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Abstract—Although Deep Reinforcement Learning (DRL) has
been popular in many disciplines including robotics, state-of-the-
art DRL algorithms still struggle to learn long-horizon, multi-
step and sparse reward tasks, such as stacking several blocks
given only a task-completion reward signal. To improve learning
efficiency for such tasks, this paper proposes a DRL exploration
technique, termed A2, which integrates two components inspired
by human experiences: Abstract demonstrations and Adaptive
exploration. A2 starts by decomposing a complex task into
subtasks, and then provides the correct orders of subtasks to
learn. During training, the agent explores the environment adap-
tively, acting more deterministically for well-mastered subtasks
and more stochastically for ill-learnt subtasks. Ablation and
comparative experiments are conducted on several grid-world
tasks and three robotic manipulation tasks. We demonstrate that
A2 can aid popular DRL algorithms (DQN, DDPG, and SAC)
to learn more efficiently and stably in these environments.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has achieved exciting

advances recently in robotics [1]. However, DRL agents still

struggle to solve many robotic tasks with long horizon, mul-

tiple steps and sparse rewards. For example, in Fig. 1, a robot

is asked to push a block into a closed chest, where the chest

needs to be opened before the block can be pushed into it,

and only a reward is given when the task is done. Fortunately,

humans provide many useful insights for mastering such tasks.

In this paper, we revisit and integrate two ideas inspired from

human experiences to make DRL more efficient and stable in

these difficult tasks.

In the real world, humans benefit substantially from decom-

posing a complex task into a sequence of subtasks. This helps

divide the task into a number of steps that are easier and faster

to solve [2]–[4]. We can then accomplish the complex task

by achieving each step in a specific order, such as following

an instruction manual to assemble different parts of a piece

of furniture. In addition, skills developed during learning one

step can be reused in other steps, such as skills to stack a

specific block can be reused to stack others. The example in
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Fig. 1: Visualisation of a pushing task.

Fig. 1 shows that the three steps of the pushing task are easier

to achieve individually and they share similar arm motions

(reaching and pushing).

Inspired by this, we propose firstly to leverage abstract
demonstrations, which provide the correct order of steps to

a learning agent instead of low-level motions. It has been

shown that, given an efficient enough algorithm to learn

the subtasks such as hindsight experience replay, abstract

demonstrations can accelerate learning for multi-step tasks [5].

The main benefits of abstract demonstrations when compared

to demonstrations of motion trajectories [6], [7] are: 1) they do

not encode a specific pattern of the behaviours when solving

a task; 2) they release robotic operators from the tedious

processes of collecting motion trajectory data.

The second idea is inspired from humans’ adaptive explo-
ration strategies. For example, children do not try to pick and

stack Lego blocks randomly when they have already known

which blocks they need and how to stack them together.

This relates closely to the trade off between exploration and

exploitation, a core issue in DRL [8]. Although exploration

methods have been proposed for long-horizon tasks [9], its

adaptivity has rarely been studied in the context of multi-step

tasks. In multi-step tasks, the learning progress of later steps

depends heavily on former steps. For example, stacking the

fourth block requires the previous three blocks to have been

stacked well. As a result, an agent that explores constantly or

decays exploration in a task-agnostic way, which is the default

setting in most works [10], will have difficulty approaching

later steps. With this in mind, we propose to adjust exploration

adaptively based on an agent’s performance on each of the task



steps.

Previously, these ideas have been explored individually (see

a detailed review in Section II). In this paper, we highlight

the effectiveness of their integration into DRL algorithms for

learning multi-step, sparse reward tasks. We conducted a series

of ablation studies on three representative off-policy DRL

agents, i.e., DQN (deterministic, discrete actions) [11], DDPG

(deterministic, continuous actions) [12] and SAC (stochastic,

continuous actions) [13], using the Mini-grid [14] and Pybullet

Multigoal environments [15].

The results show that abstract demonstrations can accel-

erate learning and improve performance slightly in the grid-

world tasks (DQN) and significantly in continuous control

tasks (DDPG and SAC). Adaptive exploration does not

further improve task success rates in general, but it does

stablise learning with reduced performance variances. In short,

our contributions include:

• We propose A2, a method which integrates Abstract

demonstrations and Adaptive exploration, for more ef-

ficient and stable multi-step sparse reward DRL.

• We discuss possible implementations of the adaptive ex-

ploration component of A2 for modern DRL algorithms,

including discrete and continuous actions, deterministic

and stochastic policies.

• We validate the effectiveness of A2 in various settings:

with a deterministic DQN agent (discrete actions, grid-

world tasks), a deterministic DDPG agent (continuous

actions, robotic tasks) and a stochastic SAC agent (con-

tinuous actions, robotic tasks).

Paper organisation: Section II draws connections between

A2 and existing works. Section III briefly reviews important

preliminaries for using A2. Section IV describes A2 in de-

tails. Section V presents experimental results and discussions.

Section VI concludes the paper.

II. RELATED WORK

Long-horizon multi-step tasks have been addressed by

task and motion planning (TAMP) [2]. TAMP typically gen-

erates high-level task sequences and plans motions for each

subtask individually [3], [16]. Although the idea of task

decomposition based on human priors has been around for

decades [17], researchers have just started recently to study

how it can help learning-based methods [18], [19]. Many

works in RL focus on learning sub-policies (or options) that

are specific to different subtasks or manifest different skills

[20], [21]. Our work differs from them in that we decompose

a task into subtasks to guide the learning of a control policy

(as demonstrations), while they require an agent to learn to

decompose a task during learning. In principle, our method

can be incorporated with any task decomposition method, be

it based on human priors or learning [22].

Learning from demonstrations (LfD) is a practical ap-

proach to teach robots behaviours using trajectories collected

by another agent, typically a human. These behaviours are

normally difficult to program [7]. DRL also benefits from

demonstrations in sparse reward and/or long-horizon tasks

(also known as imitation learning) [6]. Different from the

mainstream works, which use trajectories at the control com-

mand level [9], we use an abstract form of demonstrations, i.e.,

the correct sequence in which task steps should be performed

and learnt. This reduces the human labour spent on collecting

long robot motion trajectories. For cases where some subtasks

are too difficult to learn, motion trajectories can still be

used to further accelerate learning for the subtasks. In order

words, abstract demonstrations could be an alternative or a

supplement to motion trajectories demonstrations.

Automatic curriculum learning (ACL) has become in-

creasingly active in the field of RL and robotics [23]. Briefly,

ACL methods automatically adapt the distribution of training

data for a learning agent [23]. Our method can be seen as a

contribution to ACL, which 1) prompts the agent to learn from

easier subtasks to harder subtasks in the correct sequences

(abstract demonstrations) and 2) adjusts the agent’s exploration

behaviours based on its performance on each subtask.

III. PRELIMINARIES

Markov Decision Process is a tuple 〈S,A,R, p, γ, ρ0〉,
where S is the state space, A the action space, R(s, a) the

reward function, p(s′|s, a) the system transition model, γ the

discount factor and ρ0 the initial state distribution. A policy

π(a|s) is a mapping from states to actions. A state-action

(Q) value function, Qπ(s0, a0), is defined as the expected,

discounted and accumulated rewards starting from taking an

action a at state s and following a policy π thereafter,

i.e., Qπ(s0, a0) = Ea∼π,s∼p[
∑T

t=0 γ
tR(st, at)], where T is

the maximal number of task timesteps. The goal of an RL

algorithm is to find an optimal policy that maximises the value

function [8].

Goal-conditioned Reinforcement Learning: The GRL

problem operates on an MDP augmented with a goal space G
[24]. Instead of pursuing a single goal (conveyed by a single-

objective reward function) as in standard RL, a GRL agent

seeks to maximise a universal value function, Qπ(s, g, a).
Commonly, a goal is defined as some kind of transformation

of a state, g = m(s), assuming that, at any state, there is

always a goal that is achieved if the agent arrives at that state.

Deep Q Network: DQN is an off-policy, deterministic

RL algorithm that uses neural networks to approximate the

Q function for discrete action tasks [11]. Commonly, DQN

uses the epsilon-greedy (EGr) method for exploration. It takes

a random action with a probability ε and takes an action

according to the learnt Q function with a probability 1− ε.
Deep Deterministic Policy Gradient: DDPG is an off-

policy actor-critic style DRL algorithm developed for con-

tinuous control tasks [12]. It approximates a Q-function and

a deterministic policy using separate neural networks, alter-

nating the updates of the two with some interval. Originally,

Ornstein–Uhlenbeck noises are added to the learnt policy to

form exploratory actions [12]. Recently, researchers tend to

use a simpler, but efficient exploration strategy, which takes

random actions with a probability of ε and takes learnt actions

with Gaussian noises with a probability of 1 − ε [24]. For



convenient reading, we name this strategy epsilon-Gaussion
(EGa).

Soft Actor Critic: SAC is an off-policy, stochastic DRL

algorithm [13]. It updates the policy and value network with

entropy regularisation. Typically, the policy network outputs

the mean and standard deviation for a Gaussian policy. SAC

controls its exploration by adjusting the temperature parameter

α either manually or automatically. One can also alter the

standard deviation of the policy to directly control exploration

in a heuristic manner.

Hindsight Experience Replay: HER is a goal-relabelling

technique for GRL, which copies transitions and replaces

their desired goals with some other goals obtained by a

sampling strategy [24]. It improves learning significantly in

goal-conditioned sparse reward tasks. Originally, Andrychow-

icz et al. proposed in [24] the final, random, episode
and future strategies to sample goals for replacement, and

demonstrated that the future strategy is the most efficient.

It copies a transition k times, samples k future transitions,

and replaces the desired goals for each copied transition with

the sampled ones. We adopt the future strategy in all our

experiments, with k = 4.

IV. METHODS

This section illustrates our proposed A2 method in details.

Overall, it includes two components. First, abstract demonstra-

tions are provided to guide the robot to learn subtasks in the

correct order, leading to the completion of a task. Secondly,

an adaptive exploration technique adjusts the exploration pa-

rameters to achieve faster and more stable learning.

A. Abstract demonstrations

We propose to first decompose a multi-step task into a

sequence of subtasks that are easier to accomplish. We ob-

served that, in many tasks (e.g., stacking blocks), although the

decomposed steps may have different purposes (e.g., stacking

each of the blocks), the underlying behaviours achieving them

often share common characteristics (e.g., move-pick-move-

place). This inspired us to use goal-conditioned reinforcement

learning (GRL) [24] as our main learning framework. The

reason is that GRL was proved to have the potential to learn

shared representations and knowledge between the steps [18],

and Hindsight Experience Replay (HER) enables a GRL agent

to learn short-term goals efficiently with sparse reward signals

[24].

The motivation of using abstract demonstrations over

demonstrations at the control command level (kinematic

demonstrations) is twofold. First, abstract demonstrations do

not encode a specific pattern of behaviours for solving a

subtask. Second, it releases humans from the tedious processes

of collecting demonstrations of motion trajectories. However,

in theory these two kinds of demonstrations could be used

together in cases where the subtasks are difficult to learn

without kinematic demonstrations. Given a task decomposition

scheme, we then leverage human priors to label the correct se-

quence to achieve the subtasks. Regarding implementation, an

abstract demonstration is represented by an ordered sequence

of indexes, each corresponding to a subtask.

At the beginning of a learning episode, a final goal is

sampled and given to the GRL agent. When abstract demon-

strations are used, the agent is asked to learn the subtasks

following the order given by the demonstration, instead of

being directly given the final goal. The agent is given the next

subtask if the current goal has been achieved. When given

a new goal, the previous transitions within this episode are

copied as a new trajectory and their desired goals are replaced

with the new goal. New transitions associated with the new

goals are then appended to the new trajectory, leaving the

previous trajectory unchanged. This is to guarantee that the

agent can finally learn to achieve all the goals without demon-

strations. The episode ends when the number of maximum

timesteps is reached.

We use a hyperparameter, η ∈ [0, 1], to control the pro-

portion of training episodes that are demonstrated. We follow

the training procedure used in [24], which is organised in

epochs, cycles and episodes. Each epoch has a number of

cycles, I , and each cycle has a number of episodes, J . The

number of demonstrated episodes in a cycle is computed by

episodedemo = η × J .

B. Adaptive exploration

As mentioned above, the idea of adaptive exploration in

multi-step task learning is to reduce unnecessary exploration

for well-learnt steps and increase on unfamiliar steps. Coupled

with abstract demonstrations, this leads to an adaptive curricu-

lum that guarantees the GRL agent to proceed learning towards

the final goal as quickly as possible. Reducing unnecessary

exploration also leads to more stable performance. Since

deterministic and stochastic agents explore differently, we

provide different implementations for them as follows.

Deterministic agents explore the environment using a base

behavioural policy, πb(a|s, g), that contains some hyperpa-

rameters to control the exploratory behaviours. In this paper,

we use the epsilon-Gaussian (EGa) strategy as our base

behavioural policy for the DDPG agent, and the epsilon-greedy
(EGr) strategy for the DQN agent.

The EGr strategy takes a random action with a probability

ε or takes an action that maximises the learnt Q-function. In

practice, ε will decay to a lower bound during the course of

training, commonly using the following equation:

ε = εend + (εstart − εend)× e
−n
β

where, εstart and εend are the upper and lower bounds, n is

the total elapsed environment timesteps and β is the decay

coefficient parameter. Intuitively, ε decays as the number of

elapsed timesteps grows and its speed is controlled by β.

To make it adaptive, we simply replace the exponential term

by a performance metric. Specifically, we construct an N -

dimensional vector to store the value of ε for each task step

at the m-th epoch, εm. We then use an N -dimensional vector

to record the test success rates for all task steps at the m-th



epoch, denoted as Sm, initialised to 0. We update εm using

the following equations:

εm+1 = εend + (εstart − εend)× (1− Sm). (1)

For continuous action cases, the EGa strategy samples a

random action uniformly with a probability ε or takes an action

generated by a learnt policy with noises from a fixed Gaussian

distribution. That is,

πb(a|s, g) =
{
a ∼ U(|A|,−|A|), δ ≤ ε

a ∼ N (π(a|s, g), σ), δ > ε

where δ ∼ U(0, 1) and π(a|s, g) is a learnt, deterministic,

goal-conditioned policy. By varying the hyperparameters, ε
and σ, based on the performance of each task step at different

training epochs, we have an adaptive exploration strategy.

Again, we use N -dimensional vectors to represent these two

hyperparameters for the N task steps at the m-th epoch,

εm and σm. At the beginning of a training process, these

two vectors are initialised to their initial values, ε0 and σ0

(ε0 = 0.2 and σ0 = 0.05 in all our experiments). We use

another vector to record the test success rates and update εm
and σm by:

εm+1 = ε0 × (1− Sm), σm+1 = σ0 × (1− Sm). (2)

Stochastic agents explore the environment by sampling

from a learnt stochastic policy. As an example, the SAC agent

uses a Gaussian policy whose mean and deviation are produced

by a neural network. We propose to use the success rate as a

scaling factor for the deviation for different task steps. Similar

to Eq. 2:

σm+1 = σ0 × (1− Sm), (3)

where σm is the deviations for the learnt stochastic policy

for different task steps, and σ0 can be pre-defined constants

or learnt by a neural network.

Performance metrics. To obtain the test success rates, we

perform K testing episodes for each task step after each

training epoch and calculate the average success rate for

each step. This test is run with abstract demonstrations to

reflect the performance of achieving a step starting from the

previous one. However, computing Eqs. 1, 2 and 3 with the

vanilla success rate would result in bumping changes of the

exploration hyperparameters. As the success rate is calculated

only from the K testing episodes, it may not reflect the true

performance of the current policy, because K is usually not

large for the sake of reducing computations. Thus, we use

the polyak-average [25] of the test success rate vector, S−
m to

calculate Eqs. 1, 2 and 3 instead of the vanilla success rates.

The running average is calculated with a parameter τS ∈ [0, 1]
as follows:

S−
m = (1− τS)× S−

m−1 + τS × Sm (4)

To demonstrate the proposed A2 method, we incorporate it

with the DQN, DDPG and the SAC agents. For the DQN and

DDPG agents, we use the EGr and EGa as the base methods

for adaptive exploration and use Eqs. 1 and 2 to update their

parameters. For the SAC agent, we use Eq. 3 to scale the

policy deviation learnt by a neural network.

V. RESULTS

To investigate the effect of the proposed A2 method, we

conduct a series of simulation experiments using the Mini-Grid

[14] and PMG environments [15]. All performances displayed

were the success rates of achieving the final goal without

demonstrations, averaged over five random seeds. Specifically,

we experimented on six multi-step, sparse reward tasks, in-

cluding GridDoorKey (3 sizes), ChestPush, ChestPickAnd-

Place and BlockStack (see Fig. 2 for a visualisation). Codes

available at https://github.com/IanYangChina/A-2-paper-code.

(a) GridDoorKey (b) ChestPush (c) ChestPick (d) BlockStack

Fig. 2: Tasks. (a) The agent (red) needs to reach the goal

(green). (b-c) The robot needs to push or pick-and-drop the

block into the chest. (d) The robot needs to stack the blocks.

A. Task and implementation details

GridDoorKey task: The state representation consists of

the x and y coordinates of the agent, the key and the door,

the heading direction of the agent, and two binary variables

indicating whether the agent is carrying the key and whether

the door is opened. The goal representation is the x and y
coordinates of the target. The reward function gives a value

of 0 when the goal is reached and −1 otherwise.

Manipulation tasks: We use the ChestPush and ChestPick

tasks with one block and the BlockStack task with two blocks

from the Pybullet Multigoal (PMG) environments [15]. The

state representation and reward function remain the same as the

original paper. The original goal representation only consists

of the target coordinates of the blocks in the world frame.

We add the gripper location and its finger width to the goal

representation for specifying the task steps regarding grasping

and placing.

At the beginning of each task, the agent is given a desired

goal which, for example, specifies the desired location of a

block. If abstract demonstrations are used in an episode, the

agent will instead be given a subgoal according to the step at

hand. The decomposition schemes for the tasks are as follows:

• Gridworld: three subgoals, including 1) reach the key, 2)

reach the door and 3) reach the target location;

• ChestPush: three subgoals, including 1) open the chest,

2) reach the block and 3) push the block into the chest;



• ChestPick: four subgoals, including 1) open the chest, 2)

grasp the block, 3) move to the top of the chest and 4)

drop the block into the chest;

• BlockStack: four subgoals, including 1) grasp the base

block, 2) move the base block to the target location, 3)

grasp the second block and 4) stack the second block.

Network architecture: The DQN network has three MLPs

of sizes 64, 128 and 64. The actor and critic networks for the

DDPG and SAC have three MLPs of sizes 256. All layers

use ReLU activation, except for the output. All actors use

hyperbolic tangent to activate the final layer and all critics

(include DQN) have no activation on the output.

B. Ablations

This subsection examines the effect of different parameter

values of the A2 method, namely, the percentage of demon-

strated episodes η and the adaptive exploration update rate τS .

We perform ablations on the GridDoorKey25x25 tasks with

the DQN agent, ChestPush task with the DDPG agent and

BlockStack task with the SAC agent.

From Figs. 3a to 3c, we see that adding demonstrations

improves convergence speeds and performances in general.

Adding demonstrations to 50% or 75% of training episodes

has the highest performance gains across all agents and tasks

(green and red lines). Interestingly, providing demonstrations

to all the training episodes tends to hurt the performances

(purple lines). This could be due to a lack of negative learning

signals when trained in a fully-demonstrated way, given that

the value function normally requires negative examples to

distinguish good transitions from bad ones for more accurate

value prediction.

The ablations of the adaptive exploration update rate were

conducted with a fixed percentage of demonstrated episodes

(η = 0.75). From Figs. 3d to 3f, we see that, varying the value

of τS tends to have no obvious effects. However, a small value

may slow down learning as shown by the gridworld experiment

(the orange line in Fig. 3d).

C. General performance

This subsection examines the general improvements gained

by the proposed A2 method. According to the ablation studies

(subsection V-B), we add abstract demonstrations into 75% of

the training episodes and use 0.3 for the adaptive exploration

parameter, τS , for improvement evaluation.

As shown by Fig. 4, in all experiments, by adding abstract

demonstrations in 75% of the training episodes, the agent

learns faster with higher performances. The improvement is

more obvious in the robotic tasks. Notice that as the robotic

task becomes more difficult (from subfigures 4d to 4f), the

gap of success rates becomes larger compared to the vanilla

algorithm (blue lines). This demonstrates that abstract demon-

strations can provide vast improvement on multi-step tasks,

because it significantly eases the agent from the difficulty

of exploration in long task horizon with sparse rewards and

subtask dependencies.
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Fig. 3: Test success rates of achieving the final goal with differ-

ent proportions of demonstrated episodes η (a-c) and adaptive

exploration update rate τS (d-f). AD: abstract demonstrations;

ADAE: abstract demonstrations and adaptive exploration.
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Fig. 4: Test success rates of achieving the final goal in all

tasks: DQN on gridworld tasks (a-c), DDPG (d-f) and SAC

(g-i) on robotic tasks. AD: abstract demonstrations; ADAE:

abstract demonstrations and adaptive exploration.

Adaptive exploration provides less obvious improvements

on top of abstract demonstrations in terms of success rates.

However, it clearly stablises the learning performance, as it

shows a smaller variance. This is probably due to its effect

on reducing unnecessary exploration such that the agent could

act more decisively on well-mastered subtasks.

VI. CONCLUSION

We introduced A2 – abstract demonstration and adaptive ex-

ploration – to aid reinforcement learning algorithms in multi-



step, long-horizon and sparse reward tasks. We showed in

section IV that A2 can be integrated in value-based algorithms

with discrete actions (e.g., DQN) and actor-critic algorithms

with continuous actions with a deterministic (e.g., DDPG) or

stochastic (e.g., SAC) policy. We evaluated A2 in discrete

gridworld and continuous robot manipulation environments.

Results in section V showed that abstract demonstrations in

general speed up learning with higher success rates, with a

more significant gain in continuous robot manipulation tasks,

and the adaptive exploration module helps the agent to learn

more stably.

A limitation of our method is the requirement of a manually

designed task decomposition scheme. This could be addressed

by learning to decompose a long-horizon task into subtasks.

More sophisticated task assumptions such as image observa-

tions may also be considered to evaluate the effects of our

method.
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