the training time also increases.
To speed up the training process, phases two through four
above can be distributed across different servers to parallelize
training. A common way to do so is to have a parameter
server [6], [7] that is in charge of updating model parameters
(phase four), and a cluster of powerful GPU servers to work
on the forward and backward propagation (phases two and
three). It is worth noting that phase two is the most time-
consuming of the training process [8] and, therefore, would
enjoy the largest benefit from adding more GPU servers.

In this paper, we adopt the asynchronous distributed training
architecture depicted in Figure 2. Here each worker keeps an
entire copy of the model and independently calculates gradi-
ents using its local copy of the input data—this also referred
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Fig. 2: Illustration of distributed training on transient GPU servers.
We adopt an asynchronous distributed training architecture. The
parameter server runs on an on-demand CPU server and the workers
(including a special master that is in charge of model checkpointing)
run on transient GPU servers. Workers are in charge of calculating
the gradient updates while the parameter server incorporates the
gradients to update the model parameters. The training can still
progress even if some of the workers (denoted in red) are revoked by
the provider.

to data-parallelism.1 In addition, each worker can pull the
most-recent model parameters from a parameter server without
needing to wait on the parameter server to collect and apply
gradients from all other workers, i.e., asynchronous training.
It is also possible to use more than one parameter server, in
which case each worker needs to contact all parameter servers
(not depicted in the figure). Consequently, workers might be
working on slightly outdated models (indicated by different
shades in Figure 2); this model staleness can lead to a reduc-
tion of model accuracy. Currently, in TensorFlow distributed
training, one master worker will also periodically save the
model parameters in a process called model checkpointing.
Even if one of the workers fails—e.g., the last worker colored
with red in Figure 2—the training can still progress, albeit at
a degraded speed. However, if the master fails, the distributed
training also fails because we will not have access to the model
files with the converged accuracy.

B. Transient Servers

Transient servers are cloud servers that are offered at
discounted prices (up to 90% cheaper). Major cloud providers,
such as Amazon EC2 and Google Compute Engine (GCE),
offer transient servers in the form of spot instances and
preemptible VMs, respectively. Unlike traditional on-demand
servers, cloud providers can revoke transient servers at any
time [9], [10]. When such situations arise, customers are only
granted a short time window—30 seconds for GCE and 2
minutes for EC2—before permanently losing access to the
server. This is often referred to as server revocation.

1For training with large volumes of data, the data are also often divided
into shards.

Aside from revocation, transient servers offer the same
performance as equivalently configured on-demand servers.
For example, the training performance with 4 K80 transient
servers when r=0 (no revocations) and training with 4 K80
on-demand servers are almost identical, see Table I.

Cloud transient servers exhibit three key characteristics that
make them both beneficial and challenging to leverage for
distributed training.

First, transient servers are significantly cheaper allowing
customers to devote additional servers to training, speeding
up the training time while remaining within a fixed mone-
tary budget. Depending on whether the transient servers are
statically priced (e.g, GCE preemptible VMs) or use a more
dynamic pricing model (e.g., Amazon spot instances), cloud
customers have a range of possible cluster configurations that
may evolve over time. For instance, in the case of dynamic
pricing, cloud customers may want to regularly monitor prices
and adjust the number and type of servers to maximize training
performance and reduce costs.

Second, the availability of transient servers, compared to
their on-demand counterparts, can be lower or even unpre-
dictable. Here the availability of cloud servers refers to the
probability of cloud providers fulfilling the resource request in
a timely manner. Availability depends, in part, on the overall
demand for servers (both on-demand and transient) in the
local region [11]. Therefore, to best utilize transient servers
it is likely that customers will need to request servers with
different (but more available) resource capacities and from
multiple regions.

Third, transient servers have uncertain lifetimes. Here a
server’s lifetime is the time interval between when the cloud
provider satisfies the customer’s request for a new server
and the time the server is revoked. Different cloud providers
have different policies that directly affect server lifetimes.
For Google Compute Engine, the maximum lifetime of any
transient server is at most 24 hours. That is, even though
GCE preemptible VMs can be revoked at any point, they are
guaranteed to be revoked after 24 hours.

We empirically measured the lifetime of GCE transient
servers (with the configurations detailed in Table II). Our
measurement involves more than 600 transient servers that
were requested at different times, from different data center
locations, and with different levels of resource utilization. In
Figure 3, we compare the lifetimes of GCE transient servers.
We observe that different GPU servers have different revoca-
tion patterns. Further we find that even though approximately
70% of servers live the full 24 hours, about 20% are revoked
within the first two hours—in the latter case, distributed
training that lasts more than two hours will be subject to
revocation impacts.

In summary, cloud transient servers present an opportunity
to speed up deep learning with cheaper server resources. How-
ever, considering the potential revocations and unavailability
of transient servers, leveraging these resources requires us
to rethink existing techniques for distributed training. Cur-
rent distributed frameworks, designed with stable on-demand
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Fig. 3: CDF of Google preemptible GPU server lifetimes. We
measure the lifetime as the time between when a preemptible GPU
server is ready to use and when the server is revoked by the Google
cloud platform. Note that Google transient servers have a maximum
lifetime of 24 hours. We observe that less than 20% of transient
servers are revoked in the first two hours.

GCE
instance

Mem.
(GB) vCPU On-demand

($/hr)
Transient

($/hr)
Savings

potential(%)
EC2

counterpart

K80 61 4 0.723 0.256 35.4 p2.xlarge
P100 61 8 1.43 0.551 38.5 -
V100 61 8 2.144 0.861 40.2 p3.2xlarge
PS 16 4 0.143 0.041 - m4.xlarge

CNN
model

Num.
parameters

Model size
(MB)

Num.
layers

Batch
size

Top-1
accuracy(%) Optimizer

ResNet-32 1.9M 14.19 32 128 92.49 Momentum

TABLE II: Server configurations and models used in our experi-
ments. We customized both GPU servers (used to run workers) and a
CPU server (shaded and referred to as PS) in Google Cloud Engine.
The first column specifies the type of GPU cards used for each server.
For ResNet-32, the top-1 accuracy is obtained from the original
paper that evaluates against Cifar-10 dataset.

servers in mind, do not adequately support the features that
are necessary for leveraging transient servers; e.g., dynamic
cluster adjustment, robust model checkpointing, or support for
heterogeneous and geographically distributed clusters.

III. EXPERIMENTAL EVALUATION

Our evaluation answers the following key research ques-
tions: (1) How do transient servers compare to on-demand
servers with respect to distributed training? (2) What is the
best cluster configuration given a fixed monetary budget? (3)
How does the revocation of transient servers impact distributed
training? (4) What are the benefits and challenges associated
with dynamic clusters? (5) What is the performance impact of
using heterogeneous server resources?

A. Experimental Setup

a) Public Cloud Infrastructure: We conducted our exper-
iments using Google Compute Engine (GCE) and the server
configurations are shown in Table II. We choose three GPU
server configurations with different GPU capacities—K80,
P100, and V100 in increasing order of GPU memory, parallel
cores, etc. For simplicity of exposition, we refer to each GPU
server configuration by the attached GPU.

To better avoid memory and CPU bottlenecks in our eval-
uation, we choose the max memory and virtual CPU values
allowed by GCE for each configuration.

The savings potential column illustrates the cost difference
between transient and on-demand instances. It is calculated
as the unit on-demand price divided by the unit transient
cost. Recall that Google Compute Engine uses a static pricing
model.

The fourth server in Table II, labeled PS, was used to run
the parameter server during distributed training. This server
did not have an attached GPU—hence, the reduced cost—and
was run using an on-demand instance. The reason we use an
on-demand instance for the parameter server for distributed
training is to avoid the checkpoint restarts that would result if
parameter server was revoked. However, we do use transient
parameter servers when measuring the lifetime of transient
CPU server.

b) Deep Learning Framework: We leveraged the popular
deep learning framework TensorFlow [3] for all our experi-
ments given the relative maturity of the project and support
for distributed training. We also used the Tensor2tensor li-
brary [12] to assist in the training process. For the model,
we selected ResNet-32 [13], in part, due to its popularity. This
CNN model can be trained to convergence using a single GPU
server in ∼4 hours, making it practical for our experiments.
See Table II for full model details.

For the training dataset, we used, Cifar-10 [14], a standard
image recognition dataset consisting of 60K color images,
each 32 by 32 pixels, spanning 10 output classes. Following
standard conventions in the field of deep learning, we used
50K images for training and the rest for testing. We also used
the same hyperparameter configurations (e.g., learning rate) as
specified in the original paper for most of our experiments—
any differences are noted when appropriate.

c) Performance Metrics: We focus on the performance
metrics most relevant to comparing distributed training on
transient servers to training on on-demand servers. For tran-
sient servers, we monitor the revocation events and record
server lifetimes. For transient servers that were revoked by
GCE, their recorded lifetime will typically be shorter than the
total training time for the cluster. A training cluster is said to
have failed if the master worker is revoked prior to training
completion.

For distributed training, we measure training time, cost,
and accuracy. Training time is defined as the amount of time
required to complete the specified training workload. When
training the ResNet-32 model, we specify the training work-
load to be 64K steps where each step equates to processing a
batch of 128 images in the Cifar-10 dataset. We refer to the
accuracy of the model at 64K steps as the converged accuracy.

Training cost is calculated using the sum of all cloud
servers that participate in the training process. In the case
of distributed training, these include GPU servers that are
responsible for calculating the gradients and the CPU server
that is in charge of updating the model parameters. We
calculate the cost of each server by multiplying the unit cost
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Fig. 4: Performance comparison between distributed training using
transient and on-demand GPU servers. We measure the distributed
training performance with three different cluster sizes. We repeat each
cluster size 32 times and label them as Ci where i ∈ [1, 32]. The
cluster runs are sorted by the number of revocations and the workers
Wj are sorted by their lifetime. On average, using transient servers
can achieve up to 62.9% cost savings and up to 7.7X training speed
up when compared to training using one K80 on-demand server. In
all cases of distributed training with transient servers, the converged
accuracy is comparable to that of on-demand distributed training.

by the amount of time that server was active in training. For a
transient server, the active training time stops when the server
is revoked or the training has completed. When analyzing the
training cost, we use a fine-grained second-based charging
model [15]. For example, if the active training time is 3601
seconds, we will charge the server for 3601 seconds. In the
traditional hour-based charging model, the cost would instead
be based on two hours. Regardless of the charging model,
we can amortize the cost effectively when transient training
is offered as a service in which different training sessions can
share the training servers.

Training accuracy is measured as the top-1 accuracy, i.e.,
the percentage of correctly predicted images using the trained
model on the test portion of the dataset. In the case of the
ResNet-32 model, we evaluate accuracy after 64K steps. While
our goal is not to increase the accuracy of existing models,
it is important to demonstrate that distributed training with
transient servers does not have a significant negative impact
on accuracy.

B. Transient vs. On-demand Servers

For our first experiment (also described in the introduction),
we evaluate the feasibility of using transient servers for dis-
tributed training as opposed to the traditional, more expensive,
and more available on-demand equivalents. Specifically, we
launched 32 transient GPU clusters for training the ResNet-32
model on the Cifar-10 dataset. Each cluster Ci was configured
with four-K80 transient GPU servers and one parameter server
PS. Our on-demand clusters used the same configuration.

From Table I, we observe that distributed training offers
a significant reduction in training time and that distributed
training with transient servers further offers a significant

reduction in cost. More concretely, the speedup is up to 3.72X
when using clusters that fit within the initial budget for a single
K80 on-demand server. Moreover, we see a 62.9% savings in
training cost with slightly degraded top-1 accuracy (∼1.2%)
at convergence time. The slightly lower accuracy is due to
training on stale model parameters in distributed asynchronous
training and affects transient and on-demand clusters equally.

Our empirical analysis reveals three other important obser-
vations. First, even with server revocation transient servers of-
fer tangible benefits over distributed training using on-demand
servers; namely, significantly lower cost with similar accuracy
at the cost of 5.7% longer training time. More concretely,
we observed 13 server revocations in 11 of our 32 transient
clusters. In all but one case, the training continued after
revocation and finished successfully with an average speedup
of 3.72X and cost savings of 62.9%. Figure 1 illustrates the
observed revocations for the transient clusters. The caveat here
is that the revoked servers cannot be the master server for the
cluster, hence our next observation.

Second, current distributed training architectures need to be
redesigned to support the failure of the server responsible
for checkpointing, i.e., the master. Currently, if the master
GPU server is revoked (happened once in our 32 runs for
this experiment) then the distributed training will fail.

Third, the number of revoked GPU servers had little impact
on the training cost and accuracy but increased training time
(up to 48%). This implies that we could mitigate the revocation
impact on distributed training performance by increasing the
cluster size. We empirically evaluate this hypothesis in the
following sections.

Summary: Distributed training with transient servers can
speed up deep learning by up to 3.72X with 62% cost
savings, when compared to training using on-demand servers.
Our analysis motivates the need for redesigning distributed
training frameworks to support robust model checkpointing
and suggests that training with larger cluster sizes allows for
better tradeoffs between training time and accuracy.

C. Scaling Up vs. Out with Transient Servers

Using the cost of training on a single on-demand K80 as
a constraint, we investigate the merits of scaling up by using
more powerful GPU servers or scaling out by using a cluster
of GPU servers. Intuitively, we are asking the question: what
is the best cluster configuration given a fixed budget?

We selected three scaling out and two scaling up transient
cluster configurations, running each 32 times, and present the
average performance in Table III. All clusters were able to
finish within the specified monetary cost budget of $2.83.

Our results reveal three important insights. First, scaling
up is less resilient to server revocations. We observed a
training failure rate of 6.66% for the P100 and 43.8% for the
V100 compared to just 3.1% for a cluster of K80 machines.
The lifetime of revoked server during distributed training is
depicted in Figure 1, as well as Figure 4. Note, for the
two former configurations with a single machine, the server
revocation and training failure rates are the same.
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Transient
Training Revocations Time (hours) Cost($) Accuracy(%)

2 K80+1 PS (2.16, 0.50) (1.31, 0.08) (91.93, 0.70)
4 K80+1 PS (1.05, 0.17) (1.16, 0.04) (91.23, 1.30)
8 K80+ 1PS

6.25%
(28 out of 448) (0.51, 0.01) (1.11, 0.02) (88.79, 1.50)

1 P100 6.66%
(2 out of 32) (1.50, 0.04) (0.83, 0.02) (93.11, 0.24)

1 V100 43.8%
(14 out of 32) (1.23,0.04) (1.06, 0.03) (92.98, 0.39)

TABLE III: Scaling up vs. scaling out. Under the same training cost
budget constraint, we empirically measure and compare the training
performance of scaling up and out using transient resources. We
calculate the average performance across all training setups that
completed successfully. In the scale up case, 28 (12) out of 32 runs
for P100 (V100) were able to finish 64K steps. In the scale out case,
training only fails when the K80 master worker is revoked, with a
probability of 6.25%. Although K80 clusters with various sizes have
the same failure probability, the larger the cluster size, the lower the
impact of revocations. This is because training can still progress in
larger clusters, albeit at a degraded performance compared to the
initial cluster.

Avg. revocation overhead (%) Distributed training performance

Revocation
scenarios

Cluster
Size

Training
time Cost Accuracy Training time

(hours)
Cost
($)

Accuracy
(%)

2 - - - 1.96 1.28 91.90
4 - - - 0.98 1.14 91.06r = 0
8 - - - 0.51 1.11 88.65

2 61.7 14.8 0.18 3.17 1.47 92.08
4 15.3 3.5 0.77 1.13 1.18 91.83r = 1
8 3.9 2.7 0.05 0.53 1.14 88.60

2 - - - - - -
4 48 9.6 0.38 1.45 1.25 90.68r = 2
8 5.9 5.4 1.45 0.54 1.17 90.10

TABLE IV: Quantifying revocation overhead for different cluster
sizes. With the same revocation scenarios, i.e., r = i where i is the
number of GPU servers that were revoked during the training session,
the impact on training time and cost decreases with increases in
cluster size. In addition, with the same initial cluster size, we observe
higher revocation overheads the greater the number of revocations.

Second, increasing the size of the cluster improves training
speed but reduces the accuracy of the trained model. For
instance, scaling out to 4-K80 cluster is 30% (and 14.6%)
faster when compared to scaling up to one P100 (or V100,
respectively) with slight decrease of 1.75% accuracy.

Third, the accuracy decrease is non-linear as the cluster
increases. We observed a significant drop of 4.28% in accuracy
when the cluster consists of 8-K80 servers. We also observed
that the accuracy converges before 64K steps, i.e., prolong-
ing training does not improve accuracy. These observations
are consistent with previously noted impacts of stale model
parameters on the converged accuracy [6], [16]–[18].

Summary: When configuring the transient server clusters,
one needs to consider various factors, including revocation
probability, training time reduction, and desired model ac-
curacy. Based on our measurements, a cluster size of four
balances the above factors for our target model.

D. Revocation Impact

As summarized in Table IV, the impact of server revocation
depends on the size of the training cluster. Here the revocation
overhead is calculated by comparing the average performance

achieved in each revocation scenario to equivalent cluster
without any revocations. For both training time and cost, the
revocation overhead decreases with increased cluster size. For
example, for the 8-K80 cluster, the overhead of a revocation
is only 3.9% for training time and 2.7% for training cost.

When we also consider the lifetime of revoked GPU servers
(Figure 1 and Figure 4) it appears that the reduced overhead
observed in the larger cluster is a combination of two factors:
transient servers being revoked at different stages relative to
the cluster training time (though the actual lifetime might
be the same) and the percentage of lost computation power
relative to the cluster capacity. Note that when a worker is
revoked, the lost work is equivalent to the time to generate
gradients from one batch of data, in the worst-case scenario.
This implies that larger transient clusters are more resilient to
server revocations as it reduces the time that each individual
server is needed.

Interestingly, we observe a slightly increased accuracy for
clusters of size two and four (shaded cells). We suspect this
may be caused by losing an underperforming GPU server,
i.e., a server that happens to be slightly slower than average
and is working on more stale model parameters than the
rest. If true, this motivates the redesign of cloud transient
server revocation. In essence, when revoking transient servers,
if cloud providers could only specify the number of servers
needed from a particular cloud customer and leave the choice
of which servers to be revoked to the cloud customer, it
will enable more flexibility when making tradeoffs between
accuracy and training performance.

On the other hand, as the number of revocations increases
from one to two occurrences, the overhead for training time
and cost also increases significantly. In the case of 4-K80
clusters, the overhead triples. Again, this indicates that in
addition to the number of revocations, the timing of revoca-
tions also plays an important role in defining the revocation
overhead. Although cloud customers cannot control when and
how many revocations will occur during training, our results
suggest strategies for reducing impact by either increasing the
cluster size or selectively returning training servers, thereby
improving accuracy by controlling model staleness. The cost
savings, up to 70% compared to a single K80, also make it
possible to launch more than one transient cluster to further
mitigate against the impact of revocations.

Summary: The impact of server revocation on training time
and cost depends on the number of revocations, the cluster
size, and when the revocation events happen. Larger cluster
sizes are more resilient to revocation. Further, our observations
suggest that further improvements are possible if the cloud
provider adopts a more flexible revocation policy, e.g., by
allowing the customer to choose which resources get revoked.

E. Scaling Up with On-demand Servers

Here, we compare the distributed training performance be-
tween on-demand and transient clusters (without revocations)
using the same number of K80 servers. Given the limited
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Distributed training performance

Cluster
size

Training
status

Training time
(hours)

Cost
($)

Accuracy
(%)

r = 0 (1.96, 0.05) (1.28, 0.03) (91.90, 0.70)2 On-demand (1.99, 0.06) (3.16, 0.10) (91.90, 0.73)

r = 0 (0.98, 0.01) (1.14,0.01) (91.06, 1.43)4 On-demand (0.99, 0.02) (3.02, 0.05) (91.20, 1.01)

r = 0 (0.51, 0.01) (1.11, 0.02) (88.65, 1.52)8 On-demand (0.51, 0.01) (3.01, 0.03) (88.40, 2.23)

TABLE V: Comparison of distributed training performance using
on-demand and transient servers. For all three cluster sizes, we
observe little performance deviations on training time (1.5%) and
accuracy (0.25%) between on-demand and transient K80 servers.
However, on-demand distributed training exceeded the monetary
budget by up to 11.7% (highlighted in red), casting doubt on the
practicality of speeding up training with on-demand clusters.
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Fig. 5: Benefits of dynamic transient distributed training and
adaptive learning rate. Dynamically scaling training cluster allows
training to be finished 40.8% faster than a static cluster. By adaptively
setting the learning rate, we mitigate the accuracy degradation
caused by naively using sparse mapping.

variance in on-demand performance, we only repeat the on-
demand training ten times. We present the average perfor-
mance and standard deviation in Table V. Our measurements
demonstrate that scaling up with on-demand servers incurs
almost 2X higher training costs with almost identical training
time and accuracy. This again showcases the opportunity
presented by transient servers in keeping up with on-demand
training performance while being significantly cheaper.

F. Dynamic Transient Clusters

Given the extended time it can take to train a model and the
potential volatility of transient server prices, it may make sense
to dynamically add and remove GPU servers during training.
This would, for example, allow cloud customers the flexibility
to add cheaper transient servers to speed up training and ensure
they always have the best cluster configuration given their
budget and changing server prices. We refer to this concept as
dynamic transient clusters.

As existing distributed training frameworks do not natively
support dynamic clusters, we instead propose a technique
called sparse mapping to enable dynamically adjusting train-
ing cluster configurations during runtime. When using sparse

mapping, cloud customers specify the maximum number of
workers (i.e. GPU servers), also referred to as slots, allowed
in the cluster. These slots would then be filled opportunistically
during training. For example, a cloud customer can initialize a
cluster with four slots and start training with one initial GPU
server; the other slots will be filled dynamically.

Intuitively, using sparse mapping allows cloud customers to
more efficiently utilize transient servers depending on dynamic
conditions, such as price. To demonstrate this, we started a
cluster with a single K80. After every 16K steps, we added one
additional K80 server to the cluster. As shown in Figure 5, the
training finishes in 2.28 hours and is 40.8% faster compared to
using a static cluster size. Moreover, training with a dynamic
cluster also leads to 21.5% cost savings when compared to
training with the static cluster size. However, we observe
1.17% accuracy degradation for training with a dynamic
cluster size. This is because an important hyperparameter, i.e.,
learning rate, that can affect training accuracy, is currently
calculated based on the number of workers supplied in the
training configuration, instead of the number of active workers.
We refer to the method of leveraging sparse mapping without
changing learning rate as using a naive learning rate.

To further investigate the impact of incorrectly configured
learning rate, we implement an adaptive learning rate that
adjusts the learning rate based the number of active workers
instead of the number of total workers. In Figure 5, we
compare the top-1 accuracy with adaptive learning rate to both
the baseline of training with one K80 server and training with
a cluster with increasing number of K80 servers with naive
learning rate. As shown, using an adaptive learning rate can
improve the converged accuracy by 1%.

Summary: Sparse mapping provides a practical way to uti-
lize transient servers dynamically. However, naively utilizing
sparse mapping can lead to model accuracy degradation due to
inappropriate learning rate. But adaptively scaling learning rate
to current number of workers can achieve 1% higher accuracy
compared to naive learning rate.

G. Implications of heterogeneous training

As we empirically demonstrated previously, different classes
of transient servers exhibit different revocation probabilities,
cost savings, availability, and speed trade-offs. Naturally, this
suggests the need to support a mix of servers to balance such
trade-offs in distributed training. We refer to such clusters
as heterogeneous and in this section, we study two types of
heterogeneity: the first leverages differences in hardware and
the second uses differences in location.

For both types of heterogeneity, we use a fixed cluster size
of four transient workers plus an on-demand parameter server.
We use this cluster size for two reasons. First, when scaling out
with more powerful V100, we have observed that training time
quickly plateaus after using more than four servers (Figure 6a).
That is, the training bottleneck has shifted from the ability to
parallelize the gradient computations to how fast the single
parameter server can handle the weight pulling and gradient
pushing from GPU servers. When using two parameter servers
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Fig. 6: Training performance bottleneck. We measure the training
time and monetary costs of scaling out with less powerful K80 and
more powerful V100, normalized to the single K80 training. For
K80 clusters, the number of PS has little impact on the training
speed. In contrast, we observe up to 1.75X training speed using 2
PS in V100 clusters compared to that of one PS. Consequently,
the negligible speedup with using more expensive V100 has lead to
an almost linear increase of training cost. Note, training accuracy
exhibits similar trend of decreasing with the cluster size as shown
previously, and therefore we omit the accuracy comparison due to
space limitation.

for V100 clusters, we again observe training speed up for up
to 1.75X compared to the single PS scenario. Second, under
the current Google Compute Engine transient pricing models,
when scaling out with more powerful V100, the monetary cost
grows almost linearly, as shown in Figure 6b.

To understand the impact of hardware heterogeneity, we
compared three baseline training scenarios using homogeneous
clusters to the training performance of a variety of hetero-
geneous cluster configurations. Homogeneous clusters consist
entirely of servers with the same GPU type while heteroge-
neous clusters feature a mixture of K80, P100, and V100
servers. We denote the configuration of each cluster using the
tuple (NK80, NP100, NV 100) where each value represents the
number of GPU servers of that particular type in the cluster.
For example, we use the cluster configuration (2, 1, 1) to
represent clusters with two K80 servers and one P100 and
one V100. For all of the clusters, we set the total number of
GPU servers to be four, i.e., NK80 + NP100 + NV 100 = 4.
In Figure 7, we compare the training performance of three
different heterogeneous configurations with that of three ho-
mogeneous configurations.

When swapping out two (or three) K80 machines for more
powerful GPU servers, we observe up to a 50% speedup when
compared to the homogeneous cluster of four K80 servers. The
heterogeneous configuration (1, 1, 2) with V100 incurs 17%
more monetary cost. Similarly, when swapping out two (or
three) V100 for less powerful GPU servers, we observe up to
a 28% slowdown when compared to the homogeneous cluster
of four V100 servers. The heterogeneous configuration (2,
1, 1) with two K80 reduces the monetary cost by 26%. Our
evaluation suggests that mixing in more powerful transient
GPU servers significantly increases training speed with a
manageable cost increase and negligible accuracy impact.

For understanding the implications of location heterogene-
ity, we compare the training performance of using clusters
where all the workers reside in a single geographic region to

clusters with workers split across multiple regions. We choose
three US-based regions for our experiments: us-east1, us-
centra1 and us-west1. We represent each cluster configuration
using the tuple (Neast, Ncentral, Nwest) where each value
represents the number of servers running in each region. We
place the parameter server in the data center with the largest
number of workers for any given cluster.

As shown in Figure 8, splitting servers across different
regions leads to significant slowdowns, up to 48%. This
is because a subset of the workers have to communicate
with a parameter server that resides in a different data cen-
ter. Even though our clusters use an asynchronous training
architecture—where workers do not need to wait for each
other to receive the updated model parameters—the separated
workers contribute less work towards completing the specified
64K steps, slowing down the overall training. We do not
observe any additional slow down when splitting clusters
across two regions versus all three regions. Interestingly, there
is a slight increase in accuracy as the training speed slows,
suggesting the potential to mitigate the impact of cross-region
training when transient costs are low enough.

Summary: Training with heterogeneous clusters, either in
terms hardware or location, results in non-trivial tradeoffs in
training cost, accuracy and time. For example, it is more effec-
tive to train with heterogeneous hardware clusters in the same
data center as the training slow down is roughly proportional to
the cost reduction; the saved money can be used to increase
cluster size, speeding up training and mitigating revocation
impacts. Further, training across geographically-diverse data
centers incurs significant overhead due to network commu-
nication. Our observations motivate the need to optimize the
network communication of distributed training frameworks to
take advantage of heterogeneous location clusters.

IV. RELATED WORK

Deep learning frameworks. There are a number of deep
learning frameworks [3], [12], [19], [20] that provide a com-
posable pipeline for machine learning practitioners to design,
train, validate, and deploy deep learning models. Although our
measurement study is conducted on the popular TensorFlow
framework [3], we believe the results can be extended to other
frameworks, such as Caffe/FireCaffe, CNTK, MXNet [19],
[21], [22]. The reason is that current deep learning frame-
works share the same distributed training method, adopt a
parameter server to maintain training parameters, use SGD-
based methods for optimizing model parameters [18], [23], and
support distributed training on multi-GPU servers. However,
most current deep learning frameworks do not natively support
dynamically adding or removing servers while the training
process is ongoing. Very recently, MXNet has embarked
the efforts to dynamically scale training jobs on EC2 [24].
Complementary to the recent support of dynamic training, our
work pinpoints the need for elasticity in transient distributed
training to better utilize the dynamically available transient
servers across types, regions, and monetary costs.
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Fig. 7: Training with heterogeneous server hardware. Mixing workers with less powerful GPUs slows down training by up to 28% but
leads to 26% cost savings when compared to training with homogeneous servers. Further, the change in accuracy is negligible.
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Fig. 8: Training with heterogeneous server locations. Using servers
from different data centers resulted in a 48% slow down when
compared to training within the same region. Interesting, splitting
servers across three data centers showed similar performance to
splitting across just two regions.

Performance studies on deep learning. A plethora of
works [25] have compared and studied deep learning perfor-
mance under different hardware and software configurations.
In particular, researchers have investigated the scaling potential
of using CPU servers [2], single GPU servers, and multi-GPU
servers [26]. As the computational needs of deep learning
grows so does the support for distributed training over a cluster
of GPU servers [4], [7], [27]. Prior work has considered the
impact of network communication [28]–[30]; how to tune
hyperparamters, e.g., learning rate and batch size [1], [18],
[31]–[33]; and how to mitigate the communication bottlenecks
and the impact of stale model parameters [6], [16]–[18].
However, most works on distributed training performance [26],
[34], [35] make the implicit assumptions of static and ho-
mogenous cluster configurations. Our study aims to understand
the training performance of cheap transient servers that have
dynamic availability, revocation patterns, and unit costs. In
addition, these previous studies often focus on measuring
training speed using the average time to process one mini-
batch [25], [26], [36]. While in this work, we consider multiple
important performance metrics—including training time, cost,
and accuracy—that could be impacted by training on transient
servers.

Performance optimization based on transient servers.
Since transient servers are cheaper than their on-demand
counterparts, many researchers have studied how to effectively
run applications on cloud transient servers with as few modifi-

cations as possible [37], [38]. Some researchers have proposed
transient-aware resource managers [39], [40] to optimize job
schedulers by taking into account the revocation rates of
transient servers. Other researchers have proposed system-
level fault-tolerance techniques such as dynamic checkpoint-
ing to optimize the execution time of various applications,
including web services [38], [41], big data applications [42]–
[45] and other memory-intensive applications [46]. DeepSpot-
Cloud [47] looked at how to effectively train deep learning
models by migrating from one GPU server to a cheaper
transient server. Our efforts differs from prior work in two
major ways. First, we focus on understanding how distributed
training can benefit from cheap transient servers. Unlike the
commonly studied batch jobs, big data applications, or even
web services, training deep learning models poses a unique
trade-off of converging accuracy and training speed. Second,
we explored the feasibility and quantified the benefits of per-
forming distributed training on transient servers and identify
important transient-aware design changes in distributed train-
ing frameworks in order to more effectively utilize transient
resources.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described the first large-scale empiri-
cal evaluation of distributed training using transient servers.
We compared various transient server cluster configurations
for training a popular CNN model called ResNet-32 with a
standard image recognition dataset Cifar-10. Using training
on a single GPU server as a baseline, we observe up to
a 7.7X training speedup within the same cost budget and
with a slight accuracy decrease—an artifact of asynchronous
training that is not caused by the use of transient servers. In
fact, we observe that model accuracy on average is higher
when workers are revoked when compared to distributed
training without revocation. Our observations suggest that deep
learning frameworks could better leverage trade-offs across all
three performance metrics—i.e., model training time, training
cost, and accuracy—if cloud providers rework the revocation
mechanism. In addition, our analysis reveals several ways that
current training frameworks can better utilize transient servers,

9



e.g., by offering increased flexibility for model checkpointing
and supporting dynamic scaling.
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