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Abstract— The advent of industrial robotics and autonomous
systems endow human-robot collaboration in a massive scale.
However, current industrial robots are restrained in co-working
with human in close proximity due to inability of interpreting
human agents’ attention. Human attention study is non-trivial
since it involves multiple aspects of the mind: perception,
memory, problem solving, and consciousness. Human attention
lapses are particularly problematic and potentially catastrophic
in industrial workplace, from assembling electronics to oper-
ating machines. Attention is indeed complex and cannot be
easily measured with single-modality sensors. Eye state, head
pose, posture, and manifold environment stimulus could all play
a part in attention lapses. To this end, we propose a pipeline
to annotate multimodal dataset of human attention tracking,
including eye tracking, fixation detection, third-person surveil-
lance camera, and sound. We produce a pilot dataset containing
two fully annotated phone assembly sequences in a realistic
manufacturing environment. We evaluate existing fatigue and
drowsiness prediction methods for attention lapse detection.
Experimental results show that human attention lapses in
production scenarios are more subtle and imperceptible than
well-studied fatigue and drowsiness.

Keywords— Human attention monitoring, eye tracking, industrial
robots, Human-Robot Interaction

I. INTRODUCTION

Human attention is a cognitive process that involves a
combination of physiological, psychological, and environ-
mental attributes. Human attention lapses, characterized by
the loss of focus or distraction, can significantly compromise
task performance and bring about hazards for workers. Costs
can be unbearably high when failing to detect attention
lapses in circumstances such as assembling electronics and
operating machines. In particular, the detrimental impact
of attention lapses can result in errors, safety violations,
and incurring significant impedance for industry to deploy
autonomous robotic systems in context of Industrial 5.0.

Attention is a state in which one’s cognitive resources
are focused on certain aspects of the environment, and the
operator is ready to respond to environmental stimuli. It can
be inferred via physiological and behavioral indicators but
not a physical entity to be measured directly. Attention lapses
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(a) Dedicated in assembly

(b) Distracted by phone

Fig. 1. An example of distraction (looking at a mobile device) at workplace.
Since the worker retains similar gaze, head pose, and posture in (a) dedicated
and (b) distracted states, it is difficult to perceive such subtle difference
without eye tracking. Vision-based detector, e.g., OpenFace [1] (mid row),
fails in contrasting attention lapses to normal states.

manifest widely across individuals due to different cognitive
abilities, emotional states, and environment variations. These
altogether make attention lapses difficult to monitor, nor to
measure them accurately.

In order to track attention, our intuition is that many sensor
modalities should work together to provide useful informa-
tion. Given the multimodal nature of attention, it can manifest
in different ways, such as eye blinking, looking away, moving
head or arm, speaking, or signs of drowsiness [26]. In light
of thriving multi-modality sensing systems, the combination
of data on gaze, head pose, and audio can provide rich
information for human attention and attention lapse study.
Measuring attention lapses multimodally and automatically
underlies a key aspect of promoting perception systems of
social robots as well as improving worker safety. Social
robots will benefit tremendously from better comprehending
human’s attention and disengagement, so as to make more
appropriate interactions.

A multimodal sensing approach to attention lapse de-
tection could assist in understanding the mechanisms of
attention and developing effective interventions to improve
human-robot collaboration. As can be seen from Fig. 1,
a worker who looks in a correct direction with normal
head pose and facial expression could be either engaged
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in working or distracted. Subtle differences in the worker’s
focus make recognizing such attention lapse a challenge.
Without eye tracking to reveal human’s cognitive state it
is almost impossible to approach effective attention lapse
detection. Nonetheless, relying solely on gaze modality will
compromise reliability when there is occlusion of pupil or
visual degradation.

To this end, we first curated a dataset of human operators
conducting assembly task in a realistic production environ-
ment. A Franka robot played an assistive role in handing
over components to the human agent [14]. A Pupil Core
eye tracker and a Microsoft Azure Kinect RGB-D camera
with microphone are used for data collection. This setup
allows multimodally and unobtrusively tracking the human
operator’s gaze, egocentric world view, as well as head pose,
body posture, and environmental stimuli from a third-person
perspective [5]. In order to streamline data annotation and
pre-processing, we developed a pipeline to label distracted
attention states frame-by-frame and visualizing the timelines.
We also set up Apriltags [13] in the environment for head
pose tracking. We used open-source tools [3], [12], [22] to
perform eye state classification (incl. fixation and blink) and
fixated object detection. This pilot dataset has been annotated
frame-by-frame to mark onsets of human attention lapses and
in-operation states.

We also investigated the effect of applying existing fatigue
and drowsiness detection methods [2], [7], [19] on the pilot
dataset. These methods have been widely used in driving
safety domain. Unfortunately, they not only fall short in
robustness for relying on single modality, but are hardly
usable in real-world industrial settings where attention lapses
take manifold forms. The results reveal a remarkable gap in
accurate human attention lapse detection to allow safe and
trustworthy HRI for industry.

In this work, our contribution is threefold: (1) We collected
two pilot data sequences of multimodal human attention
data in realistic industrial environments for benchmarking
of human attention lapses detection; (2) We developed a
pipeline for labelling multimodal sensory data, namely eye
tracking, surveillance camera, and auditory input; (3) We
experimented with existing fatigue and drowsiness prediction
methods and identified a significant gap of knowledge in
human attention lapse detection.

The rest of this paper is organized as follows. Section II
reviews existing literature around attention lapse detection
datasets, methods, and applications. Our proposed multi-
modal annotation pipeline and benchmarking datasets are
expanded in details in Section III. Evaluation outcomes with
existing methods are reported in Section IV. Section V
summarizes future work.

II. BACKGROUND

A. Human Attention Lapse Study

Driving fatigue and drowsiness detection have been ac-
tively studied for its oriented application in driver safety
domain. PERCLOS [7] is one of the most commonly used

metrics for driving fatigue evaluation. An eye state track-
ing approach to PERCLOS is proposed in [8] to estimate
eyelid closure ratio with respect to fatigue level. Although
eye closure is agreed to be directly correlated to fatigue,
human attention lapse can be quite polymorphic. Driver’s
eye looking away from the normal direction could be a sign
of distraction or fatigue. Head pose [1], [22] which is often
associated with eye gaze may also indicate attention shifting.

Human attention lapses are of far more complex causes
than fatigue and drowsiness. Indeed, a person may be mind
wandering whilst having eye fixation at the right direction
and objects. The fixation state of eyes may not directly
indicate focused or attention lapse but the states of eye
are closely correlated to human attention in general [23].
According to human cognition and recognition studies [10],
the following gaze patterns are strong indicators of attention
lapse: long fixation on a single point, looking away, slow or
irregular saccades, eye closure, and a high rate of blinking.
Attention lapse is related to environmental distractors (au-
ditory and visual), cumulative fatigue doing repetitive work,
internal cognitive state such as motivation. A single-modality
approach to determine human attention detection often falls
short in accuracy and reliability [28].

Our hypothesis is that attention lapse is multimodal, that
is, human’s internal cognitive state, environmental stim-
uli, together with eye state, facial expression, and posture
collectively formulate trustworthy attention lapse detection.
Existing driving fatigue detectors cannot be generalized for
diverse applications [28], [15] in the sense that a driver sits
in a confined position with a relatively simple but effective
metric of “looking ahead”. In this paper, we look into an
open and more challenging scenario of assembly tasks in
manufacturing.

B. Existing Datasets and Methods

In the domain of driver fatigue research, detecting drowsi-
ness and distraction using multimodal behavioural fea-
tures [20] allows applicable solutions to enhance driver
safety. Transferring this idea to HRI could mean a big
step forward for workers’ safety in automated production
lines [4]. According to [15], it is found the combination
of eye feature (gaze, blinking, and fixation states) and head
pose achieve reliable estimations. Methods based on single-
modality turn out susceptible to occlusions and hard to
generalize well. In [2], the authors proposed handcrafted
thresholds of 30◦ nodding and 200-frame (about 6.7s) no
change in gaze direction to detect drawsiness, which can
never produce satisfactory reliability. Yawning makes an
effective indicator of fatigues but becomes less useful in
distraction detection [28].

Static human attention tracking within a fixed plain (e.g.,
looking at a flat screen) has been well-studied, such as SNAG
dataset [25] and human attention dataset in image captioning
[9]. Recently more focuses have been drawn on studying
human attention in action such as assembling a camping tent
[23] and driver monitoring [8].



(A) Surface tracking

(B) Pupil Core eye tracker

(C) Head pose tracking (D) Surface (worktop) visualization

Fig. 2. Visualization of the data collection environment and annotations.
(A)(D) show the assembly worktop defined by QR codes and its 2D
projection with gaze in post-hoc processing. Green dots are gaze projections;
yellow circle marks the fixation position. (B) shows the Pupil Core eye
tracker. Head pose tracking results are shown in (C).

Modern eye trackers achieve fairly high accuracy, preci-
sion, and effective frequency [11] even wearers performing
substantial movements. Nevertheless, eye tracking in unre-
strained settings, such as lost track of pupil and long eye
closure, will inevitably affect the data quality in accuracy
and precision [18]. Furthermore, a robust eye state track-
ing entails high-fidelity visual monitoring from third-person
views [6]. This deteriorates credibility of predicting attention
by eye tracking only.

It has been widely acknowledged environmental noises,
such as those in industrial workplace, have a profound impact
on human cognition [24]. Auditory stimuli are also common
external stimuli that draw human attention and arouse dis-
traction [16]. We are thus motivated to collect a multimodal
human attention tracking dataset tailored for cooperation
between human agents and robot manipulators in industrial
settings. As aforementioned, human’s eye states, head pose,
body posture, and sound stimuli shall all be synchronized and
recorded. The following sections expands our data collection
campaign, annotation pipeline, and evaluation results.

III. METHOD

We collected a pilot dataset of a human worker do-
ing a dummy phone assembly task with the aid of a
pre-programmed robot manipulator. Multi-modality sensors,
namely an RGB-D camera with microphone (Azure Kinect
DK) and an eye tracker with egocentric world camera
(Pupil Core), are deployed with multiple artificial distrac-
tors injected during the experiment process. An automated
annotation pipeline is proposed to streamline the labelling
of multiple primitives for human attention lapse research.
We also utilized pre-trained object detectors [21] for fixated

Fig. 3. Annotated in-operation and distracted states in phone assembly
sequence 002 compared with classic estimation methods. Blue bars represent
onsets of the worker’s hands-on operation which implies greater hazards
upon robotic intervention. Red bars represent onsets when the worker
is distracted. Magenta bars indicate eye fixations within the predefined
surface (i.e., worktop). Grey bars mark head movements with a high angular
velocity. These events are annotated against temporal UTC timestamps of
millisecond (msec) precision.

object recognition and pre-trained head pose detector [22]
for head pose calibration.

A. Pilot Dataset

The data collection was conducted in Aalborg Univer-
sity 5G Smart Production Lab [17]. It provides a realistic
manufacturing environment to present real-world industrial
scenarios. A Franka robot has been pre-programmed to
harvest five components of a dummy phone, shown in Fig.
2(D), and hand them over by releasing the components ahead
of human operator’s right hand position. The release takes
place at slightly varying locations which requires human’s
attention to catch the components. Note these five dummy
components (one front cover, one back cover, one printed
circuit board, and two fuses) are made of plastic and would
cause no harm if caught unsuccessfully. A software-based
stop command and an emergency button are placed next to
the human participant for safety. A human experimenter was
asked to perform phone assembly tasks while multimodal
data of gaze, vision, speech, and environmental stimuli from
multiple angles were collected. During the task, the dummy
phone parts placed on a flat worktop will be picked up by
the Franka robot and the human participant was expected to
put these parts together, as is shown in Fig. 2(A).

We experimented with a Pupil Core eye tracker as shown
in Fig. 2(B). Pupil Core offers binocular eye tracking at
200Hz (highest among mass marketed wearable and mo-
bile products) and a scene camera to shoot world view of
155◦/85◦ horizontal/vertical field of view with configurable
resolution and frame rate [12]. The eye cameras take infrared
illuminated images and detects the pupil area with a robust
and efficient algorithm and multiple noise filters (an average



TABLE I
ANNOTATIONS IN THE PILOT DATASET

Label Type Units
Eye state fixation/blink/saccade Classes and msec

Gaze 2D position Relative coordinates
Fixation 2D position Relative coordinates

Fixation object Detected object class Classes
Head pose 6 degree-of-freedom pose Pose

Fixation in AOI 2D position and whether fixation is in AOI Relative coordinates and True/False
Distractor noise/motion/phone and onset timestamps Classes and msec

Distracted state Start and end timestamps msec
In-operation state Start and end timestamps msec

gaze detection accuracy of 0.6◦ of visual angle and a
processing latency of 45ms). Pupil Core stands out for its
light-weight design, minimized visual obstruction, and ability
to accommodate varying facial geometries in comparison to
SMI ETG2 60 or Tobii G-series [11]. More importantly, the
open source software of Pupil Core allows customization
in data collection, processing, and labelling processes. Data
streaming, blink detection, and head pose tracking modules
can be integrated as plugins at ease. Eye tracking endows the
ability of detecting introverted human attention in a direct
and non-obstructive means [13].

A Microsoft Azure Kinect DK with microphone array was
used for a third-person perspective recording. This kit con-
tains an RGB-D camera with infrared sensing, 7-microphone
array, and integrated body pose tracking backends. We used
a Lenovo laptop with an Intel i7 processor and Ubuntu 18.04
operating system installed for data collection. All sensors are
synchronized by the host laptop’s local clock.

QR codes are commonly used for head pose estimation
in eye tracking practices. Following the method proposed in
[27], we deployed multiple Apriltags [13] in the environment
and utilized the post-hoc pose tracking algorithm of the Pupil
Core software for head pose estimation. We deployed eight
Apriltags from the tag36h11 family next to the assembly
worktop as shown in Fig. 2(C,D). Three of them are attached
to the flat surface of the worktop to allow surface abstraction
and gaze tracking in Area of Interest (AOI).

B. Annotation Pipiline

To achieve multimodal attention detection, we developed
a data annotation pipeline for efficient processing of the
multimodal data. First, we recognized a list of significant
primitives in human attention study as detailed in Table
I. Specifically, the eye state, gaze position, and fixation
position can be extracted from Pupil Core’s software system
outputs but require careful calibration as errors are common
in default detectors. The fixation object is automatically
annotated by a pre-trained object detector [21] with manual
corrections. Head pose and surface tracking are derived with
the aid of eight Apriltags deployed next to the assembly
platform. Of our greatest interest, the distracted states and
in-operation states are manually labelled frame-to-frame to
identify subtle attention lapses. An example of the annotated
sequence 002 is shown in Fig. 3.

Note ensuring ad-hoc occurrence of real-world distractors
in an assembly task is critical for attention lapse study.
We curated two pilot data sequences of a human partici-
pant assembling a dummy phone in a realistic production
laboratory with manufacturing background noises, moving
MiR robots, and workers around. According to K. Holmqvist
and R. Andersson [10], the following distractors in industrial
settings are identified:

• Noise (background/sudden)
• Co-workers (talk to “me”/talk to each other)
• Malfunction (user mistake/equipment)
• Fatigue (drowsiness/mind wandering)
• Visual stimuli (environment/moving objects)
• Multitasking
• Motivation (task difficulty/repetitiveness/reward)
During the pilot data collection, we introduced three of

the above distractors due to constraints of the environment
and safety concerns: clapping hands (sudden noise), walking
co-workers at the scene (visual distraction), and looking at
a personal smart phone (mind wandering). In the first clip
(Sequence 002), we asked the experimenter to be open-
minded to attention lapses and look along distractors. In the
second clip (Sequence 002), the experimenter was asked to
stay as concentrated as possible in which the only distractor
is mind wandering. The onset of these events have been
post-hoc annotated by checking multiple camera views and
auditory recordings as shown in Fig. 4.

A FasterRCNN-based object detector [21] is leveraged to
perform post-hoc fixation object recognition. We applied the
object detector on every frame and used fixation point as
a filter to only annotate object of attentive interest. If the
fixation is more than 15-pixel away from an object’s bound
box the detected object will be omitted as the fixation lands
far apart from the object. Errors are inevitable using such
automated annotations. We further validated and corrected
wrong labels frame-by-frame.

IV. EVALUATION

We experimented with existing single-modality methods
on the pilot dataset. Classic fatigue and drowsiness detection
modalities include ratio of eye closure state (PERCLOS) [7],
blink frequency [19], gaze fixation state [10], and head pose
tracking [2]. We examined their performance in determining
attention lapse upon phone assembly sequences 002 and 003.



Fig. 4. Visualization of audio distractors (1st row), eye tracker’s world view (2nd row), surveillance RGB scene (3rd row), and depth scene (4th row).
The second frame (column) shows the worker being distracted by hand claps to her left. The fourth frame (column) illustrates distraction of talking to
co-workers.

TABLE II
DETECTION RESULTS ON PHONE ASSEMBLY SEQUENCE 002.

Method Precision Recall F1 Score
Eye closure period (PERCLOS) 35.71% 37.42% 0.37

Eye blink frequency 19.55% 13.16% 0.16
Fixation within AOI 8.70% 19.31% 0.12

Head movement velocity 13.11% 9.49% 0.11

TABLE III
DETECTION RESULTS ON PHONE ASSEMBLY SEQUENCE 003.

Method Precision Recall F1 Score
Eye closure period (PERCLOS) 0 0 N/A

Eye blink frequency 4.24% 100% 0.08
Fixation within AOI 3.15% 52.22% 0.06

Head movement velocity 0.85% 24.39% 0.02

PERCLOS refers to the percentage of duration of closed-
eye state within a given time interval (30 seconds or 1
minute). For a fair comparison, we use EM criteria, which
represents 50% of eye closure rate, upon a 30s sliding
window to metric attention lapse on the phone assembly
data sequences. According to [19], eye blink frequency drops
below 10 per minute when sleepy. We adopted this threshold
for blink frequency based drowsiness estimation in a 30s
sliding window.

Workers are expected to pay attention to an AOI, such
as a worktop, when focusing on specific tasks. This has
been widely accepted as an important attribute in attention
detection. We defined a worktop area using Pupil Core’s
software as shown in Fig. 2(A). The entry and exits from this
AOI can be calculated as shown in Fig. 3 “On-surface”. I.
Choi and Y. Kim [2] contended nodding over 30◦ in a short

time implies drowsiness. We extend this to head rotation
around any axis for distraction detection. We specified the
short time equals 2 seconds. Given densely deployed QR
codes, pose-hoc head poses can be reconstructed as seen in
Fig. 2(C). Thus, we obtained distraction states as shown in
Fig. 3 “Head Move”.

Overall, poor precision, recall, and F1 scores are seen
from pilot data sequences as shown in Tables II and III.
PERCLOS turns out the most reliable attention lapse detector
when open-minded to distraction. Yet its precision and recall
are far from satisfactory. Other single-modality methods
demonstrate extremely low coherence with true distraction
states. In Sequence 003 where experimenter was mentally
prepared, all fatigue and drowsiness methods fail. These
back up our judgement that attention lapse is multimodal
and complex, suggesting simple paradigms of monitoring eye
blinks, fixation, or head pose cannot be trusted. Additionally,
single or few sensors for detection may suffer in accuracy
when occlusion or data discrepancy occur. For instance, we
found some long-lasting blinks, i.e., over 5s, in Pupil Core’s
algorithm for blink detection. This may be due to losing
tracks of pupils. We conclude from our pilot study that a
multimodal and multi-sensory scheme for worker attention
lapse detection becomes imperative in this research area.

V. FUTURE WORK

In this work, we addressed data primitives of a human
attention lapse study and created a pilot dataset to evaluate
existing detection methods. The pilot dataset collected falls
short in size to support data-driven algorithms for attention
lapse detection, such as SVM and deep neural networks.
We plan to launch a large-scale data collection campaign



with dozens of human participants accomplishing various
assembly tasks. Current experimental setup supports one set
of sensors on eye tracker and the other set in front of the
workspace. We will expand it with more sets of sensors from
multiple angles in the complete dataset.

We notice the frame rates of multimodal sensors differ.
Eye cameras run at 200Hz, whereas, world camera and Azure
Kinect DK run at 30Hz. Furthermore, there is an offset
between sound track and RGB-D video. We will elaborate the
data collection pipeline to achieve enhanced synchronisation.
We also plan to integrate threads of automatic body posture
tracking and hand gesture recognition into the annotation
pipeline.
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